第一篇:离散数学衔接试卷1解答
离散数学试卷
(课程代码 02324)
1、下列句子是命题的是[ D ]。
A、x + y > 3
B、这朵玫瑰花真美呀
C、请全体同学起立
D、我是一位大学生
2、下列式子为重言式的是[ B ]。
A、(┐P∧R)→QB、P∨(┐P)
C、P∨(P∧Q)D、(┐P∨Q)→(P→Q)
3、对于公式(x)(y)(P(x)∧Q(y))→(x)R(x,y),下列说法正确的是[ C ]。
A、y是自由变元B、y是约束变元
C、(x)的辖域是R(x, y)D、(x)的辖域是(y)(P(x)∧Q(y))→(x)R(x,y)
4、设R是实数集,f:R→R, f(x)=x^2+2,则f 是[D ]。
A、单射B、满射
C、双射D、映射
5、下列运算不满足交换律的是[A ]。
A.a*b=a+2b B.a*b=min(a,b)
C.a*b=|a-b| D.a*b=2ab 101100011011
6、下列关系矩阵所对应的关系具有对称性的是[D ]。1100B、1001 1A、001010C、0 01D、
7、如右图所示的有向图的最大出度是010[C ]。100A、0 B、1
C、2 D、38、下列图是欧拉图的是[D ]。
9、下列正确的说法是[D]。
A、满足自反性、对称性的二元关系称为等价关系
B、满足自反性、传递性的二元关系称为等价关系
C、满足自反性、反对称性、传递性的二元关系称为等价关系
D、满足自反性、对称性、传递性的二元关系称为等价关系
10、一棵树的3个4度点,4个2度点,其它的都是1度,那么这棵树的边数是 [ B]。
A、13 B、14
C、15 D、16
二、填空题(本大题共10小题,每小题3分,共30分。请将正确答案填入括号内。填错或不填都不得分。)
1、P表示“王一学习努力”,Q表示“王一身体好”。则“王一学习努力身体又好”的符号表述为:
2、设命题变元P、Q、R的真值都是0,则命题公式(┐P∧R)→Q的真值为 1。
3、设论域为{1 , 2},与公式(x)A(x)等价的是PQ。A1A2A3。
R6,6。
4、设H ={f,m,s,d}依次表示一个家庭里的父母子女四个人的集合,R是H上的长幼关系,则R =f,s,f,ds,m,d,m,。
5、设A={1,3,6},H上的关系R={(1,1),(1,3),(3,3)},则R的自反闭包为r(R)=
6、全体整数的集合Z上定义关系R为模4同余关系,则Z关于R的分类Z/R = 10011007、设S为非空集合,T为S的幂集,代数系统
8、已知有向图的邻接矩阵为
0011。3度点,其它的都是叶子,则这棵树的叶子数为:
9、一棵树有2个4度点,3个 9。101010、周游树的前序行遍法的访问次序为:树根、左子树、右子树。
三、计算题(本大题共5小题,每小题8分,共40分。)
1、设集合,求集合的幂集。
解:。
2、设集合,是集合上的整除关系,画出
解: 01,2,3,0AAa,bPA,a,b,a,bAA1,2,4,8RA,R的哈斯图。
3、求下图的最小生成树。
解:
4、构造下列命题公式
pqp 的真值表。
1、今有a、b、c、d、e、f、g等7人,已知以下信息:a会说英语,b会说英语和汉语,c会说英语、意大利语和俄语,d会讲日语和汉语,e会讲德语和意大利语,f会讲法语、日语和俄语,g会讲法语和德语。用图来证明这7个人按照适当顺序围成一圈,相邻的两人可以交谈。
解:
经观察哈密顿回路是:。
2、证明整数集合上的“大于或者等于”关系是偏序关系。
证明:(1)任意给出一个整数,则。即“大于或者等于”关系满足自反性;
(2)如果有两个整数,使得,且,则。即“大于或者等于”关系满足反对称性;
(3)如果有三个整数,使得,且,则。即“大于或者等于”关系满足传递性。
综上所述,整数集合上的“大于或者等于”关系是偏序关系。abdfgecaaaaabbaaba,babbcaca,b,c
第二篇:离散数学练习题1
1、下列句子是简单命题的是()
A)3是素数。B)2x+3<
5C)张三跟李四是同学吗?D)我在说谎。
2、下列公式不是永真式的是()..
A)((p∧q))→p)∨rB)p→(p∨q∨r)
C)┓(q→r)∧rD)(p→q)→(┓q→┓p)
3、设命题公式G<=>┓(p→q),H<=>p→(q →┓p),则G与H的关系是()。
A)G<=>HB)H→GC)H => GD)G => H4、下列命题不为真的是().
