离散数学练习题1

时间:2019-05-14 13:04:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《离散数学练习题1》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《离散数学练习题1》。

第一篇:离散数学练习题1

1、下列句子是简单命题的是()

A)3是素数。B)2x+3<

5C)张三跟李四是同学吗?D)我在说谎。

2、下列公式不是永真式的是()..

A)((p∧q))→p)∨rB)p→(p∨q∨r)

C)┓(q→r)∧rD)(p→q)→(┓q→┓p)

3、设命题公式G<=>┓(p→q),H<=>p→(q →┓p),则G与H的关系是()。

A)G<=>HB)H→GC)H => GD)G => H4、下列命题不为真的是().

A)Φ  ΦB)Φ∈Φ

C){a,b}∈{a,b,c,{a,b}}}D){a,b}{a,b,c,{a,b}}

5、1到300之间(包含1 和1000)不能被3、5和7整除的数有()个。

13、下列运算在指定集合上不符合交换律的是()。

A)复数C集合上的普通加法B)n阶实矩阵上的乘法 C)集合S的幂集上的∪D)集合S的幂集上的

14、下列集合对所给的二元运算封闭的是()

A)正实数集合R+和。运算,其中。运算定义如下:a,b∈R+,a。b=ab-a-b B)n∈Z+,nZ={nZ|z∈Z},nZ关于普通的加法运算 C)S={2x-1|x∈Z+}关于普通的加法运算

D)S={x|x=2n, n∈Z+},S关于普通的加法运算

15、设V=,其中*定义如下:a,b∈Z, a*b=a+b-2 ,则能构成的代数系统是()。

A)半群、独异点、群B)半群、独异点C)半群D)二元运算

上有○

A)138B)120C)68D)1246、设A, C, B, D为任意集合,以下命题一定为真的是()

A)A∪B= A∪C =>B=C B)A×C= A×B =>B= C

C)A∪(B×C)=(A∪B)×(A∪C)D)存在集合A,使得A  A ×A7、设A={1,2,3,4},R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>} 是A上的关系,则R的性质是()

A)既是对称的也是反对称的 B)既不是对称的也不是反对称的 C)是对称的但不是反对称的D)不是对称的但是反对称的8、设R是A上的关系,则R在A上是传递的当且仅当()

则这4个运算中满足幂等律的是()

17、在上述四个运算中有单位元的是()

18、在上述四个运算中有零元的是()

19、与命题公式P(QR)等值的公式是()

A)(PQ)RB)(PQ)RC)(PQ)RD)P(QR)

20、下列集合都是N的子集,能够构成代数系统V=的子代数的是()

A){x| x∈N∧x与5互为素数}B){x| x∈N∧x是30的因子} C){x| x∈N∧x是30的倍数}D){x|x=2k+1, k∈N }

二、填空题(1分/空,共20分。请将正确答案填在相应的横线上。)

1、公式┓(p∨q)→p的成假赋值为00__,公式┓(q→p)∧p的成真赋值为。

2、设A,B为任意命题公式,C为重言式,若A∧C<=>B∧C,那么A<->B是重言式(重言式、矛盾式或可满足式)。

3、f:N->N×N,f(x)=,A={5},B={<2,3>,<7,8>},则f(x)是A)IA  RB)R=R-1C)R∩IA ΦD)R。RR9、设A={1,2,3,4,5,6,7,8},R为A上的等价关系R={|x,y ∈ A ∧ x=y(mod 3)}

其中,x=y(mod 3)叫做x与y模3相等,即x除以3的余数与y除以3的余数相等。则1的等价类,即[1],为()

A){1,4,7}B){2,5,8}C){3,6}D){1,2,3,4,5,6,7,8}

10、当集合A=Φ且B≠Φ时,则BA结果为()

A)ΦB){Φ} C){Φ, {Φ}}D)错误运算

11、函数f:R→R,f(x)= x2-2x+1,则f(x)是()函数。

A)单射B)满射C)双射D)不是单射,也不是满射

12、设X={a,b,c,d},Y={1,2,3},f={,,},则以下命题正确的是()

