第一篇:高二数学构造函数法在不等式证明中运用
构造函数法在不等式证明中运用
作者:酒钢三中 樊等林
不等式的证明历来是高中数学的难点,也是考察学生数学能力的主要方面。不等式的证明方法多种多样,根据所给不等式的特征,巧妙的构造适当的函数,然后利用一元二次函数的判别式、函数的奇偶性、单调性、有界性等来证明不等式,统称为函数法。本文通过一些具体的例子来探讨一下怎样借助构造函数的方法证明不等式。
一、构造函数利用判别式证明不等式 ①构造函数正用判别式证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。
例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。
解析:令f(a)a2(3bc)ac23b23bc
⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。
当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。
4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。
3abc222解析:2 消去c得: a(b2)ab2b10,此方程恒成立,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,
34。3② 构造函数逆用判别式证明不等式
对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2
由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。
例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:
f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)
2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2
1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0
abc111149
∴当a,b,c时,()min36
632abc
二、构造函数利用函数有界性证明不等式
例5.设a﹤1,b﹤1,c﹤1,求证:abbcac﹥-1.解析:令f(x)(bc)xbc1为一次函数。
由于f(1)(1b)(1c)﹥0,且f(x)(1b)(1c)﹥0,∴f(x)在x(1,1)时恒有f(x)﹥0.又∵a(1,1),∴f(a)﹥0,即:abbcac1﹥0 评注:考虑式中所给三个变量的有界性,可以视其为单元函数,转化为f(a)1。
三、构造函数利用单调性证明不等式
abab例6.设a,bR,求证:﹥ 1a1b1ab解析:设f(x)又x11,当x﹥0时,f(x)是增函数,1x1xabababab2abababf(abab),=﹥=1a1b(1a)(1b)(1a)(1b)1abab而a,bR,∴abab﹥ab,∴f(abab)﹥f(ab)故有: abab﹥ 1a1b1ab例7.求证:当x﹥0时,x ﹥ln(1x)。解析:令f(x)xln(x1),∵x﹥0,∴f/(x)11x ﹥0.x1x1又∵f(x)在x0处连续,∴f(x)在0,上是增函数,从而,当x﹥0时,f(x)xln(1x)﹥f(0)=0,即:x﹥ln(1x)成立。
评注:利用函数单调性证明不等式和比较大小是常见的方法,特别是在引入导数后,单调性的应用将更加普遍。
四、构造函数利用奇偶性证明不等式
xx(x0)。例8.求证:﹤x212xxxxx2xx=解析:设f(x)-(x0),f(x)=xxx221212212xxxxx1(12)x==f(x).212x212x所以f(x)是偶函数,其图象关于y轴对称。
当x﹥0时,12x﹤0,故f(x)﹤0;当x﹤0时,依图象关于y轴对称知f(x)﹤0。
xx(x0)﹤212x评注:这里实质上是根据函数奇偶性来证明的,如何构造恰当的函数充分利用其性质是关健。
由上述几种情况可以看出,能否顺利地构造函数利用其函数性质和使用数学思想来证明不等式,最重要的是要有扎实的基本功和多种思维品质,敢于打破常规,创造性地思维,才能独辟蹊径,使问题获得妙解。故当x0时,恒有f(x)﹤0,即
第二篇:构造法证明函数不等式
构造法证明函数不等式
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.
一、移项法构造函数
【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x. x
1二、作差法构造函数证明
【例2】已知函数f(x)的图象的下方.
2312xlnx,求证:在区间(1 ,)上,函数f(x)的图象在函数g(x)x
32三、换元法构造函数证明
【例3】(2007年山东卷)证明:对任意的正整数n,不等式ln(1111)23都成立. nnn
四、从条件特征入手构造函数证明
【例4】若函数yf(x)在R上可导,且满足不等式xf'(x)f(x)恒成立,常数a、b满足ab,求证:af(a)bf(b).
五、主元法构造函数
1x)x,g(x)xlnx. 【例5】已知函数f(x)ln((1)求函数f(x)的最大值;
(2)设0ab,证明:0g(a)g(b)2g(ab)(ba)ln2.