A)Φ ΦB)Φ∈Φ
C){a,b}∈{a,b,c,{a,b}}}D){a,b}{a,b,c,{a,b}}
5、1到300之间(包含1 和1000)不能被3、5和7整除的数有()个。
13、下列运算在指定集合上不符合交换律的是()。
A)复数C集合上的普通加法B)n阶实矩阵上的乘法 C)集合S的幂集上的∪D)集合S的幂集上的
14、下列集合对所给的二元运算封闭的是()
A)正实数集合R+和。运算,其中。运算定义如下:a,b∈R+,a。b=ab-a-b B)n∈Z+,nZ={nZ|z∈Z},nZ关于普通的加法运算 C)S={2x-1|x∈Z+}关于普通的加法运算
D)S={x|x=2n, n∈Z+},S关于普通的加法运算
15、设V=能构成的代数系统是()。
A)半群、独异点、群B)半群、独异点C)半群D)二元运算
上有○
A)138B)120C)68D)1246、设A, C, B, D为任意集合,以下命题一定为真的是()
A)A∪B= A∪C =>B=C B)A×C= A×B =>B= C
C)A∪(B×C)=(A∪B)×(A∪C)D)存在集合A,使得A A ×A7、设A={1,2,3,4},R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>} 是A上的关系,则R的性质是()
A)既是对称的也是反对称的 B)既不是对称的也不是反对称的 C)是对称的但不是反对称的D)不是对称的但是反对称的8、设R是A上的关系,则R在A上是传递的当且仅当()
则这4个运算中满足幂等律的是()
17、在上述四个运算中有单位元的是()
18、在上述四个运算中有零元的是()
19、与命题公式P(QR)等值的公式是()
A)(PQ)RB)(PQ)RC)(PQ)RD)P(QR)
20、下列集合都是N的子集,能够构成代数系统V=
A){x| x∈N∧x与5互为素数}B){x| x∈N∧x是30的因子} C){x| x∈N∧x是30的倍数}D){x|x=2k+1, k∈N }
二、填空题(1分/空,共20分。请将正确答案填在相应的横线上。)
1、公式┓(p∨q)→p的成假赋值为00__,公式┓(q→p)∧p的成真赋值为。
2、设A,B为任意命题公式,C为重言式,若A∧C<=>B∧C,那么A<->B是重言式(重言式、矛盾式或可满足式)。
3、f:N->N×N,f(x)=
其中,x=y(mod 3)叫做x与y模3相等,即x除以3的余数与y除以3的余数相等。则1的等价类,即[1],为()
A){1,4,7}B){2,5,8}C){3,6}D){1,2,3,4,5,6,7,8}
10、当集合A=Φ且B≠Φ时,则BA结果为()
A)ΦB){Φ} C){Φ, {Φ}}D)错误运算
11、函数f:R→R,f(x)= x2-2x+1,则f(x)是()函数。
A)单射B)满射C)双射D)不是单射,也不是满射
12、设X={a,b,c,d},Y={1,2,3},f={,,
A)f是从X到Y的二元关系,但不是从X到Y的函数 B)f是从X到Y的函数,但不是满射的,也不是单射的 C)f是从X到Y的满射,但不是单射 D)f是从X到Y的双射
双射)函数,A在f下的像f(A)=_{<5,6>}_,B在f下的完全原像f-1(B)=____。
4、已知公式A中含有3个命题变项p,q,r,并且它的成真赋值为000,011,110,则A的主合取范式为(用极大项表示)__M∧_M∧_M∧_M∧_M,主析取范式为(用极小项表示)
5、公式x(F(x,y)→yG(x,y,z))的前束范式为_
6、列出从集合A={1,2}到B={1}的所有二元关系。
7、设A为集合且∣A∣=n,则A共有nP(A)有n
8、设 f,g,h ∈RR 且f(x)=x+3, g(x)=2x+1, h(x)=x/2, 则复合函数
⑦ x(F(x)∧G(x)→H(x))前提引入 ⑧ F(a)∧G(a)→H(a)T ⑦UI⑨ F(a)∧G(a)T ③ ⑥合取(10)H(a)T ⑧ ⑨ 假言推理
f。g。h(x)=__,f。g。h(x)=_____。
9、含有n个命题变项的公式共有_____个不同的赋值,最多可以生成___个不同的真值表;n个命题变项共可产生___n_____个极小项(极大项);含n个命题变项的所有有穷多个合式公式中,与它们等值的主析取范式(主合取范式)共有___2^2___种不同的情况。
10、已知集合A={,{}},则A的幂集P(A)=_____。
n
n
n
五、设A={1,2,3,4},在A×A上定义二元关系R,,
(1)证明R是A×A上的等价关系
(2)确定由R引起的对A×A的划分。(5分)
三、利用公式的主合取范式判断下列公式是否等值。(5分)
p→(q→r)与(p∧q)∨r p→(q→r)
<=>p∨(q∨r)<=>p∨q∨r <=>M6
(p∧q)∨r
<=>(p∨q)∨r <=>p∨q)∨r <=>M6
(1)证明:
=> x+v+u+n=y+u+v+m => x+n=y+m =>
解:{{<1,1>,<2,2>,<3,3>,<4,4>},{<1,2>,<2,3>,<3,4>},{<1,3>,<2,4>},{<1,4>,<4,1>},{<3,1>,<4,2>},{<2,1>,<3,2>,<4,3>}}
四、符号化命题,并推理证明(给出每个符号的准确含义,及每一步推理的根据)。(5分)
每个科学工作者都是刻苦钻研的。每个刻苦钻研而又聪明的人在他的事业中都将获得成功。华有为是科学工作者并且是聪明的,所以华有为在他的事业中将获得成功。
