第一篇:电阻焊接技术存中优缺点分析
电阻焊接技术存中优缺点分析
电阻焊是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。
点焊时,工件只在有限的接触面上即所谓“点”上被焊接起来,并形成扁球形 的熔核。点焊又可分为单点焊和多点焊。多点焊时,使用两对以上的电极,在同一工序内形成多个熔核。
缝焊类似点焊。缝焊时,工件在两个旋转的盘状电极(滚盘)间通过后,形成条焊点前后搭接的连续焊缝。
凸焊是点焊的一种变型。在一个工件上有预制的凸点。凸焊时,一次可在接头处形成一个或多个熔核。
对焊时,两工件端面相接触,经过电阻加热和加压后沿整个接触面被焊接起来。电阻焊有下列优点:
1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2)加热时间短、热量集中、故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3)不需要焊丝、焊条等填充金属,以及氧、乙炔、氩等焊接材料,焊接成本低。
4)操作简单,易于实现机械化和自动化,改善了劳动条件。
5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。但闪光对焊因有火花喷溅,需要隔离。
电阻焊缺点:
1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两板间熔核周围形成夹角,致使接头的抗拉强度和疲劳强度较低。
3)设备功率大,机械化自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。耐磨焊条随着航空航天、电子、汽 车、家用电器等工业的发展,电阻焊起来越受到社会的重视,同时,对电阻焊的质量也提出了更高的要求。可喜的是,我国微电子技术 的发展和大功率可控硅、整 流器的开发,给电阻焊技术的提高提供了条件。目前我 国已生产了性能优良的次级整流焊机。由集成元件和微型计算机制成的控制箱已用于新焊机的配套和老焊机 的改造。恒流、动态电阻,热膨胀等先进的闭环监控技术已开始在生产中推广应用。这一切都将有得利于提高电阻焊质量,并扩大其应用领域。
本文来源于焊接配件http:///相关信息。
第二篇:电阻焊接用什么焊接材料之焊接信息
电阻焊接用什么焊接材料之焊接信息:自古以来进行焊接。在此期间最流行的是由铁匠锻焊。此方法用于两种金属焊接在一起,将燃烧的煤上运行。
焊接信息
今天,现代技术已经允许更大的精度和工作的大桥焊条焊工获得焊缝强过好日子。第一次世界大战促使焊接技术的发展,许多国家都在寻求更好的船只和飞机在战争中的方法和有效的密封。此后,焊接技术发达的现代艺术也可以进行手动,自动机。特别是,它可以在不同的环境条件,如在水下,在该网站的研讨会。尽管进步神速,在焊接过程中似乎非常危险的,危险的,可以公开焊工灼伤,有毒或有毒气体,甚至伤害你的眼睛。
今天是气体,电弧,而不是抵抗机器人,电子束和激光焊接密封最常用的方法是实行。通常被称为焊接氧气乙炔气与氧气产生气体和高温火焰熔化的焊缝金属的边缘结合。因此,氧乙炔焊接通常需要两个或瓶子储存氧气和乙炔燃料。这种方法是最古老的方法之一,在世界上仍然实行。这主要是由于设备,如便携式容器,便于储存。它被广泛用于连接管道和简单加工。
弧焊使用的电极之间的对象,同时结合起来,建立一个强大的债券或焊接电弧。弧焊被广泛应用在工业应用中,因为它便宜。与程序的问题是,有时弧焊由于氧气和氮气的流量是脆弱和薄弱。为了克服这个问题,远离作为氢气,氩气和氦气。
电阻焊接用焊接材料的物理压力和热。通过高强度焊接材料电电流通过产生的热量。这种方法是许多工业应用中非常流行,因为它很容易自动化和大批量的生产成本。由于初始投资成本高未必可行,使用小批量的生产。