A)f是从X到Y的二元关系,但不是从X到Y的函数 B)f是从X到Y的函数,但不是满射的,也不是单射的 C)f是从X到Y的满射,但不是单射 D)f是从X到Y的双射

双射)函数,A在f下的像f(A)=_{<5,6>}_,B在f下的完全原像f-1(B)=____。

4、已知公式A中含有3个命题变项p,q,r,并且它的成真赋值为000,011,110,则A的主合取范式为(用极大项表示)__M∧_M∧_M∧_M∧_M,主析取范式为(用极小项表示)

5、公式x(F(x,y)→yG(x,y,z))的前束范式为_

6、列出从集合A={1,2}到B={1}的所有二元关系。

7、设A为集合且∣A∣=n,则A共有nP(A)有n

8、设 f,g,h ∈RR 且f(x)=x+3, g(x)=2x+1, h(x)=x/2, 则复合函数

⑦ x(F(x)∧G(x)→H(x))前提引入 ⑧ F(a)∧G(a)→H(a)T ⑦UI⑨ F(a)∧G(a)T ③ ⑥合取(10)H(a)T ⑧ ⑨ 假言推理

f。g。h(x)=__,f。g。h(x)=_____。

9、含有n个命题变项的公式共有_____个不同的赋值,最多可以生成___个不同的真值表;n个命题变项共可产生___n_____个极小项(极大项);含n个命题变项的所有有穷多个合式公式中,与它们等值的主析取范式(主合取范式)共有___2^2___种不同的情况。

10、已知集合A={,{}},则A的幂集P(A)=_____。

n

n

n

五、设A={1,2,3,4},在A×A上定义二元关系R,∈A×A,R<=>u+y=x+v

(1)证明R是A×A上的等价关系

(2)确定由R引起的对A×A的划分。(5分)

三、利用公式的主合取范式判断下列公式是否等值。(5分)

p→(q→r)与(p∧q)∨r p→(q→r)

<=>p∨(q∨r)<=>p∨q∨r <=>M6

(p∧q)∨r

<=>(p∨q)∨r <=>p∨q)∨r <=>M6

(1)证明:  ∈ A×A => x+y=y+x=> ∈ R∴R是自反的  ∈ A×A , R => x+v=y+u=> R∴R是对称的  ,∈ A×A , R R=> x+v=y+u ∧ u+n=v+m

=> x+v+u+n=y+u+v+m => x+n=y+m => R ∧∴R是传递的(2)

解:{{<1,1>,<2,2>,<3,3>,<4,4>},{<1,2>,<2,3>,<3,4>},{<1,3>,<2,4>},{<1,4>,<4,1>},{<3,1>,<4,2>},{<2,1>,<3,2>,<4,3>}}

四、符号化命题,并推理证明(给出每个符号的准确含义,及每一步推理的根据)。(5分)

每个科学工作者都是刻苦钻研的。每个刻苦钻研而又聪明的人在他的事业中都将获得成功。华有为是科学工作者并且是聪明的,所以华有为在他的事业中将获得成功。

六、A= {1,2,3,4,6,8,12},R是A上的整除关系,请作出偏序集的哈斯图,给出关系矩阵,并

求出A的极大元、极小元、最大元和最小元。若B={2,3,4},求出B的上界,下界,最小上界,最大下界。(5分)

解:

首先符号化:M(x):x是科学工作者;F(x):x是刻苦钻研的;G(x):x是聪明的;H(x):x

在事业中获得成功;a:华有为。

前提: x(M(x)→F(x)),x(F(x)∧G(x)→H(x)),M(a)∧ G(a)

结论:H(a)

证明:① M(a)∧ G(a)前提引入 ② M(a)T ①化简规则 ③ G(a)T ①化简规则 ④ x(M(x)→F(x))前提引入 ⑤ M(a)→F(a)T ④

⑥ F(a)T ② ⑤ 假言推理

解:A的极大元为8、12,极小元为1,无最大元,最小元为1。

B的上界为12,下界为1,最小上界为12,最大下界为1。

七、在自然推理系统P中构造下面推理的证明。(5分)(1)前提:(p∨q)→(r∧s),(s∨t)→u

结论:p→u(2)前提:x(F(x)→(G(a)∧ R(x))),x F(x).九、证明下列恒等式 A-(B∪C)=(A-B)∩(A-C)。(5分)证明:A-(B∪C)