六、A= {1,2,3,4,6,8,12},R是A上的整除关系,请作出偏序集的哈斯图,给出关系矩阵,并
求出A的极大元、极小元、最大元和最小元。若B={2,3,4},求出B的上界,下界,最小上界,最大下界。(5分)
解:
首先符号化:M(x):x是科学工作者;F(x):x是刻苦钻研的;G(x):x是聪明的;H(x):x
在事业中获得成功;a:华有为。
前提: x(M(x)→F(x)),x(F(x)∧G(x)→H(x)),M(a)∧ G(a)
结论:H(a)
证明:① M(a)∧ G(a)前提引入 ② M(a)T ①化简规则 ③ G(a)T ①化简规则 ④ x(M(x)→F(x))前提引入 ⑤ M(a)→F(a)T ④
⑥ F(a)T ② ⑤ 假言推理
解:A的极大元为8、12,极小元为1,无最大元,最小元为1。
B的上界为12,下界为1,最小上界为12,最大下界为1。
七、在自然推理系统P中构造下面推理的证明。(5分)(1)前提:(p∨q)→(r∧s),(s∨t)→u
结论:p→u(2)前提:x(F(x)→(G(a)∧ R(x))),x F(x).九、证明下列恒等式 A-(B∪C)=(A-B)∩(A-C)。(5分)证明:A-(B∪C)
结论: x(F(x)∧ R(x)).(1)证明:① p附加前提引入规则② p ∨ q①附加规则③(p ∨ q)→(r ∧ s)前提引入
④ r ∧ s②③ 假言推理⑤ s④化简规则⑥ s ∨ t⑤附加规则⑦(s ∨ t)→ u前提引入
⑧ u⑥ ⑦假言推理
(2)证明:① x F(x)前提引入② F(b)① EI③ x(F(x)→(G(a)∧ R(x)))前提引入④ F(b)→(G(a)∧ R(b))③ UI
⑤ G(a)∧ R(b)② ④假言推理⑥ R(b)⑤化简⑦ F(b)∧ R(b)②⑥合取⑧x(F(x)∧ R(x))⑦EG
八、设有理数集合Q上的 * 运算定义如下:a,b∈Q, a*b=a+b-ab。请指出该运算的性质,并求出其单位元、零元及所有可能的逆元。(5分)
解:(1)因为a*b=a+b-ab =b+a-ba=b*a,所以运算满足交换律。
(2)因为(a*b)*c=(a+b-ab)*c= a+b-ab+c-(a+b-ab)c=a+b+c-ab-bc-ac+abca*(b*c)=a*(b+c-bc)=a+b+c-bc-a(b+c-bc)= a+b+c-ab-bc-ac+abc故运算满足结合律。
(3)任意x∈Q,因为x*x=x+x-xx=2x+x2≠x,故不满足幂等律(4)因为对a∈Q,有a*0=a+0-a0=a,所以0是单位元。(5)因为对a∈Q,有a*1=a+1-a=1,所以1是零元。
(6)对a∈Q,令a*x=a+x-ax=0,则有x=a/(a-1)。所以当a≠1时,其逆元为a=a/(a-1),1没有逆元。
1=A∩~(B∪C)=A∩~B∩~C = A∩A∩~B∩~C =(A∩~B)∩(A∩~C)=(A-B)∩(A-C)
十、设A,B为任意集合,证明:AB<=>P(A)P(B)。(5分)证明:先证明充分性(=>)
X∈P(A)=> XA=> XB=> X∈P(B)再证明必要性(<=)
x∈A=> {x}A=> {x}∈P(A)=> {x}∈P(B)=> {x}B=>x∈B 综上所述,AB<=>P(A)P(B)
第三篇:离散数学复习题1
逻辑
1、给出的真值表
2、证明为永真式 谓词量词和推理
1、使用量词和谓词表达不存在这一事实
2、证明前提“在这个班上的某个学生没有读过书”和班上的每个学生都通过了第一门考试蕴含结论“通过考试的某个人没有读过书” 集合、函数、数列与求和
1、全集为,求集合A=的位串?它的补集的位串是什么?写出集合A=的所有子集,写出集合
2、从集合到集合能定义多少个函数?下面给出的函数其定义为:该函数是双射吗?是满射吗?该函数是否存在逆函数?如果存在请给出其逆函数。计数
1、计算机系统的美国用户有一个6~8个字符构成的密码,其中每个字符是一个大写字母或数字,且每个密码必须至少包含一个数字,问总共有多少个合适的密码?
2、在30天的一个月里,某棒球队一天至少打一场比赛,但最多打45场。证明一定有连续的若干天内这个球队恰好打了14场比赛
3、证明n个元素的集合中允许重复的r组合数等于
4、按照字典顺序生成整数1,2,3的所有排列(不允许重复),在362541后面按照字典顺序的下一个最大排列是什么?找出在1000100111后面的下一个最大的二进制串。关系
1、求下面给出关系R的自反闭包、对称闭包和传递闭包的0-1关系矩阵,其中
2、S是所有比特串的集合,关系定义为当s=t或者s和t的长度至少是3,且前3个比特相同时具有关系,例如0101,0011100101,但01010,0101101110。证明是S上的等价关系,由产生的S的等价类是那些集合?
3、偏序集({2,4,5,10,12,20,25},|)的那些元素是极大的,那些元素是极小的? 图与树
1、在下图所示的图中,从a 到d的长度为4的通路有几条?该图是否是Euler图,是否是Hamilton图,该图的度序列是什么?该图是否可平面,如果是请给出平面画图,该图的点色数和边色数等于多少?给出该图的一个生成树,2、求下面赋权图从a到z的最短距离是多少?最短路径是什么?(画图给出标号过程)
3、用哈夫曼编码方法来编码下列符号,这些符号具有下列频率:A:0.08,B:0.10,C:0.12,D:0.15,E:0.20,F:0.35,该编码方法编码一个字符的平均位数是多少?