点焊是另一种形式加入四大板块电阻焊。电焊焊接两个板块的发展都锁在一起,作为高压流发送给他们。点焊可以自动化和能源效率,被广泛用于工业应用,如汽车装配。
梁高速材料的电子束大桥焊丝焊接工艺。当高速电子轰击材料,高温融化材料,并创建一个强力胶缝。由钨丝热阴极发射的电子束产生的。这种方法非常准确,通常被用在航空航天和半导体。激光焊接过程中加入金属部件,使用浓缩的热量来源。这种方法不仅充分和有效的损失,而且还热,因为极少数特定域。此外,激光的热穿透深入熔化的金属。激光焊接用于在自动汽车装配。
本文出自:http://www.xiexiebang.com/shownews.asp?id=310
第三篇:OFDM技术的优缺点分析
OFDM技术的优缺点分析
摘 要
OFDM技术是一种多载波调制技术,最初用于军事通信,由于采用DFT实现多载波调制,同时LSI的发展解决了IFFT/FFT的实现问题以及其他关键技术的突破,OFDM开始向诸多领域的实际应用转化,现在成为一种很有发展前途的调制技术。本文首先分析了OFDM的基本原理,并说明其技术优点和缺点,然后提及有关OFDM技术发展方面的一些信息。现在,OFDM在许多领域取得成功应用,这里对OFDM的应用前景也作了展望。
关键词:正交频分复用(OFDM),原理,特点,发展,应用
Abstract
Orthogonal Frequency Division Multiplexing(OFDM)is a kind of technology of Multi-Carrier Modulation(MCM).Depending on Discrete Fourier Transform(DFT)to realize MCM and the quick development of Large Scale Integration(LSI)to solve the question of the solution of IFFT/FFT,OFDM began to be using practically in many fields and is becoming a prosperous MCM-technique.In this paper,firistly the principles of OFDM are analyzed and its characters(merit and defect)are reviewed,then some information about the development of OFDM is introduced.At current time,OFDM has succeeded in many fields, finally the prospect of using OFDM is imaged.Keywords:OrthogonalFrequencyDivisionMultiplexing(OFDM);Character;Development;Present Situation and Prospect of Application
随着通信技术的不断成熟和发展,如今的通信传输方式可以说多种多样,变化日新月异,从最初的有线通信到无线通信,再到现在的光纤通信。然而,从通信技术的实质来看,上面所述基本上都是传输介质和信道的变化,突破性的进展并不多。近年来,随着DSP芯片技术的发展,傅立叶变换/反变换、高速Modem采用的64/128/256QAM技术、栅格编码技术、软判决技术、信道自适应技术、插入保护时段、减少均衡计算量等成熟技术的逐步引入,OFDM作为一种可以有效对抗信号波形间干扰的高速传输技术,引起了广泛关注。人们开始集中越来越多的精力开发OFDM技术在移动通信领域的应用,第三代以后的移动通信的主流技术将是OFDM技术。.OFDM技术
1.1 OFDM技术简介