结论: x(F(x)∧ R(x)).(1)证明:① p附加前提引入规则② p ∨ q①附加规则③(p ∨ q)→(r ∧ s)前提引入

④ r ∧ s②③ 假言推理⑤ s④化简规则⑥ s ∨ t⑤附加规则⑦(s ∨ t)→ u前提引入

⑧ u⑥ ⑦假言推理

(2)证明:① x F(x)前提引入② F(b)① EI③ x(F(x)→(G(a)∧ R(x)))前提引入④ F(b)→(G(a)∧ R(b))③ UI

⑤ G(a)∧ R(b)② ④假言推理⑥ R(b)⑤化简⑦ F(b)∧ R(b)②⑥合取⑧x(F(x)∧ R(x))⑦EG

八、设有理数集合Q上的 * 运算定义如下:a,b∈Q, a*b=a+b-ab。请指出该运算的性质,并求出其单位元、零元及所有可能的逆元。(5分)

解:(1)因为a*b=a+b-ab =b+a-ba=b*a,所以运算满足交换律。

(2)因为(a*b)*c=(a+b-ab)*c= a+b-ab+c-(a+b-ab)c=a+b+c-ab-bc-ac+abca*(b*c)=a*(b+c-bc)=a+b+c-bc-a(b+c-bc)= a+b+c-ab-bc-ac+abc故运算满足结合律。

(3)任意x∈Q,因为x*x=x+x-xx=2x+x2≠x,故不满足幂等律(4)因为对a∈Q,有a*0=a+0-a0=a,所以0是单位元。(5)因为对a∈Q,有a*1=a+1-a=1,所以1是零元。

(6)对a∈Q,令a*x=a+x-ax=0,则有x=a/(a-1)。所以当a≠1时,其逆元为a=a/(a-1),1没有逆元。

1=A∩~(B∪C)=A∩~B∩~C = A∩A∩~B∩~C =(A∩~B)∩(A∩~C)=(A-B)∩(A-C)

十、设A,B为任意集合,证明:AB<=>P(A)P(B)。(5分)证明:先证明充分性(=>)

X∈P(A)=> XA=> XB=> X∈P(B)再证明必要性(<=)

x∈A=> {x}A=> {x}∈P(A)=> {x}∈P(B)=> {x}B=>x∈B 综上所述,AB<=>P(A)P(B)

第二篇:离散数学复习题1

逻辑

1、给出的真值表

2、证明为永真式 谓词量词和推理

1、使用量词和谓词表达不存在这一事实

2、证明前提“在这个班上的某个学生没有读过书”和班上的每个学生都通过了第一门考试蕴含结论“通过考试的某个人没有读过书” 集合、函数、数列与求和

1、全集为,求集合A=的位串?它的补集的位串是什么?写出集合A=的所有子集,写出集合

2、从集合到集合能定义多少个函数?下面给出的函数其定义为:该函数是双射吗?是满射吗?该函数是否存在逆函数?如果存在请给出其逆函数。计数

1、计算机系统的美国用户有一个6~8个字符构成的密码,其中每个字符是一个大写字母或数字,且每个密码必须至少包含一个数字,问总共有多少个合适的密码?

2、在30天的一个月里,某棒球队一天至少打一场比赛,但最多打45场。证明一定有连续的若干天内这个球队恰好打了14场比赛

3、证明n个元素的集合中允许重复的r组合数等于

4、按照字典顺序生成整数1,2,3的所有排列(不允许重复),在362541后面按照字典顺序的下一个最大排列是什么?找出在1000100111后面的下一个最大的二进制串。关系

1、求下面给出关系R的自反闭包、对称闭包和传递闭包的0-1关系矩阵,其中

2、S是所有比特串的集合,关系定义为当s=t或者s和t的长度至少是3,且前3个比特相同时具有关系,例如0101,0011100101,但01010,0101101110。证明是S上的等价关系,由产生的S的等价类是那些集合?