4、下面树的高度是多少?那些节点是内部节点,那些节点是叶子节点,该树是否是3元正则树?分别给出该树节点的前序、中序、后序遍历的节点访问次序
第四篇:离散数学 期末考试试卷答案
离散数学试题(B卷答案1)
一、证明题(10分)
1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2)x(A(x)B(x)) xA(x)xB(x)证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)
二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7 M3∨M4∨M5∨M6
三、推理证明题(10分)
1)C∨D,(C∨D) E,E(A∧B),(A∧B)(R∨S)R∨S 证明:(1)(C∨D)E(2)E(A∧B)
P P
P(3)(C∨D)(A∧B)T(1)(2),I(4)(A∧B)(R∨S)(5)(C∨D)(R∨S)(6)C∨D
T(3)(4),I P(7)R∨S T(5),I 2)x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x)P
(2)P(a)T(1),ES(3)x(P(x)Q(y)∧R(x))P(4)P(a)Q(y)∧R(a)T(3),US(5)Q(y)∧R(a)T(2)(4),I(6)Q(y)T(5),I(7)R(a)T(5),I(8)P(a)∧R(a)T(2)(7),I(9)x(P(x)∧R(x))T(8),EG(10)Q(y)∧x(P(x)∧R(x))T(6)(9),I
四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。
解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。
先求|A∩B|。
∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。
于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。
五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。
证明:∵x A-(B∪C) x A∧x(B∪C)
x A∧(xB∧xC)
(x A∧xB)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C)
∴A-(B∪C)=(A-B)∩(A-C)
六、已知R、S是N上的关系,其定义如下:R={
解:R={
七、设R={,,
12-1
2s(R)={,,
八、证明整数集I上的模m同余关系R={
证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。
2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y-x)/m=-k∈I,所以yx(mod m),即yRx。
3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。
九、若f:A→B和g:B→C是双射,则(gf)=fg(10分)。
1-1-14325证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推fg:C→A是双射。
因为
1-1
-1-1-1-1
-1-1-1
-1离散数学试题(B卷答案2)
一、证明题(10分)
1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)xy(P(x)Q(y)) (xP(x)yQ(y))证明:xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y))
二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)
解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1 m0∨m2∨m3
三、推理证明题(10分)
1)(P(QS))∧(R∨P)∧QRS 证明:(1)R(2)R∨P(3)P(4)P(QS)(5)QS(6)Q(7)S(8)RS 2)x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。
证明:(1)x(A(x)yB(y))P(2)A(a)yB(y)T(1),ES(3)x(B(x)yC(y))P(4)x(B(x)C(c))T(3),ES(5)B(b)C(c)T(4),US(6)A(a)B(b)T(2),US(7)A(a)C(c)T(5)(6),I(8)xA(x)C(c)T(7),UG(9)xA(x)yC(y)T(8),EG
四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。
解 设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生 的集合,则命题可符号化为:PxA(x),xA(x)QQP。
(1)PxA(x)P(2)PxA(x)T(1),E(3)xA(x)P T(2),E(4)xA(x)Q P(5)(xA(x)Q)∧(QxA(x))T(4),E(6)QxA(x)T(5),I(7)QP T(6)(3),I
五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)
证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)
六、A={ x1,x2,x3 },B={ y1,y2},R={
七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。
解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>, <3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R=R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}
八、设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠。关系R满足:<
证明 对任意的
对任意的
5∈R,即R
对任意的∈A×B,若,则>∈R,即,所以R是传递的。
综上可得,R是A×B上的等价关系。
九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f、g和h(10分)。
解 因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。
由hgf=IA,得f=hg;由fhg=IB,得g=fh;由gfh=IC,得h=gf。-
1-1
-1-1-1
-1离散数学试题(B卷答案3)
一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)1)P(P∨Q∨R)2)((QP)∨P)∧(P∨R)3)((P∨Q)R)((P∧Q)∨R)解:1)重言式;2)矛盾式;3)可满足式
二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。
解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。
三、(10分)证明((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C))((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)
((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C
四、(10分)个体域为{1,2},求xy(x+y=4)的真值。
解:xy(x+y=4)x((x+1=4)∨(x+2=4))
((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4))(0∨0)∧(0∨1)0∧10
五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B)解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)
六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。
解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}
七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f(