2六、构造二阶导函数证明函数的单调性(二次求导)
【例6】已知函数f(x)aex12x. 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a1,求证:当x0时,f(x)1x.
七、对数法构造函数(选用于幂指数函数不等式)
【例7】证明:当x0时,(1x)1xe12.
1、(2007年,安徽卷)设a0,f(x)x1ln2x2alnx.
求证:当x1时,恒有xln2x2alnx1.
2、(2007年,安徽卷)已知定义在正实数集上的函数f(x)1x12x2ax,g(x)3a2lnxb,其中2a0,且b 52a3a2lna,求证:f(x)g(x).
23、已知函数f(x)ln(1x) xb,求证:对任意的正数a、b,恒有lnalnb1. 1xa4、(2007年,陕西卷)f(x)是定义在(0 , )上的非负可导函数,且满足xf'(x)f(x)0,对任意正数a、b,若ab,则必有()
A.af(b)bf(a)
B.bf(a)af(b)
C.af(a)f(b)
D.bf(b)f(a)例1【分析】 本题是双边不等式,其右边直接从已知函数证明,左边构造函数11,从其导数入手即可证明. x11x1【解析】由题意得:f(x),∴当1x0时,f(x)0,即f(x)在x1x1g(x)ln(x1)x(1 , 0)上为增函数;当x0时,f(x)0,即f(x)在x(0 , )上为减函数;故函数f(x)的单调递增区间为(1 , 0),单调递减区间(0 , );于是函数f(x)在(1 , )上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0,∴ln(x1)x(右面得证).现证左面,令g(x)ln(x1)11x11,则g(x)22,x1(x1)(x1)x1当x(1 , 0)时,g'(x)0;当x(0 , )时,g'(x)0,即g(x)在x(1 , 0)上为减函数,在x(0 , )上为增函数,故函数g(x)在(1 , )上的最小值为g(x)ming(0)0,110,x1111ln(x1)x. ∴ln(x1)1.综上可知:当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1)【点评】如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a)(或f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证.
例2.【分析】函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)在(1 ,)上恒成12212xlnxx3,只需证明在区间(1,)上,恒有x2lnxx3成立,23231设F(x)g(x)f(x),x(1 , ),考虑到F(1)0,要证不等式转化变为:
6立问题,即当x1时,F(x)F(1),这只要证明:g(x)在区间(1 ,)是增函数即可. 【解析】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F'(x)2xx;当x1时,F'(x)0,从xxx而F(x)在(1,)上为增函数,∴F(x)F(1)
10,∴当x1时,g(x)f(x)0,即6f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)23x的图象的下方. 3【点评】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式.读者也可以设F(x)f(x)g(x)做一做,深刻体会其中的思想方法. 例3.【分析】本题是山东卷的第(2)问,从所证结构出发,只需令
1x,则问题转化为:当x0n时,恒有ln(x1)x2x3成立,现构造函数h(x)x3x2ln(x1),求导即可达到证明.
13x3(x1)2 【解析】 令h(x)xxln(x1),则h(x)3x2xx1x1322在x(0 , )上恒正,∴函数h(x)在(0 , )上单调递增,∴x(0 , )时,恒有h(x)h(0)0,即x3x2ln(x1)0,∴ln(x1)x2x3,对任意正整数n,取x1111(0 , ),则有ln(1)23. nnnn【点评】我们知道,当F(x)在[a , b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.
例4.【解析】由已知:xf'(x)f(x)0,∴构造函数F(x)xf(x),则F'(x)xf'(x)f(x)0,从而F(x)在R上为增函数,∵ab,∴F(a)F(b),即af(a)bf(b).
【点评】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明.若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结.