3、偏序集({2,4,5,10,12,20,25},|)的那些元素是极大的,那些元素是极小的? 图与树

1、在下图所示的图中,从a 到d的长度为4的通路有几条?该图是否是Euler图,是否是Hamilton图,该图的度序列是什么?该图是否可平面,如果是请给出平面画图,该图的点色数和边色数等于多少?给出该图的一个生成树,2、求下面赋权图从a到z的最短距离是多少?最短路径是什么?(画图给出标号过程)

3、用哈夫曼编码方法来编码下列符号,这些符号具有下列频率:A:0.08,B:0.10,C:0.12,D:0.15,E:0.20,F:0.35,该编码方法编码一个字符的平均位数是多少?

4、下面树的高度是多少?那些节点是内部节点,那些节点是叶子节点,该树是否是3元正则树?分别给出该树节点的前序、中序、后序遍历的节点访问次序

第三篇:离散数学练习题及答案

离散数学试题

一、单项选择题

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设P:天下大雨,Q:他在室内运动,命题“如果天下大雨,他就在室内运动”可符合化为.(B)A.P∧Q C.Q→P

B.P→Q D.P∨Q

2.设G=(V , E)为任意一图(无向或有向的),顶点个数为n,边的条数为m,则各顶点的度数之和等于(D)。

A.nB.mC.2nD.2m

3.下列命题为假命题的是(A).

A.如果2是偶数,那么一个公式的析取范式惟一 B.如果2是偶数,那么一个公式的析取范式不惟一 C.如果2是奇数,那么一个公式的析取范式惟一 D.如果2是奇数,那么一个公式的析取范式不惟一

4.谓词公式x(P(x)∨yR(y))→Q(x)中变元x是(D)A.自由变元

C.既不是自由变元也不是约束变元

B.约束变元

D.既是自由变元也是约束变元

5.若个体域为整数域,下列公式中值为真的是(A)A.xy(x+y=0)C.xy(x+y=0)

6.下列命题中不正确的是(D).A.x∈{x}-{{x}}

C.A={x}∪x,则x∈A且xA

B.{x}{x}-{{x}}D.A-B=A=B B.yx(x+y=0)D.xy(x+y=0)

7.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是(C)A.PQ C.QP

8.下列表达式中不成立的是(A).A.A∪(BC)=(A∪B)(A∪C)C.(AB)×C=(A×C)(B×C)

9.半群、群及独异点的关系是(A)A.{群}{独异点}{半群}

B.{独异点}{半群}{群} B.A∩(BC)=(A∩B)(A∩C)D.(A-B)×C=(A×C)-(B×C)B.PQ D.Q=P

C.{独异点}{群}{半群} D.{半群}{群}{独异点}

10.下列集合对所给的二元运算封闭的是(C)A.正整数集上的减法运算

B.在正实数的集R+上规定为ab=ab-a-b

+

a,b∈R

C.正整数集Z+上的二元运算为xy=min(x,y)x,y∈Z+ D.全体n×n实可逆矩阵集合Rn

×n

上的矩阵加法

11.设集合A={1,2,3},下列关系R中不是等价关系的是(C).A.R={<1,1>,<2,2>,<3,3>}

B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>} C.R={<1,1>,<2,2>,<3,3>,<1,2>}

D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>} 12.下列函数中为双射的是(D)A.f:Z→Z,f(j)=j(mod)3C.f:Z→N,f(j)=|2j|+

11,j是奇数

B.f:N→N,f(j)=

0,j是偶数

D.f:R→R,f(r)=2r-1

513.设集合A={a,b, c}上的关系如下,具有传递性的是(D)A.R={,,,} C.R={,,,}

B.R={,} D.R={}

14.设有限集合A的元素个数为n个,则A上共有(C)个不同的二元关系。

A. nB.C.D.以上都不对

15.设D的结点数大于1,D=是强连通图,当且仅当(D)A.D中至少有一条通路

C.D中有通过每个结点至少一次的通路

B.D中至少有一条回路

D.D中有通过每个结点至少一次的回路

15-1.下列公式中,(C)是含有3个命题变项p,q,r的极小项。

A.pqB.(pqr)C.pqrD.pq  r

二、填空题

请在每小题的空格中填上正确答案。错填、不填均无分。

16.设A={1,2,3},B={3,4,5},则AA=___________,AB=___________。

17.设A={1,2,3,4,5},RA×A,R={<1,2>,<3,4>,<2,2>},则R的自反闭包r(R)=__________。

对称闭包t(R)=__________。

18.设P、Q为两个命题,德摩根律可表示为_____________,吸收律可表示为____________。

19.对于公式x(P(x)∨Q(x)),其中P(x)∶x=1,Q(x)∶x=2,当个体域为{1,2}时,其真值为

_____________ ,当个体域为{0,1,2}时,其真值为_____________。

__, 20.设f∶R→R,f(x)=x+3,g∶R→R,g(x)=2x+1,则复合函数(fg)(x)__________

(gf)(x)__________________。(此题两个答案颠倒一下)