解:1)
2)
∈R×R,由f( ,通过计算可得x=(p+q)/2;y=(p-q)/2;从而 的原象存在,f是满射。 八、(10分) 证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。 2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。 3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。 所以 九、(10分)已知:D= 解:1)D的邻接距阵A和可达距阵P如下: A= 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1- 1-1 P= 1 1 1 1 十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。 解:最优二叉树为 权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148 离散数学试题(B卷答案4) 一、证明题(10分) 1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x))证明:x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x)) 二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分) 解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3 三、推理证明题(10分) 1)(P(QS))∧(R∨P)∧QRS 证明:(1)R 附加前提(2)R∨P P(3)P T(1)(2),I(4)P(QS)P(5)QS T(3)(4),I(6)Q P(7)S T(5)(6),I(8)RS CP 2)x(P(x)∨Q(x)),xP(x)x Q(x)证明:(1)xP(x)P(2)P(c)T(1),US(3)x(P(x)∨Q(x))P(4)P(c)∨Q(c)T(3),US(5)Q(c)T(2)(4),I(6)x Q(x)T(5),EG 四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。 证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。 五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分) 证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C) 六、={A1,A2,„,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,„,n},则R是A上的等价关系(15分)。 证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。a,b∈A,若aRb,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。 a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。 总之R是A上的等价关系。 七、若f:A→B是双射,则f:B→A是双射(15分)。 证明:对任意的x∈A,因为f是从A到B的函数,故存在y∈B,使 对任意的x∈A,若存在y1,y2∈B,使得 因此f是双射。 八、设 证明 假设A≠G且B≠G,则存在aA,aB,且存在bB,bA(否则对任意的aA,aB,从而AB,即A∪B=B,得B=G,矛盾。) 对于元素a*bG,若a*bA,因A是子群,aA,从而a *(a*b)=b A,所以矛盾,故a*bA。同理可证a*bB,综合有a*bA∪B=G。综上所述,假设不成立,得证A=G或B=G。 九、若无向图G是不连通的,证明G的补图G是连通的(10分)。 证明 设无向图G是不连通的,其k个连通分支为G1、G2、„、Gk。任取结点u、v∈G,若u和v不在图G的同一个连通分支中,则[u,v]不是图G的边,因而[u,v] 1-1-1 -1-1-1-1是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支Gi(1≤i≤k)中,在不同于Gi的另一连通分支上取一结点w,则[u,w]和[w,v]都不是图G的边,因而[u,w]和[w,v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和v的任意性可知,G是连通的。 离散数学试题(B卷答案5) 一、(10分)求命题公式(P∧Q)(PR)的主合取范式。 解:(P∧Q)(PR)((P∧Q)(PR))∧((PR)(P∧Q))((P∧Q)∨(P∧R))∧((P∨R)∨(P∨Q))(P∧Q)∨(P∧R)(P∨R)∧(Q∨P)∧(Q∨R) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M1∧M3∧M4∧M5 二、(8分)叙述并证明苏格拉底三段论 解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。命题符号化为x(F(x)G(x)),F(a)G(a)证明: (1)x(F(x)G(x))P(2)F(a)G(a)T(1),US(3)F(a)P(4)G(a)T(2)(3),I 三、(8分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC) (x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C) ∴A∩(B∪C)=(A∩B)∪(A∩C) 四、(10分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R∩S=[a]R∩[a]S。 解:x∈A,因为R和S是自反关系,所以 x、y∈A,若 x、y、z∈A,若 总之R∩S是等价关系。 2)因为x∈[a]R∩S 五、(10分)设A={a,b,c,d},R是A上的二元关系,且R={,,, 解 r(R)=R∪IA={,,, t(R)=R={,,, 4232-1d>,} 六、(15分)设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×CB×D且∈A×C,h()= 证明:1)先证h是满射。 ∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()= 2)再证h是单射。 到D的双射,所以a1=a2,c1=c2,所以 综合1)和2),h是双射。 七、(12分)设 证明: a,b∈H有b∈H,所以a*b∈H。a∈H,则e=a*a∈H a=e*a∈H ∵a,b∈H及b∈H,∴a*b=a*(b)∈H ∵HG且H≠,∴*在H上满足结合律 ∴ 八、(10分)设G= 解:设G的每个结点的度数都大于等于6,则2|E|=d(v)≥6|V|,即|E|≥3|V|,与简单无向平面图的|E|≤3|V|-6矛盾,所以G至少有一个结点的度数小于等于5。九.G=,A={a,b,c},*的运算表为:(写过程,7分)- 1-1 -1-1-1-1-1 -1-1(1)G是否为阿贝尔群? (2)找出G的单位元;(3)找出G的幂等元(4)求b的逆元和c的逆元 解:(1)(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c)(a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b)(b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c)所以G是阿贝尔群 (2)因为a*a=a a*b=b*a=b a*c=c*a=c 所以G的单位元是a(3)因为a*a=a 所以G的幂等元是a(4)因为b*c=c*b=a,所以b的逆元是c且c的逆元是b 十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。 解:最优二叉树为 权=148 离散数学试题(B卷答案6) 一、(20分)用公式法判断下列公式的类型:(1)(P∨Q)(PQ)(2)(PQ)(P∧(Q∨R))解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)m1∨m2∨m3 M0 所以,公式(P∨Q)(PQ)为可满足式。 (2)因为(PQ)(P∧(Q∨R))((P∨Q))∨(P∧Q∧R)) (P∨Q)∨(P∧Q∧R)) (P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R)(P∨Q)∧(P∨Q∨R) (P∨Q∨(R∧R))∧(P∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M0∧M1 m2∨m3∨m4∨m5∨m6∨m7 所以,公式(PQ)(P∧(Q∨R))为可满足式。 二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋 又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。 解:论域:所有人的集合。Q(x):x是勤奋的;H(x):x是身体健康的;S(x):x是科学家;C(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为: x(S(x)H(x))Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧x(C(x)∨F(x))下面给出证明: (1)x(S(x)∧H(x)) P(2)S(a)∧H(a) T(1),ES(3)x(S(x)Q(x)) P(4)S(a)Q(a) T(1),US(5)S(a) T(2),I(6)Q(a) T(4)(5),I(7)H(a) T(2),I(8)Q(a)∧H(a) T(6)(7),I(9)x(Q(x)∧H(x)C(x)) P(10)Q(a)∧H(a)C(a) T(9),Us(11)C(a) T(8)(10),I(12)xC(x) T(11),EG(13)x(C(x)∨F(x)) T(12),I 三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}} 四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立?(1)若R和S是自反的,则R*S也是自反的。(2)若R和S是反自反的,则R*S也是反自反的。(3)若R和S是对称的,则R*S也是对称的。 (4)若R和S是传递的,则R*S也是传递的。(5)若R和S是自反的,则R∩S是自反的。(6)若R和S是传递的,则R∪S是传递的。 解 (1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。 (2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。 (3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。 (4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。 (5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。 五、(15分)令X={x1,x2,„,xm},Y={y1,y2,„,yn}。问(1)有多少个不同的由X到Y的函数? (2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?(3)当n、m满足什么条件时,存在双射,且有多少个不同的双射? 解 (1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共nm个。 (2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到 mY的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。 (3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,故不同的双射有m!个。 六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个? 解 X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。 七、(10分)若 b。 证明 设e是群 - - -所以,x=a1*b是a*x=b的解。-若x∈G也是a*x=b的解,则x=e*x=(a1*a)*x=a1*(a*x)=a1*b=x。所以,x - - -=a1*b是a*x=b的惟一解。- 八、(10分)给定连通简单平面图G= 证明 由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|= fF24。若存在f∈F,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。 离散数学试题(B卷答案7) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A、B、C的控制:当且仅当A和C同时关闭或B和C同时关闭时灯亮。设F表示灯亮。 (1)写出F在全功能联结词组{}中的命题公式。(2)写出F的主析取范式与主合取范式。 解 (1)设A:开关A关闭;B:开关B关闭;C:开关C关闭;F=(A∧C)∨(B∧C)。在全功能联结词组{}中: A(A∧A)AA A∧C(A∧C)(AC)(AC)(AC) A∨B(A∧B)((AA)∧(BB))(AA)(BB)所以 F((AC)(AC))∨((BC)(BC))(((AC)(AC))((AC)(AC)))(((BC)(BC))((BC)(BC)))(2)F(A∧C)∨(B∧C) (A∧(B∨B)∧C)∨((A∨A)∧B∧C)(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)m3∨m5∨m7 主析取范式 M0∧M1∧M2∧M4∧M6 主合取范式 二、(10分)判断下列公式是否是永真式?(1)(xA(x)xB(x))x(A(x)B(x))。(2)(xA(x)xB(x))x(A(x)B(x)))。解 (1)(xA(x)xB(x))x(A(x)B(x))(xA(x)∨xB(x))x(A(x)B(x))(xA(x)∨xB(x))∨x(A(x)∨B(x))(xA(x)∧xB(x))∨xA(x)∨xB(x)(xA(x)∨xA(x)∨xB(x))∧(xB(x)∨xA(x)∨xB(x))x(A(x)∨A(x))∨xB(x)T 所以,(xA(x)xB(x))x(A(x)B(x))为永真式。 (2)设论域为{1,2},令A(1)=T;A(2)=F;B(1)=F;B(2)=T。 则xA(x)为假,xB(x)也为假,从而xA(x)xB(x)为真;而由于A(1)B(1)为假,所以x(A(x)B(x))也为假,因此公式(xA(x)xB(x))x(A(x)B(x))为假。该公式不是永真式。 三、(15分)设X为集合,A=P(X)-{}-{X}且A≠,若|X|=n,问(1)偏序集是否有最大元?(2)偏序集是否有最小元? (3)偏序集中极大元和极小元的一般形式是什么?并说明理由。解 考察P(X)的哈斯图,最底层的顶点是空集,记作第0层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第n-1层是X的n-1元子集,第n层是X。偏序集与偏序集 相比,恰好缺少第0层和第n层。因此的极小元就是X的所有单元集,即{x},x∈X;而极大元恰好是比X少一个元素,即X-{x},x∈X。 四、(10分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。 解 r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,- <4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。 五、(10分)设函数g:A→B,f:B→C,(1)若fg是满射,则f是满射。(2)若fg是单射,则g是单射。 证明 因为g:A→B,f:B→C,由定理5.5知,fg为A到C的函数。 (1)对任意的z∈C,因fg是满射,则存在x∈A使fg(x)=z,即f(g(x))=z。由g:A→B可知g(x)∈B,于是有y=g(x)∈B,使得f(y)=z。因此,f是满射。 (2)对任意的x1、x2∈A,若x1≠x2,则由fg是单射得fg(x1)≠fg(x2),于是f(g(x1))≠f(g(x2)),必有g(x1)≠g(x2)。所以,g是单射。 六、(10分)有幺元且满足消去律的有限半群一定是群。 证明 设 考虑a,a2,„,ak,„。因为G只有有限个元素,所以存在k>l,使得ak=al。令m=k-l,有al*e=al*am,其中e是幺元。由消去率得am=e。 于是,当m=1时,a=e,而e是可逆的;当m>1时,a*am-1=am-1*a=e。从而a是可逆的,其逆元是am-1。总之,a是可逆的。 七、(20分)有向图G如图所示,试求:(1)求G的邻接矩阵A。 (2)求出A2、A3和A4,v1到v4长度为1、2、3和4的路有多少? (3)求出ATA和AAT,说明ATA和AAT中的第(2,2)元素和第(2,3)元素的意义。(4)求出可达矩阵P。