第一篇:测试技术论文
虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。灵活高效的软件能帮助您创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。这也正是NI近30年来始终引领测试测量行业发展趋势的原因所在。只有同时拥有高效的软件、模块化I/O硬件和用于集成的软硬件平台这三大组成部分,才能充分发挥虚拟仪器技术性能高、扩展性强、开发时间少,以及出色的集成这四大优势。
虚拟仪器技术的三大组成部分:
1.高效的软件
软件是虚拟仪器技术中最重要的部份。使用正确的软件工具并通过设计或调用特定的程序模块,工程师和科学家们可以高效地创建自己的应用以及友好的人机交互界面。提供的行业标准图形化编程软件——LabVIEW,不仅能轻松方便地完成与各种软硬件的连接,更能提供强大的后续数据处理能力,设置数据处理、转换、存储的方式,并将结果显示给用户。此外,还提供了更多交互式的测量工具和更高层的系统管理软件工具,例如连接设计与测试的交互式软件SignalExpress、用于传统C语言的LabWindows/CVI、针对微软Visual Studio的Measurement Studio等等,均可满足客户对高性能应用的需求。
有了功能强大的软件,您就可以在仪器中创建智能性和决策功能,从而发挥虚拟仪器技术在测试应用中的强大优势。
2.模块化的I/O硬件
面对如今日益复杂的测试测量应用,已经提供了全方位的软硬件的解决方案。无论您是使用PCI, PXI, PCMCIA, USB或者是1394总线,都能提供相应的模块化的硬件产品,产品种类从数据采集、信号条理、声音和振动测量、视觉、运动、仪器控制、分布式I/O到CAN接口等工业通讯,应有尽有。高性能的硬件产品结合灵活的开发软件,可以为负责测试和设计工作的工程师们创建完全自定义的测量系统,满足各种独特的应用要求。
3.用于集成的软硬件平台
专为测试任务设计的PXI硬件平台,已经成为当今测试、测量和自动化应用的标准平台,它的开放式构架、灵活性和PC技术的成本优势为测量和自动化行业带来了一场翻天覆地的改革。
PXI作为一种专为工业数据采集与自动化应用度身定制的模块化仪器平台,内建有高端的定时和触发总线,再配以各类模块化的I/O硬件和相应的测试测量开发软件,您就可以建立完全自定义的测试测量解决方案。无论是面对简单的数据采集应用,还是高端的混合信号同步采集,借助PXI高性能的硬件平台,您都能应付自如。这就是虚拟仪器技术带给您的无可比拟的优势。
虚拟仪器技术的四大优势:
性能高
虚拟仪器技术是在PC技术的基础上发展起来的,所以完全“继承”了以现成即用的PC技术为主导的最新商业技术的优点,包括功能超卓的处理器和文件I/O,使您在数据高速导入磁盘的同时就能实时地进行复杂的分析。此外,不断发展的因特网和越来越快的计算机网络使得虚拟仪器技术展现其更强大的优势。
扩展性强
这些软硬件工具使得工程师和科学家们不再圈囿于当前的技术中。得益于软件的灵活性,只需更新您的计算机或测量硬件,就能以最少的硬件投资和极少的、甚至无需软件上的升级即可改进您的整个系统。在利用最新科技的时候,您可以把它们集成到现有的测量设备,最终以较少的成本加速产品上市的时间。
开发时间少
在驱动和应用两个层面上,NI高效的软件构架能与计算机、仪器仪表和通讯方面的最新技术结合在一起。设计这一软件构架的初衷就是为了方便用户的操作,同时还提供了灵活性和强大的功能,使您轻松地配置、创建、发布、维护和修改高性能、低成本的测量和控制解决方案。
无缝集成虚拟仪器技术从本质上说是一个集成的软硬件概念。随着产品在功能上不断地趋于复杂,工程师们通常需要集成多个测量设备来满足完整的测试需求,而连接和集成这些不同设备总是要耗费大量的时间。虚拟仪器软件平台为所有的I/O设备提供了标准的接口,帮助用户轻松地将多个测量设备集成到单个系统,减少了任务的复杂性。