22.无向图G=如左所示,则G的最大度

Δ(G)=_____________,G的最小度δ(G)=_____________。0

123.设图G,V={v1,v2,v3,v4},若G的邻接矩阵A

11

10100100

11,则deg-(v1)=_ ________, 00

deg+(v4)=____________。

25.给定集合A={1,2,3,4,5},在集合A上定义两种关系:R={<1,2>,<3,4>,<2,2>},S={<4,2>,<2,5>,<3,1>,<1,3>},则RS__________答案:

三、计算题

26.设A={a,b,c,d},A上的等价关系R={,,,}∪IA,画出R的关系图,并求出A中各元素的等价类。

_____,SR_______________。

28.求下列公式的主析取范式:P→((Q→P)∧(P∧Q))解:

原式P ∨((Q∨P)∧(P∧Q))

P ∨((Q∧P∧Q)∨(P∧P∧Q)) P∨(0∨0)P

(P∧Q)∨(P∧Q)m0∨m

129.设A={a, b, c, d, e},R为A上的关系,R={, , ,, }∪IA,试画的哈斯图,并求A中的最大元,最小元,极大元,极小元。

解:

四、证明题

32.设R是A上的自反和传递关系,如下定义A上的关系T,使得x, y∈A,∈T ∈R∧(y, x)∈R。证明T是A上的等价关系。

第四篇:离散数学练习题B

离散数学练习题B

一、简要回答下列问题:

1.什么是消去环?请举一例。

2.请给出公式R→P的真值表。

3.什么是恒真公式?举一例。

4.什么是子句?什么是短语?

5.请给出命题xG(x)的真值规定

6.什么是最优树?

7.什么是群?举一例。

8.给出环的定义。举一例。

9.什么是整区?举一例。

10.什么是半序格?请举一例。

二、对任意集合A,B,证明:

(1)AB当且仅当(A) (B);

(2)(A)(B)(AB);

(3)(A)(B)=(AB);

举例说明:(A)∪(B)≠(A∪B)

三、证明:映射的乘法满足结合律,举例说明:映射的乘法不满足交换律。

四、判断下列公式是恒真?恒假?可满足?

a)(P(QR))(P(QR));

b)P(P(QP));

c)(QP)(PQ);

d)(PQ)(PQ)。

五、证明:连通图中任意两条最长的简单路必有公共点。

第五篇:离散数学单元测试试题1

临沂大学2015—2016学第1学期

离散数学单元测试试题一

(适用于2014级计算机科学与技术、软件工程、网络工程专业本科学生)

一、选择题(共10题,每题3分,共30分)1.下列语句中为命题的是(D)。A.这朵花是谁的? B.这朵花真美丽啊!C.这朵花是你的吗? D.这朵花是他的。

2.若p:他聪明;q:他用功;则“他虽聪明,但不用功”,可符号化为(B)。A.p∨q

B.p∧┐q

C.p→┐q

D.p∨┐q 3.命题公式p∨q→q的公式类型为(D)。A.矛盾式 B.非重言可满足式 C.重言式

D.条件式

4.若F(x):x是有理数,G(x):x能被2整除,则“有的有理数能被2整除”,可符号化为(A)。

A.x(F(x)∧G(x))

B.F(x)∧G(x)

C.xF(x)