OFDM是一种高速数据传输技术,该技术的基本原理是将高速串行数据变换成多路相对低速的并行数据并对不同的载波进行调制。这种并行传输体制大大扩展了符号的脉冲宽度,提高了抗多径衰落等恶劣传输条件的性能。传统的频分复用方法中各个子载波的频谱是互不重叠的,需要使用大量的发送滤波器和接受滤波器,这样就大大增加了系统的复杂度和成本。同时,为了减小各个子载波间的相互串扰,各子载波间必须保持足够的频率间隔,这样会降低系统的频率利用率。而现代OFDM系统采用数字信号处理技术,各子载波的产生和接收都由数字信号处理算法完成,极大地简化了系统的结构。同时为了提高频谱利用率,使各子载波上的频谱相互重叠,但这些频谱在整个符号周期内满足正交性,从而保证接收端能够不失真地复原信号。
当传输信道中出现多径传播时,接收子载波间的正交性就会被破坏,使得每个子载波上的前后传输符号间以及各个子载波间发生相互干扰。为解决这个问题,在每个OFDM传输信号前面插入一个保护间隔,它是由OFDM信号进行周期扩展得到的。只要多径时延超过保护间隔,子载波间的正交性就不会被破坏。
1.2 OFDM技术特点
OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM, OFDM的接收机实际上是通过FFT来实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据速率也与子载波的数量有关。
OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK,QPSK,8PSK,16QAM ,64QAM等,以取得频谱利用率和误码率之间的最佳平衡为原则,通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会导致接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比满足要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,可以根据信道条件来选择使用不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1 bit/(s.Hz)转换成16~64QAM(频谱效率4~6 bit/(s.Hz),整个系统的频谱利用率就会得到大幅度的改善。自适应调制能够扩大系统容量,但它要求信号必需包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。终端还须定期更新调制信息,这也会增加开销比特。
OFDM还采用了功率控制与自适应调制相协调的工作方式。信道条件好的时候,发射功率不变就可以采用高调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。如果在差的信道上使用较高的调制方式,就会产生很高的误码率,影响系统的可用性。自适应调制要求系统必须对信道的性能有及时和准确的了解,OFDM系统可以用导频信号或参考码字来测试信道的好坏,发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。
实现OFDM 的关键技术包括:同步技术、降低PAPR(功率峰均值比)技术、信道估计与均衡、信道编码与交织等。
1.3 OFDM技术优点
首先,抗衰落能力强。OFDM把用户信息通过多个子载波传输,在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,使OFDM对脉冲噪声(ImpulseNoise)和信道快衰落的抵抗力更强。同时,通过子载波的联合编码,达到了子信道间的频率分集的作用,也增强了对脉冲噪声和信道快衰落的抵抗力。因此,如果衰落不是特别严重,就没有必要再添加时域均衡器。