例5.【分析】 对于第(2)小问,绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.(2)对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(数,设F(x)g(a)g(x)2g(ab)中以b为主变元构造函2axaxax),则F'(x)g'(x)2[g()]'lnxln. 222当0xa时,F'(x)0,因此F(x)在(0 , a)内为减函数;当xa时,F'(x)0,因此F(x)在(a , )上为增函数.从而当xa时,F(x)有极小值F(a),∵F(a)0,ba,∴F(b)0,即g(a)g(b)2g(ab)0.又设G(x)F(x)(xa)ln2,则2G'(x)lnxlnaxG'(x)0.ln2lnxln(ax);当x0时,因此G(x)在(0 , )2ab)(ba)ln2. 2上为减函数,∵G(a)0,ba,∴G(b)0,即g(a)g(b)2g(例6.【解析】(1)f'(x)aexx,∵f(x)在R上为增函数,∴f'(x)0对xR恒成立,即axex对xR恒成立;记g(x)xex,则g'(x)exxex(1x)ex;
当x1时,g'(x)0;当x1时,g'(x)0.知g(x)在( , 1)上为增函数,在(1 , )上为减函数,∴g(x)在x1时,取得最大值,即g(x)maxg(1)(2)记F(x)f(x)(1x)ex111,∴a,即a的取值范围是[ , ).
eee12xx1(x0),则F'(x)exx1,2令h(x)F'(x)exx1,则h'(x)ex1;当x0时,h'(x)0,∴h(x)在(0 , )上为增函数,又h(x)在x0处连续,∴h(x)h(0)0,即F'(x)0,∴F(x)在(0 , )上为增函数,又F(x)在x0处连续,∴F(x)F(0)0,即f(x)1x.【点评】当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为mf(x)(或mf(x))恒成立,于是m大于f(x)的最大值(或m小于f(x)的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最 值是解决不等式恒成立问题的一种重要方法.
例7.【解析】 对不等式两边取对数得(1)ln(1x)11xx,化简为2(1x)ln(1x)2xx2,2(l1x),设辅助函数f(x)2xx22(1x)ln(,f'(x)2x2n1x)(x0)又f''(x)2x0(x0),易知f'(x)在(0 , )上严格单调增加,从而f'(x)f'(0)01x(x0),又由f(x)在[0 , )上连续,且f'(x)0,得f(x)在[0 , )上严格单调增加,∴f(x)f(0)0(x0),即2xx22(1x)ln(1x)0,2xx22(1x)ln(1x),故(1x)11xe1x2(x0).
1、【解析】f(x)12lnx2a2lnx1,∴f(x)0,即f(x),当x1,a0时,不难证明xxx 在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xln2x2alnx1.
2、【解析】设F(x)g(x)f(x)12x2ax3a2lnxb,则23a2(xa)(x3a)(x0),∵a0,∴当xa时,F'(x)0,F'(x)x2axx故F(x)在(0 , a)上为减函数,在(a , )上为增函数,于是函数F(x)在(0 , )上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x).
3、【解析】函数f(x)的定义域为(1 , ),f'(x)11x,∴当1x01x(1x)2(1x)2时,f'(x)0,即f(x)在x(1 , 0)上为减函数;当x0时,f'(x)0,即f(x)在x(0 , )上为增函数;因此在x0时,f(x)取得极小值f(0)0,而且是最小值,于是f(x)f(0)0,从而ln(1x)1xa1b1,于是,即ln(1x)1,令1x0,则11x1xbx1aabbf(x)xf'(x)f(x)ln1,因此lnalnb1.
4、0,故【解析】F(x),F'(x)baaxx2f(x)f(a)f(b)af(b)bf(a),故选A. F(x)在(0 , )上是减函数,由ab有xab8
第三篇:构造函数法证明不等式
构造函数法证明不等式
河北省 赵春祥
不等式证明是中学数学的重要内容之一.由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使其成为各种考试命题的热点问题,函数法证明不等式就是其常见题型.即有些不等式可以和函数建立直接联系,通过构造函数式,利用函数的有关特性,完成不等式的证明.
一、构造一元一次函数证明不等式
例1设0<x<1,0<y<1,0<z<1,求证:x(1-y)+y(1-z)+z(1-x)<1.
证明:构造一次函数f(x)= x(1-y)+y(1-z)+z(1-x),整理,得
f(x)=(1-y-z)x+(y+z-yz)其中0<x<1,∵0<x<1,0<y<1,0<z<1,∴-1<1-y-z<1.