D.xG(x)5.设F(x)表示x是火车,G(x)表示y是汽车,H(x,y)表示x比y快,命题“某些汽车比所有火车慢”的符号化公式是(B)。

A.y(G(y)→x(F(x)∧H(x,y)))B.y(G(y)∧x(F(x)→H(x,y)))C.xy(G(y)→(F(x)∧H(x,y)))D.y(G(y)→(x)(F(x)→H(x,y)))6.设集合A={1,2,3},A上的关系R={<1,2>,<1,3>,<3,3>},则R具有(D)。A.自反性 B.传递性 C.对称性 D.以上答案都不对

######7.谓词公式x(P(x)∨yR(y))→Q(x)中的 x是(C)。A.自由变元 B.约束变元

C.既是自由变元又是约束变元 D.既不是自由变元又不是约束变元

8.设X、Y是两个集合且|X|=n,|Y|=m,则从X到Y可产生(A)个二元关系。A.n  m B.mn

C.2n m D.nm 9.下列关于集合的表示中正确的为(C)。A.{a}{a,b,c} B.{a}{a,b,c}

C.{a,b,c} D.{a,b}{a,b,c} 10.设集合A={1,2,3,4,5},下列哪些是集合A的划分(D)。A.{{1,2},{3,5}}

B.{{1,2,3,4},5} C.{ ,{1,2},{3},{4,5}} D.{{1},{2},{3},{4},{5}}

二、填空题(共10空,每空3分,共30分)1.设p:2+2=5,q:明天是阴天,则命题“只要2+2=5,那么明天是阴天”可符号化为 p->q,其真值是 1。

2.设p:你陪伴我,q:你代我叫车子,r:我出去,则“如果你不陪伴我或不代我叫车子,我就不出去。”的符号化形式为 ¬p/¬q->r。

3.设p: 天下雨,q: 天刮风,r: 我去书店,则“如果天不下雨并且不刮风,我就去书店”的符号化形式为。

4.设S(x)∶x是大学生;K(x)∶x是运动员。则“有些运动员不是大学生”的符号化为。

5.设P(x):x非常聪明;Q(x):x非常能干;a:小李;则“小李非常聪明且能干”的符号化形式为。

6.设F(x): x是人,G(x): x用右手写字,则“有的人并不用右手写字”的符号化形式为。

7.设S(x):x是学生;L(x):x喜欢英语。则“有些学生喜欢英语”的符号化为:。8.在公式x(P(z)→Q(x,z))∧zR(x,z)中,x的辖域是

,z的辖域是。

三、计算与证明(共2题,每题20分,共40分)1.用等值演算求下公式的主析取范式(p→q)∧r。

2.在命题逻辑自然推理系统中,构造下面推理的证明。前提: p∨q, q→r, p→s, ┐s,结论:r ∧

(p∨q)。

下载离散数学练习题1word格式文档
下载离散数学练习题1.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    离散数学[本站推荐]

    离散数学课件作业第一部分 集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2}  A。1-2 A,B,C 为任意集合,则他们的共同......

    浅谈离散数学专题

    浅谈离散数学【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教......

    离散数学

    离散数学试题(A卷答案) 一、(10分) (1)证明(PQ)∧(QR)(PR) (2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((PQ)∧(QR))(PR) ((P∨Q)∧(Q∨R))∨......

    离散数学

    第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜......

    离散数学衔接试卷1解答

    离散数学试卷 (课程代码 02324 ) 1、下列句子是命题的是[ D ]。 A、x + y > 3 B、这朵玫瑰花真美呀 C、请全体同学起立 D、我是一位大学生 2、下列式子为重言式的是[ B ]。 A......

    练习题1

    练习题一、名词解释 1、错语2、言语治疗学3、失语症 4、运动性构音障碍5、语言发育迟缓6、口吃二、填空 1、言语治疗最初的训练的时间限制在内。 2、轻度失语患者的治疗目......

    练习题1

    初三化学练习题11.(09苏州)17.下列关于空气的说法中,错误的是( )A.工业上利用氧气和氮气的沸点不同,从液态空气中分离出氧气的过程属于物理变化B.空气是一种十分重要的天然资源C.若大......

    离散数学作业1集合与关系

    离散数学作1_集合与关系 1. 设A、B、C为任意三个集合,判断下列命题的真与假。如命题为真,则证明之;否则,举反例说明。 (1)若AC=BC,则A=B (2)若AC=BC ,则A=B (3)若AC=BC 且AC=BC ,则A=B 2.......