其次,频率利用率高。OFDM允许重叠的正交子载波作为子信道,而不是传统的利用保护频带分离子信道的方式,提高了频率利用效率。
再者,适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪音背景的不同使用不同的调制方式。当信道条件好的时候,采用效率高的调制方式。当信道条件差的时候,采用抗干扰能力强的调制方式。再有,OFDM加载算法的采用,使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM技术非常适合高速数据传输。
此外,抗码间干扰(ISI)能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性的干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。OFDM由于采用了循环前缀,对抗码间干扰的能力很强。
1.4 OFDM技术缺点
(1)对频率偏移和相位噪声很敏感。
(2)峰值与均值功率比相对较大,这个比值的增大会降低射频放大器的功率效率。
不过近年来,围绕OFDM存在的两个缺陷,业内人士进行了大量研究工作,并且已经取得了进展。OFDM技术既可用于移动的无线网络,也可以用于固定的无线网络,它通过在楼层、使用者、交通工具和现场之间的信号切换,有效地解决了其中的信息冲突问题。
尽管OFDM技术已经是比较成熟,并在一些领域也取得成功的应用,但尚有许多问题须待深入研究以进一步提高其技术性能。多年来,围绕基于DFT(或FFT)的OFDM的关键技术,如同步、信道估计、均衡、功率控制等方面一直在探索更优的方案,这些研究使OFDM技术欲加成熟和完善。
另一方面,由于DFT-OFDM在具体实现过程中采用插入CP(循环前缀)来消除ISI(码间干扰),所以进一步提高频谱利用率仍有较大余地,另外,为降低插入CP带来的频谱损失,通常采用较长的DFT变换块,但是,如此将会造成系统对载频误差及Doppler频移非常敏感,引起系统性能下降,同时对信道估计带来难度。针对这一点,有人提出基于小波/小波包的正交多载波调制技术,作为对基于DFT的多载波调制技术OFDM的发展和改进。小波函数/小波包函数具有良好的尺度与平移正交性,因而可将其作为多载波调制的在载波,这种多载波调制方案被称为基于小波/小波包的正交多载波调制。理论分析和仿真表明,小波/小波包调制技术具有与其他调制技术相同或更好的性能参数,同时具有更好的抗干扰性能。小波/小波包调制与多址技术结合,如基于小波包变换的多载波码分多址系统(WPDM-CDMA),更贴近于现代无线多址通信系统的实际应用,从而进一步表明小波/小波包调制技术的可行性与先进性,具有广阔的发展前景。同时作为一个充满希望与潜力的新研究领域关于小波/小波包调制技术有许多问题尚待进一步研究
2.结论
OFDM技术由于其频谱利用率高、成本低等原因越来越得到人们的关注,为满足未来无线多媒体通信需求,人们在加紧实现3G系统商业化的同时,已经开始进行4G(Beyond 3G)的研究。随着人们对于通信数据化、宽带化、个人化和移动化的需求,OFDM技术在固定无线接入领域和移动接入领域将越来越得到广泛的应用。许多大学、著名公司已充分认识到OFDM技术的应用前景。纷纷开展了对无线OFDM的研究工作,除了解决OFDM的同步、峰平比高等传统难题外,还包括OFDM与空时码、联合发送、联合检测、智能天线、动态分组分配等相结合的研究工作。目前一些研究结果表明,它们能提高无线OFDM系统的性能,将形成未来OFDM系统的核心技术。对这些方面的研究是当前一个非常活跃的研究领域,有许多课题需要我们做进一步的深入研究。
参考文献
(1).李引凡.OFDM技术原理及其应用.网络通信