应用实例
阿尔卡特美国公司是全球领先的世界上电信设备制造商领导者之一。位于加州佩塔卢马的接入部,开发Litespan接入平台一种光纤数字环路载波(DLC)。DLC能够将电话公司中心机房普通铜线上的电话业务传递到更远的地方。通过LabVIEW,在相对短的时间内开发了一个全面测试方案。同时测试对每个信道单元的16个ANSI要求的环路和4条ISDN线路的一个信道单元进行测试时,每项测试所花费的时间为12分钟。由于一些信道单元需要测试某个温度范围内的状况,因而整个测试需要几天的时间。
Allen Klein美国阿尔卡特公司Litespan硬件质量部的一位工程师,在程序中增加了一项功能,使得测试可以全天进行,甚至在周末也行。这项功能极大地扩展丰富了测试平台,提高了测试效率。
虚拟仪器技术是测试技术和计算机技术相结合的产物,是两门学科最新技术的结晶,融合了测试理论、仪器原理和技术、计算机接口技术、高速总线技术以及图形软件编程技术于一体。
虚拟仪器是由计算机硬件资源和用于数字分析与处理、过程通讯以及图形界面的软件组成的测控系统,它把仪器生产厂家定义仪器功能的方式转变为由用户自己定义仪器功能,也就是说传统测试中使用厂家生产的仪器,仪器的性能及功能在出厂时已被厂家定义,用户只能根据自己的要求和需要选择和使用;而虚拟仪器是在一定的硬件基础上,用户可根据测试的需求,编写软件定义自己的仪器功能。同样的硬件配置可开发出不同的仪器,例如在仪器面板上显示采集信号在时域的波形,那么该仪器为虚拟示波器;如果在程序中对采集信号进行FFT变换,那么该仪器就是虚拟频谱分析仪。笔者则用LabWindows/CVI来开发虚拟经纱张力测试仪,用来测试织机在工作时经纱张力的变化情况。经纱张力传感器
织机在织造过程中,经纱动态张力对织造的,顺利进行有着很大的影响,张力过大,易引起断头,影响织造效率;张力不足易造成梭口不清,形成三跳疵点,使布面及纹路不够清晰。当经纱穿过轴时,经纱对两侧传力杆有压力,通过传力杆将压力传给弹性梁,使之产生应变,利用应变片将其应变转化为电阻的变化,然后再通过转化电路将电阻的变化转化为电压的变化,测量出电压值,根据传感器的标定就可求出相应的经纱张力。虚拟经纱张力测试仪系统
2.1 系统结构
虚拟经纱张力测试仪的测试系统由传感器、数据采集卡、接口总线、硬件驱动程序和开发的测试软件构成,数据采集卡采用6024E,LabWindows/CVI平台开发测试软件,在Windows98操作系统下运行。
2.2 信号采集
由于要测出经纱张力与主轴转角的关系,所以用了3个传感器。传感器1是经纱张力传
感器,把经纱张力物理信号转化为电信号;传感器2是光电脉冲传感器,用来测量主轴转角;传感器3是霍尔传感器,将霍尔电压作为测量触发信号。各个传感器输出的信号都要经过一个信号调理电路对信号进行处理(如滤波、放大等),从混合信号中取出待测的有用信号,送人数据采集卡,并要适合数据采集卡的电压范围,通过总线结构送进计算机进行处理。数据采集借助软件来控制整个DAQ系统,包括采集原始数据、分析数据等,调理后的信号经多路开关在软件设定采样率的控制下,巡回采集并放大,再经采样与保持及A/D转换器单元被量化成数字信号,成为计算机可以处理的信号,由虚拟仪器软件对测试信号进行计算、分析、显示,并储存结果。虚拟经纱张力测试仪的设计
3.1 经纱张力测试仪的面板结构
虚拟经纱张力测试仪的面板右边的七个文本框输入内容,是用户根据实际测量的需求以及与采集卡的连接通道在开始测试前设定的。测量时,打开测试仪器开关,仪器就可以工作;按下采集数据,稍等几秒,面板上就会显示出经纱张力的波形图。保存数据就是对测量的原始数据、信号处理后的数据以及需要提供给用户的数据存取;读数据是读取事先已经测量的数据,然后在仪器面板上绘出曲线,这有利于事后分析;关闭仪器则退出测试状态。