⑴当0<1-y-z<1时,f(x)在(0,1)上是增函数,于是
f(x)<f(1)=1-yz<1;
⑵当-1<1-y-z<0时,f(x)在(0,1)上是减函数,于是
f(x)<f(0)= y+z-yz = 1-(1-y)(1-z)<1;
⑶当1-y-z = 0,即y+z = 1时,f(x)= y+z-yz = 1-yz<1.
综上,原不等式成立.
例2已知 | a |<1,| b |<1,| c |<1,求证:abc+2>a+b+c.
证明:构造一次函数f(x)=(bc-1)x+2-b-c,这里,| b |<1,| c |<1,| x |<1,则bc <1. ∵f(1)= 1-bc+2-b-c =(1-bc)+(1-b)+(1-c)>0,f(1)= bc-1+2-b-c =(1-b)(1-c)>0,∵-1<x<1,∴一次函数f(x)=(bc-1)x+2-b-c的图象在x轴上方,这就是说,当| a |<1,| b |<1,| c |<1时,有(bc-1)a+2-b-c>0,即abc+2>a+b+c.
二、构造一元二次函数证明不等式
例3若 a、b、c∈R+,求证:a2+b2+c2≥ab+bc+ca .
证明构造函数f(x)= x2-(b+c)x+b2+c2-bc .
因为 △=(b+c)2-4(b2+c2-bc)=-3(b-c)2≤0,又因为二次项的系数为正数,所以x2-(b+c)x+b2+c2-bc≥0对任意实数恒成立. 以a 替换 x 得:a2-(b+c)a+b2+c2-bc≥0,即 a2+b2+c2≥ab+bc+ ca.
例4已知a、b、c、d、e是满足a+b+c+d+e= 8,a2+b2+c2+d2+e2= 16的实数,求证:0≤e≤
5.证明:构造一元二次函数
f(x)= 4x
+2(a+b+c+d)+a2+b2+c2+d2=(x+a)2+(x+b)2+(x+c)2+(x+d)2≥0,又∵二次项系数为正数,∴△= 4(a+b+c+d)2-16(a2+b2+c2+d2)= 4(8-e)2-16(16-e2)≤0,解之得0≤e≤
165
.
故不等式成立.
三、构造单调函数证明不等式 例5已知 a>0,b>0,求证 :证明: 构造函数f(x)=
x1x
a1a
+
b1b
>
x
ab1ab
.,易证f(x)=
1x
= 1-
1x
当x>0 时单调递增.
∵ a+b+ab>a+b>0,∴ f(a+b+ab)>f(a+b). 故
a1a
+
b1b
=
ab2ab(1a)(1b)
>
abab1abab)
=f(a+b+ab)>f(a+b)=
13n2
13n1
ab1ab
.
例6对任意自然数n 求证:(1+1)(1+
14)·…·(1+
13n2)>3n1.
证明:构造函数f(n)=(1+1)(1+
13n1)·…·(1+3,由
f(n1)f(n)
(1)33n1
=
3n4
=(3n2)
(3n1)(3n4)
>1,∵f(n)>0,∴f(n1)>f(n),即f(n)是自然数集N上的单调递增函数,∴(1+1)(1+
14)·…·(1+
13n2)>33n1.