(2)基于小波变换/小波包变换的多载波调制技术.郝久玉等.信号处理(3).汪晓岩等.OFDM技术及其在电力线通信的应用.电力系统通信
(4).姚成凤,葛万成.OFDM原理及其在现代高速无线数据传输中的新应用.现代电视技术
(5)期俊玲.OFDM技术标准化展望.电信工程技术与标准化
(6)佟学俭,罗涛.OFDM移动通信技术原理.人民邮电出版社
第四篇:浅析焊接加工的优缺点
浅析焊接加工的优缺点
焊接加工技术在机械领域中属于常见技术,但是它也同时是机械领域中最重要的部分,好的焊接加工技术决定了最根本的机械制造。焊接主要用于制造金属结构件,也可用于机器的零部件的制造。世界上一些工业发达国家,其焊接结构的年产量大约占钢产量的45%左右。焊接能得到广泛的应用是由于它具有以下优点:
1、连接性能好。可以方便地将板材、型材或铸锻件根据需要进行组合焊接,因而对于制造大型、特大型结构(如机车、桥梁、轮船、火箭等)有重要意义。同时,焊接还可以将不同形状及尺寸(板厚、直径)甚至不同材料(异种材料)连接起来,从而达到降低重量,节约材料,资源优化等目的。
2、焊接结构刚度大,整体性好。同时又容易保证气密性及水密性,所以特别适合制造高强度、大刚度的中空结构(如压力容器、管道、锅炉等)。
3、焊接方法种类多,焊接工艺适应性广。焊接生产可适应不同要求及批量的生产。另外,由于焊接规范参数的电信号容易控制,所以焊接自动化比较容易实现(如汽车制造业中广泛使用了点焊机械手、弧焊机器人等)。
当然,焊接加工也存在一些不足之处。临猗县永鑫机械制造有限公司是专业从事焊接加工的企业,拥有多年的生产经验。公司技术人员表示在焊接过程中容易发生以下几种情况:
1、焊接往往导致焊接接头组织和性能改变,如控制不当会严重影响结构件的质量。
2、焊缝及热影响区因工艺或操作不当会产生多种缺陷,使结构承载的能力下降。
3、焊接使工件产生残余应力和变形,影响产品质量。
实践表明,上述缺陷的产生及影响程度取决于材料(母材、焊材)的选用,设计和制造工艺水平等。通过优化设计,合理选材和施工,以及严格管理可以使焊接件达到很高的质量水平。
第五篇:焊接技术
焊接:指通过加热或加压,或两者并用,并且用或不用填充材料,使工件达到结合的一种方法。通过焊接材料不仅建立了永久联系,并且在微观上建立了组织之间的内在联系。
熔焊:焊接过程中将焊件街头加热至熔化状态不加压完成焊接的方法。压焊:是在焊接过程中,必须对焊件施加压力(加热或不加热),完成焊接的方法。有两种形式:一是将被焊金属接触部分加热至塑性状态或局部熔化状态,然后施加一定压力,使金属原子间互相结合形成牢固的焊接接头。二是不加热,仅在被焊金属的接触面上施加足够的压力,借助压力所引起的塑性变形,使原子间相互接近而获得牢固的挤压接头,分为冷压焊,爆炸焊。
钎焊:是采用比母材熔点低的钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用表面张力的吸附作用,填充接头间隙并与母材相互扩散形成一个接头。有烙铁钎焊,火焰焊。
焊条:是涂有药皮的供焊条电弧焊用的焊接材料,由焊芯和药皮组成。焊芯作用:传到焊接电流产生电弧,把电能转换成热能;焊芯本身熔化做填充金属与熔化母材金属熔合形成焊缝。
药皮作用:机械保护作用;冶金处理渗合作用;改善焊接工艺性能。按熔渣特性分类:
酸性焊条:熔渣以酸性氧化物为主。优点是工艺性能好,容易引弧,电弧稳定,飞溅小,脱渣性好,焊缝形成美观,对过年关键的锈油灯污物不敏感,焊接时产生的有害气体少,可交直流两用,适合全位置焊接。缺点:焊缝的金属力学性能和抗裂纹性能差。
碱性焊条:熔渣以碱性氧化物和氟化物为主。优点是脱氧,脱硫,脱磷,脱氢能力强,故力学性能和抗裂性能比酸性焊条好。焊缝中含氢量低,故也称低氢韩型焊条。适用于合金钢和重要碳钢结构焊接。缺点是工艺性能差,对油锈及水灯敏感,容易产生气孔。碱性焊条350-400℃烘干一小时。焊条电弧焊:是用手工操纵焊条进行焊接的电弧焊方法,是熔化焊最基本的一种焊接方法。