(5)求出强分图。 解 (1)求G的邻接矩阵为: 00A00101011 101100(2)由于 002A001110220130A0211102011120322044A 031201012313 2322所以v1到v4长度为1、2、3和4的路的个数分别为1、1、2、3。(3)由于 00ATA000002131212TAA 21011102132110 2121再由定理10.19可知,所以ATA的第(2,2)元素为3,表明那些边以v2为终结点且具有不同始结点的数目为3,其第(2,3)元素为0,表明那些边既以v2为终结点又以v3为终结点,并且具有相同始结点的数目为0。AAT中的第(2,2)元素为2,表明那些边以v2为始结点且具有不同终结点的数目为2,其第(2,3)元素为1,表明那些边既以v2为始结点又以v3为始结点,并且具有相同终结点的数目为1。 (4)00B4AA2A3A40000所以求可达矩阵为P0000(5)因为PPT0010100110+10101000111111。 11111111101111∧1111111100001110=01110111000111,所以{v1},{v2,v3,v4} 111111因 1110 2010 + 1110 0110 2120312204+ 2120320101231323220 000 为 741 747,747 434构成G的强分图。 离散数学试题(B卷答案8) 一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R 证明 因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。(1)R 附加前提(2)PR P(3)P T(1)(2),I(4)P∨Q P(5)Q T(3)(4),I(6)QS P(7)S T(5)(6),I(8)RS CP(9)S∨R T(8),E 二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。 设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。 (1)x(P(x)Q(x)) P(2)x(P(x)∨Q(x)) T(1),E(3)x(P(x)∧Q(x)) T(2),E(4)P(a)∧Q(a) T(3),ES(5)P(a) T(4),I(6)Q(a) T(4),I(7)x(P(x)(A(x)∨B(x)) P(8)P(a)(A(a)∨B(a)) T(7),US(9)A(a)∨B(a) T(8)(5),I(10)x(A(x)Q(x)) P (11)A(a)Q(a) T(10),US(12)A(a) T(11)(6),I (13)B(a) T(12)(9),I(14)P(a)∧B(a) T(5)(13),I(15)x(P(x)∧B(x)) T(14),EG 三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。 解 设A、B、C分别表示会打排球、网球和篮球的学生集合。则: |A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2=6,所以|(A∩B)|=3。于是|A∪B∪C|=12+6+14-6-5-3+2=20,|ABC|=25-20=5。故,不会打这三种球的共5人。 四、(10分)设A1、A2和A3是全集U的子集,则形如Ai(Ai为Ai或Ai)的集合称 i13为由A1、A2和A3产生的小项。试证由A1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。 证明 小项共8个,设有r个非空小项s1、s2、…、sr(r≤8)。 对任意的a∈U,则a∈Ai或a∈Ai,两者必有一个成立,取Ai为包含元素a的Ai或Ai,则a∈Ai,即有a∈si,于是Usi。又显然有siU,所以U=si。 i1i1i1i1i13rrrr任取两个非空小项sp和sq,若sp≠sq,则必存在某个Ai和Ai分别出现在sp和sq中,于是sp∩sq=。 综上可知,{s1,s2,…,sr}是U的一个划分。 五、(15分)设R是A上的二元关系,则:R是传递的R*RR。 证明 (5)若R是传递的,则 反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则 六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r分别为G的结点数、边数和面数。 证明 对G的边数m作归纳法。 当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。假设对边数小于m的连通平面图结论成立。下面考虑连通平面图G的边数为m的情况。 设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。对e分为下列情况来讨论: 若e为割边,则G有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。 若e不为割边,则n=n,m=m-1,r=r-1,由归纳假设有n-m+r=2,从而n-(m-1)+r-1=2,即n-m+r=2。 由数学归纳法知,结论成立。 七、(10分)设函数g:A→B,f:B→C,则:(1)fg是A到C的函数; (2)对任意的x∈A,有fg(x)=f(g(x))。 证明 (1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使 对任意的x∈A,若存在y1、y2∈C,使得 综上可知,fg是A到C的函数。 (2)对任意的x∈A,由g:A→B是函数,有 八、(15分)设 证明 对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。 - - 若∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以 - - -a>∈R。 若∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a - - -1*b)*(b1*c)=a1*c∈H,故∈R。--综上可得,R是G中的一个等价关系。 对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,- -于是b∈aH,[a]RaH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,∈R,故aH[a]R。所以,[a]R=aH。 离散数学试题(B卷答案9) 一、(10分)证明(P∧Q∧AC)∧(AP∨Q∨C)(A∧(PQ))C。证明:(P∧Q∧AC)∧(AP∨Q∨C)(P∨Q∨A∨C)∧(A∨P∨Q∨C) (P∨Q∨A∨C)∧(A∨P∨Q∨C)((P∨Q∨A)∧(A∨P∨Q))∨C ((P∧Q∧A)∨(A∧P∧Q))∨C (A∧((P∧Q)∨(P∧Q)))∨C (A∧(PQ))∨C (A∧(PQ))C。 二、(10分)举例说明下面推理不正确:xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))。 解:设论域为{1,2},令P(1)=P(2)=T;Q(1)=Q(2)=T;R(1)=R(2)=F。则: xy(P(x)Q(y))x((P(x)Q(1))∨(P(x)Q(2))) ((P(1)Q(1))∨(P(1)Q(2)))∧((P(2)Q(1))∨(P(2)Q(2)))((TT)∨(TT))∧((TT)∨(TT))T yz(R(y)Q(z))y((R(y)Q(1))∨(R(y)Q(2))) ((R(1)Q(1))∨(R(1)Q(2)))∧((R(2)Q(1))∨(R(2)Q(2))) ((FT)∨(FT))∧((FT)∨(FT)) T 但 xz(P(x)R(z))x((P(x)R(1))∧(P(x)R(2)))((P(1)R(1))∧(P(1)R(2)))∨((P(2)R(1))∧(P(2)R(2)))((TF)∧(TF))∨((TF)∧(TF))F 所以,xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))不正确。 三、(15分)在谓词逻辑中构造下面推理的证明:所有牛都有角,有些动物是牛,所以,有些动物有角。 解:令P(x):x是牛;Q(x):x有角;R(x):x是动物;则推理化形式为: x(P(x)Q(x)),x(P(x)∧R(x))x(Q(x)∧R(x))下面给出证明: (1)x(P(x)∧R(x)) P(2)P(a)∧R(a) T(1),ES(3)x(P(x)Q(x)) P(4)P(a)Q(a) T(3),US(5)P(a) T(2),I(6)Q(a) T(4)(5),I(7)R(a) T(2),I(8)Q(a)∧R(a) T(6)(7),I(9)x(Q(x)∧R(x)) T(8),EG 四、(10分)证明(A∩B)×(C∩D)=(A×C)∩(B×D)。 