第四篇:巧用构造函数法证明不等式
构造函数法证明不等式
一、构造分式函数,利用分式函数的单调性证明不等式
【例1】证明不等式:|a||b||ab|
1|a||b|≥1|ab|
证明:构造函数f(x)=
x
1x(x≥0)则f(x)=x1x=1-
11x
在0,上单调递增
∵f(|a| + |b|)=
|a||b|1|a||b|f(|a + b|)=|ab|
1|ab|
且|a| + |b|≥|a + b|
∴f(|a| + |b|)≥f(|a + b|)即所证不等式正确。
二、利用分式函数的奇偶性证明不等式
【例2】证明不等式:x12x<x
2(x≠0)证明:构造函数f(x)=x1
2x
x
2(x0)∵f(-x)=-xx-x2x1-2-x22x1x2x12x
[1-(1-2x)]x2x12xx2=f(x)
∴f(x)是偶函数,其图像关于y轴对称。当x>0时,12x
<0,f(x)<0;
当x<0时,-x>0,故f(x)=f(-x)<0 ∴x1-2xx2<0,即x12
x
<x
2三、构造一次函数,利用一次函数的单调性证明不等式
【例3】已知|a|<1,|b|<1,|c|<1,求证:a + b + c<abc + 2。
证明:构造函数f(c)=(1-ab)c + a + b-
2∵|a|<1,|b|<
1∴-1<ab<1,1-ab>0
∴f(c)的(-1,1)上是增函数
∵f(1)=1-ab + a + b-2=a + b–ab-1=a(1b)=(1c)2>4a(a + b + c)。证明:构造函数f(x)=ax2 +(-b + c)x +(a + b + c)(a≠0)
则f(0)=a + b + c,f(1)=2(a + c)
由(a + c)(a + b + c)<0知:f(0)•f(1)<0 ∴f(x)=0有两个不等的实数根。∴△>0,即(bc)2>4a(a + b + c)
【例5】已知实数a,b,c满足a + b + c = 5,a2 + b2 + c
2= 9,求证a,b,c的值都不小于1,又都 不大于21
3。
证明:构造函数f(x)=2x2+ 2(a + b)x + a2 + b2=(x + a)2 +(x + b)2 ≥0
∵2>0
∴△=[2(a+b)]2-4×2×(a2 + b2)≤0
∴△=4(5-c)2-8(9-c2)≤0 ∴(c-1)(3c-7)≤0
∴1≤c≤213
同理可证:1≤a≤21,1≤b≤2133。
【例6】已知a,b,c∈R,证明:a2 + ac + c2 + 3b(a + b + c)≥0,并指出等号何时成立?
证明:令f(a)= a2 +(c + 3b)a + c2 + 3b2
+ 3bc
△=(c + 3b)2-4(c2 + 3b2 + 3bc)=-3(b + c)2
≤0 恒成立 ∵二次项系数1>0
∴f(a)≥0,即 a2 + ac + c2 + 3b(a + b + c)≥0
又当△=0,即b + c = 0时f(a)=(a + b)2
= 0 ∴当且仅当a=-b=c时才能取等号。
⒉利用一元二次方程根的分布证明不等式
【例7】设a + b + c=1,a2 + b2 + c2 =1,且a>b>c,求证:-
13<c<0
证明:∵a + b + c=1
∴a + b =1-c有a2 + b2 + 2ab=1c
∴a,b是方程x2-(1-c)x+c2-c=0的两个实数根
∵a>b>c,故方程有大于c的两个不等的实数根
构造函数f(x)= x2-(1-c)x+c2-c,则有:
(1c)24(c2c)>0
1c>c
2
f(c)>0
∴-1
3<c<0
⒊综合运用判别式法、一元二次方程根的分布证明不等式
【例8】设a,b是两个不等于0的实数,求证:下列不等式中至少有一个成立。aa22b2
2b1,aa22b2
2b1
证明:设f(x)=bx2axb
2(b≠0)
∵△=(-a)2-2b(-b)=a2+2b2>0
∴抛物线与x轴必有两个交点,其横坐标为x=aa22b2
2b
∴f(-1)=b
2af(0)= b
2f(1)= b
2a
⑴当b>0时,f(0)<0
若a>0,则f(-1)>0
∴点A(-1,f(-1))在x轴上方,点B(0,f(0))在x轴下方
∴抛物线与x轴在(-1,0)内必有一个交点,此时有
aa22b2
2b1 若a<0,则f(1)>0 ∴点C(1,f(1))在x轴上方 ∴抛物线与x轴在(0,1)内必有一个交点,此时有 aa22b22b1 ⑵当b<0时,f(0)>0,此时点B在x轴下方,同理可证A点和C点至少有一点 在x轴上方。故两个不等式至少有一个成立。构造函数法证明不等式,关键在于找到能够反映所要证不等式特征的合适的函数,从而就可以利用该函数的性质去证明不等式。
第五篇:构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。
例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。
解析:令f(a)a2(3bc)ac23b23bc
⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。
当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。
4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。
3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,
34。3② 构造函数逆用判别式证明不等式
对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2
由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。
例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:
f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)
2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2
1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0
abc111149
∴当a,b,c时,()min36 632abc
构造函数证明不等式
1、利用函数的单调性
+例
5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。