原理:焊接时将焊条与焊件之间接触短路引燃电弧,电弧的高温将焊条与焊件局部熔化,熔化了的焊芯以容滴的形式督导局部熔化的焊件表面,熔合一起形成熔池。药皮熔化过程中产生的气体和液态熔渣不仅起着保护液体金属的作用,而且熔化了的焊芯、焊件发生一系列冶金反应,保证了形成焊缝的性能。
特点:工艺灵活,适应性强;应用广泛、质量易于控制;设备简单、成本低廉。
弧焊电源外特性有:下降;平;上升。焊条电弧焊采用陡降外特性电源原因:焊接回路中,弧焊电源与电弧构成供电用电系统。为了保证焊接电弧稳定燃烧和焊接参数稳定,电源外特性曲线与电弧静特性曲线必须相交。因为在焦点,电源供给的电压和电流与电弧燃烧所需要的电压和电流相等,电弧才能燃烧。由于焊条电弧焊电弧静特性曲线的工作段在平特区,所以只有下降外特性曲线才有与其焦点。当弧长变化相同时,陡降外特性曲线引起的电流偏差小于缓降外特性引起的电流偏差,有利于焊接参数稳定。
焊接工艺参数:是指焊接时为保证焊接质量而选定的物理量,主要有:焊条直径、焊接电源、电弧电压、焊接速度、焊接层数。
一、焊接直径:
1、焊件的厚度:厚度大的焊件选用直径大的焊条。反之。
2、焊缝位置:厚度相同条件下,平焊缝焊条直径比其他大一些,最大不超过5mm,仰焊、横焊最大直径不超过4mm,这可造成较小熔池,减少熔化金属下淌。
3、焊接层次:多层时,第一层焊道采用直径较小的焊条焊接,以后各层可根据焊件厚度选用较大直径焊条。
4、接头形式:搭接接头、T形头不存在焊透问题,选用较大焊条直径提高生产率。
二、焊接电流:是焊条电弧焊最重要工艺参数。决定电流强度因素:焊条直径、焊缝位置、焊条类型、焊接层次。
1、焊条直径:Ib=(35~55)dIb焊接电流A;d 焊条直径,mm。
2、焊缝位置:平焊缝用较大电流。立焊横焊焊接电流比平焊小10%-15%,仰焊比平焊小15-20%。
3、焊条类型:碱性焊条比酸性焊条小10-15%,否则容易产生气孔。不锈钢焊条比碳钢小15-20%
4、焊接层次:焊接打底层,特别单面焊双面行程是,为保证质量常用较小电流;填充层为提高效率,保证熔合良好,使用较大电流;盖面层时,为防止咬边和保证焊缝形成,使用电流比填充层稍小。
判断选择电流是否合适:
看飞溅:电流过大可见较大颗粒铁水向熔池飞溅,爆裂声大;电流过小,熔渣铁水不易分清。看焊缝形成:电流过大焊缝厚度大、焊缝余高低、两侧易产生咬边;电流过小,焊缝窄而高、焊缝厚度小、两侧与母材金属熔合不好;电流适中焊缝两侧与母材熔合好,呈圆滑过渡。看焊条熔化状态:电流过大,焊条熔化大半根时,其余部分均发红;电流过小,电弧燃烧不稳定,易粘在焊件上。
三、电弧电压
焊条电弧焊电弧电压主要由电弧长度决定,电弧长,电弧电压高;反之。
四、焊接层数:打底3.2 其他4
气焊与气割:是利用气体火焰作为热源,进行金属材料的焊接或切割的加工工艺方法。
气割采用氧气与乙炔燃烧产生的气体火焰——氧-乙炔焰。
混合比例不同分为:碳化、中性、氧化焰氧乙比例:~1.1~1.2~
最红碳化焰,最短氧化焰,中性焰用于低碳钢,合金钢,紫铜。
气焊:利用气体火焰作为热源的一种熔焊方法。常用氧乙炔焊。
原理:先将焊件的焊接处金属加热到熔化状态形成熔池,并不断熔化焊丝向熔池中填充,随着焊接过程进行,熔化尽速冷却形成焊缝。
特点:设备简单、操作方便、成本低、适应性强。
缺点:火焰温度低、加热分散、热影响区宽、罕见变形大和过热严重。用于:焊接薄板、小直径薄壁管、铸铁、有色金属、低熔点金属及硬质合金。
气焊设备工具:氧气瓶(40L,150at,15MPa,蓝色),乙炔瓶(白色),液态石油气瓶、减压器、焊炬。
气焊工艺参数:焊丝型号、牌号及直径、气焊熔剂、火焰性质及能率、焊炬的倾斜角度、接头形式。火焰性质及能率:
性质:中性焰用于一般低碳钢和要求焊接过程对熔化金属不渗碳的金属材料;碳化焰只使用含碳高的高碳钢、铸铁、音质合金及高速钢;氧化焰很少使用,黄铜。能率:根据每小时可燃气体(乙炔)的消耗量决定(L/h),尽量选取较大能率调高生产率。焊炬倾斜角度:主要取决于焊件厚度和木材的熔点及导热性。焊件越厚、导热性及熔点越高,采用倾斜角打,可使火焰热量集中;反之。
气割:利用气体火焰能量将金属分离的一种加工方法,是生产中刚才分离重要手段。
原理:利用气体火焰(中性焰)热能,将工件切割出预热到燃烧温度后,喷出高速切割氧流,使其燃烧并放出热量实现切割的方法。预热-燃烧-吹渣。本质是燃烧,不是熔化。条件:(低碳钢)金属在氧气中燃点低于熔点;气割时形成氧化物的熔点低于金属本身的熔点;金属燃烧应该是放热反应,且金属导热性小;金属中阻碍气割过程和提高钢的可淬性杂志要少。
气割工艺参数:
1、气割氧压力:割件越厚,要求氧压力越大。过大浪费,而且割口粗糙,割缝大。过小不能吹除熔渣,割缝背部很难清除的挂渣,甚至割不透。
2、气割速度,越厚越慢。速度太慢割缝边缘熔化;太快,产生很大后拖量或割不穿。
3、预热火焰能率:根据割件厚度选择,越厚越大。过大会使割缝产生连续朱状钢粒,甚至熔化成圆角,割件背面粘渣增多。能率过小,速度变慢,甚至气割过程困难。
4、割嘴与割件的倾斜角:割嘴与割件倾斜角直接影响气割速度和后拖量。
5、割嘴离工件表面距离:根据预热火焰长度和割件厚度决定,一般3-5mm。割件厚度小于20mm火焰可长些,距离可适当加大;厚度大于等于20mm,反之。
焊接缺陷:是指焊接接头中的不连续性、不均匀性以及其他不健全的缺陷,特质那些不符合设计或工艺要求,或具体焊接产品使用性能要求的焊接缺陷。
根据位置不同分为:外部缺陷、内部缺陷。
根据产生原因分为:构造缺陷、工艺缺陷、冶金缺陷。
热裂纹:结晶裂纹和液化裂纹。特征:产生的温度和时间,一般产生子啊焊缝的结晶过程中,在焊缝金属凝固后的冷却过程中还可能继续发展。产生部位,绝大多数产生在焊缝金属中,有纵向,横向,发生在弧坑中的往往呈星状。外观特征,锯齿状,氧化色。金相结构上的特征,都发生在晶界上。
产生原因:
1、晶间存在液态薄膜,杂志或FeS-Fe形成低熔点共晶物(998℃)在寒风金属降温时积聚在晶界形成液态薄膜。
2、节投中存在拉应力,焊缝金属结晶过程中产生拉应力。冷裂纹:是焊接接头冷却到较低温度下产生的裂纹。
特征:产生的温度和时间,约200-300℃一下,可能焊接后立即出现,也可能延迟几小时,几周甚至更长的时间后产生,故又称延迟裂纹。产生部位,大多产生在母材或母材与焊缝交界的熔合线上。外观特征,多数是纵向裂纹,也可能有横向裂纹,在接头金属表面的冷裂纹断面上没有明显氧化色,所以裂口发亮。金相结构上的特征,一般为穿晶裂纹,少数情况下可能沿晶界发展。
咬边:焊接过程中沿焊趾的母材部位产生的沟槽或凹陷即为咬边。
危害:使母材金属的有效截面减小,减弱了焊接接头的强度,同事咬边处容易引起应力集中,承载后有可能在咬边处产生裂纹甚至引起结构破坏。原因:操作工艺不当、操作规范选择不正确,茹焊接电流过大、电弧过长、焊条角度不当。
防治措施:正确选择焊接电源、电压和焊接速度,掌握正确的焊条角度和电弧长度。
未融合:是指焊接时焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。
防止气孔产生:
1、清除焊丝、工件破口及其附近表面油污,铁锈,水分和杂物。
2、践行焊条对H2,CO敏感,在使用践行焊条要彻底烘干,直流犯戒是氢气孔最少。
3、焊前预热,减缓冷却速度。
4、电流不宜过大,焊接速度不宜过快。
碱性焊条对气孔敏感原因:碱性熔渣中FeO活度比较大,熔渣中FeO稍有增加,寒风中的FeO就明显增多。此外碱性焊条对水分也很敏感,因为这类焊条熔池脱氧比较完全,不具有CO气泡沸腾而排除氢气的能力,荣池中一旦溶解了氢就很难排除。