证明:因为 五、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。 解 r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,- <4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。 六、(10分)若函数f:A→B是双射,则对任意x∈A,有f1(f(x))=x。 -证明 对任意的x∈A,因为f:A→B是函数,则 -由f-1是B到A的函数,于是可写为f1(f(x))=x。 - 七、(10分)若G为有限群,则|G|=|H|·[G:H]。 证明 设[G:H]=k,a1、a2、…、ak分别为H的k个左陪集的代表元,由定理8.38得 G[ai]RaiH i1i1kk又因为对H中任意不同的元素x、y∈H及a∈G,必有a*x≠a*y,所以|a1H|=…=|akH|=|H|。因此 |G||aiH|i1k|aH|k|H|=|H|·[G:H]。 ii1k 八、(20分)(1)画出3阶2条边的所有非同构有向简单图。 解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为: 1、2、1:入度列为0、1、1或0、2、0或1、0、1;出度列为1、1、0或1、0、1或0、2、0 2、2、0:入度列为1、1、0;出度列为1、1、0 四个所求有向简单图如图所示。 (2)设G是n(n≥4)阶极大平面图,则G的最小度≥3。 证明 设v是极大平面图G的任一结点,则v在平面图G-{v}的某个面f内。由于G-{v}是一个平面简单图且其结点数大于等于3,所以d(f)≥3。由G的极大平面性,v与f上的结点之间都有边,因此d(v)≥3。由v的任意性可得,G的最小度≥3。 离散数学试题(B卷答案10) 一、(10分)使用将命题公式化为主范式的方法,证明(PQ)(P∧Q)(QP)∧(P∨Q)。 证明:因为(PQ)(P∧Q)(P∨Q)∨(P∧Q) (P∧Q)∨(P∧Q)(QP)∧(P∨Q)(Q∨P)∧(P∨Q)(P∧Q)∨(Q∧Q)∨(P∧P)∨(P∧Q)(P∧Q)∨P (P∧Q)∨(P∧(Q∨Q))(P∧Q)∨(P∧Q)∨(P∧Q)(P∧Q)∨(P∧Q)所以,(PQ)(P∧Q)(QP)∧(P∨Q)。 二、(10分)证明下述推理: 如果A努力工作,那么B或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。 解 设A:A努力工作;B、C、D分别表示B、C、D愉快;则推理化形式为: AB∨C,BA,DCAD (1)A 附加前提(2)AB∨C P(3)B∨C T(1)(2),I(4)BA P(5)AB T(4),E(6)B T(1)(5),I(7)C T(3)(6),I (8)DC P(9)D T(7)(8),I(10)AD CP 三、(10分)证明xy(P(x)Q(y))(xP(x)yQ(y))。xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y)) 四、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}} 五、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R的关系图。(2)写出R的关系矩阵。 (3)说明R是否是自反、反自反、对称、传递的。解(1)R的关系图如图所示:(2)R的关系矩阵为: 10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的; 经过计算可得 10M(R2)111011101100M(R),所以R是传递的。00 六、(15分)设函数f:R×RR×R,f定义为:f( (4)求复合函数ff和ff。 证明(1)对任意的x,y,x1,y1∈R,若f( (2)对任意的∈R×R,令x=-1- 1uwuwuwuw,y=,则f( -1 ( xyxy,2xy(xy)>= 七、(15分)给定群 证明 对G中任意元a和b。 因为a*b=(a*b),所以a*a*b*b=a*(a*b)*b,即得a*b=(b*a)。同33 333 2255 13 111理,由a*b=(a*b)可得,a*b=(b*a)。由a*b=(a*b)可得,a*b=(b*a)。 于是(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。同理可得,(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。 3333334 344433555444 由于(a*b)*b=a*b=b*a=b*(b*a)=b*(a*b)=(b*a)*b,故a*b=b*a。 八、(15分)(1)证明在n个结点的连通图G中,至少有n-1条边。 证明 不妨设G是无向连通图(若G为有向图,可略去边的方向讨论对应的无向图)。设G中结点为v1、v2、„、vn。由连通性,必存在与v1相邻的结点,不妨设它为v2(否则可重新编号),连接v1和v2,得边e1,还是由连通性,在v3、v4、„、vn中必存在与v1或v2相邻的结点,不妨设为v3,将其连接得边e2,续行此法,vn必与v1、v2、„、vn1中的某个结点相邻,得新边en1,由此可见G中至少有n-1条边。 (2)试给出|V|=n,|E|=(n-1)(n-2)的简单无向图G= 解 下图满足条件但不连通。 12344333 临沂大学2015—2016学第1学期 离散数学单元测试试题一 (适用于2014级计算机科学与技术、软件工程、网络工程专业本科学生) 一、选择题(共10题,每题3分,共30分)1.下列语句中为命题的是(D)。A.这朵花是谁的? B.这朵花真美丽啊!C.这朵花是你的吗? D.这朵花是他的。 2.若p:他聪明;q:他用功;则“他虽聪明,但不用功”,可符号化为(B)。A.p∨q B.p∧┐q C.p→┐q D.p∨┐q 3.命题公式p∨q→q的公式类型为(D)。A.矛盾式 B.非重言可满足式 C.重言式 D.条件式 4.若F(x):x是有理数,G(x):x能被2整除,则“有的有理数能被2整除”,可符号化为(A)。 A.x(F(x)∧G(x)) B.F(x)∧G(x) C.xF(x) D.xG(x)5.设F(x)表示x是火车,G(x)表示y是汽车,H(x,y)表示x比y快,命题“某些汽车比所有火车慢”的符号化公式是(B)。 A.y(G(y)→x(F(x)∧H(x,y)))B.y(G(y)∧x(F(x)→H(x,y)))C.xy(G(y)→(F(x)∧H(x,y)))D.y(G(y)→(x)(F(x)→H(x,y)))6.设集合A={1,2,3},A上的关系R={<1,2>,<1,3>,<3,3>},则R具有(D)。A.自反性 B.传递性 C.对称性 D.以上答案都不对 ######7.谓词公式x(P(x)∨yR(y))→Q(x)中的 x是(C)。A.自由变元 B.约束变元 C.既是自由变元又是约束变元 D.既不是自由变元又不是约束变元 8.设X、Y是两个集合且|X|=n,|Y|=m,则从X到Y可产生(A)个二元关系。A.n m B.mn C.2n m D.nm 9.下列关于集合的表示中正确的为(C)。A.{a}{a,b,c} B.{a}{a,b,c} C.{a,b,c} D.{a,b}{a,b,c} 10.设集合A={1,2,3,4,5},下列哪些是集合A的划分(D)。A.{{1,2},{3,5}} B.{{1,2,3,4},5} C.{ ,{1,2},{3},{4,5}} D.{{1},{2},{3},{4},{5}} 二、填空题(共10空,每空3分,共30分)1.设p:2+2=5,q:明天是阴天,则命题“只要2+2=5,那么明天是阴天”可符号化为 p->q,其真值是 1。 2.设p:你陪伴我,q:你代我叫车子,r:我出去,则“如果你不陪伴我或不代我叫车子,我就不出去。”的符号化形式为 ¬p/¬q->r。 3.设p: 天下雨,q: 天刮风,r: 我去书店,则“如果天不下雨并且不刮风,我就去书店”的符号化形式为。 4.设S(x)∶x是大学生;K(x)∶x是运动员。则“有些运动员不是大学生”的符号化为。 5.设P(x):x非常聪明;Q(x):x非常能干;a:小李;则“小李非常聪明且能干”的符号化形式为。 6.设F(x): x是人,G(x): x用右手写字,则“有的人并不用右手写字”的符号化形式为。 7.设S(x):x是学生;L(x):x喜欢英语。则“有些学生喜欢英语”的符号化为:。8.在公式x(P(z)→Q(x,z))∧zR(x,z)中,x的辖域是 ,z的辖域是。 三、计算与证明(共2题,每题20分,共40分)1.用等值演算求下公式的主析取范式(p→q)∧r。 2.在命题逻辑自然推理系统中,构造下面推理的证明。前提: p∨q, q→r, p→s, ┐s,结论:r ∧ (p∨q)。第五篇:离散数学单元测试试题1