3.2 虚拟经纱张力测试仪的软件
面板上的数据采集、关闭仪器、保存数据等命令按钮通过回调函数来实现各自的功能,整个源代码中数据采集的回调函数caiji是程序的关键。虚拟经纱张力测试仪的应用
用所设计的虚拟经纱张力测试仪系统对YC—425型喷气织机测试,织机主轴每转一转,经纱张力周期变化一次,在0°附近,经纱张力最大,有利于打纬,最小张力出现在280°附近。在理论上来讲,下一个最大值出现在开口满开的位置,且一般只有两个峰值,在曲线上除了打纬点外,还有两个峰值,这说明在后梁装有张力缓解机构。最小张力也就是经纱的上机张力曲线的重复性不很好,说明织机工作状况不够稳定。结束语
虚拟仪器是今后仪器仪表、测试控制研究与发展的方向,用NI公司的LabWindows/CVI作为平台,比常用的面向对象软件编程难度大大降低,使得软件开发效率高,界面友好,功能强大,且扩展性好,对采集到的数据可用于高级分析库进行信号处理,也可以为了使所得测试曲线符合实际情况,进行拟合处理。总之,虚拟仪器有强大的功能,它强调“软件就是仪器”,用软件代替硬件,易开发、易调试,可有效节约资金。
第二篇:软件测试技术与管理方法探讨论文
1自动化测试
传统的测试已经无法满足测试的需要,自动化测试应运而生,自动化测试是指在预设条件下运行,包括正常条件和异常条件,自动化主要研究的是自动化框架测试、自动化测试脚本技术、自动化用例生成。通过资料了解,C-ATFM模型。该模型基于C语言,面向对象集成环境,采用源码嵌入有效的分析软件的代码、词法、语法、策略、指令。并且随着软件工程及软件测试的发展,自动化的机器测试发展更有前景。
2下面简介软件测试的过程
2.1模块测试
模块测试主要针对软件设计中的程序模块,通过测试技术测试程序块是否正确,模块测试的主要目的是测试程序内部的错误,根据程序设计的结构检查代码和程序是否合理,是否符合设计思路和理念,是否能够正常运行。
2.2组装测试
在模块的基础上,需要将所有模块的功能全部测试完成后组装成为系统,组装测试的目的在于,连接所有模块之后,模块之间的接口、触发器是否能正常运行,并且计算显示的数据是否正确,模块之间的功能是否互相冲突,是否达到预期的目的和结果显示,是否构成正确的、预期的数据结构。不同模块之间的误差有多少,有多少可以解决,有多少不能解决。
2.3确认测试
确认测试的目的是验证软件的功能和特性是否达到预期的愿望,是否能按照预期的组织结构、系统结构、用例分析和时序分析运作,并且进行验收测试和安装测试。
2.4系统测试
系统测试是确认软件是否与硬件互相支持,是否能满足软件使用者对软件的需求和操作简便的愿望,比如说查询模块运行完后界面中查询条件应该为查询之间输入的查询条件。系统测试保证了系统的正常运行,另外很重要的就是权限测试,系统在研发之初定义的权限信息和权限功能是否实现,是否发现软件成品与软件定义不符合或者矛盾。
3软件测试技术的地位
一个成功的测试用例在于发现了至今尚未发现的缺陷。其实,软件编程的过程也会出现一些不可避免的错误,例如:对于用户需求的错误分析和编程出现的一些语法错误,如果软件与发票费用相关更是与测试密不可分。软件不断地接近成熟和完成以及投入使用阶段,软件测试工程师必须更加谨慎的检测每一部分程序,一段程序的完成,测试工作量占有总工作量40%以上,这就给我们说明:测试是软件开发成功的重要组成部分。
第三篇:浅谈新形势下机械工程测试技术教学改革的论文
机械工程测试技术是机械类专业学生必修的一门专业技术基础课,它主要研究机械工程领域与设计相关的试验、控制和运行监测中所涉及到的物理量及其它工程量的测量和测量装置的性能,主要包括物理量和其他工程量的测量方法、测试中常用的传感器、信号的调理电路及记录、显示仪器的工作原理、测量装置基本特性的评价方法、测试信号的分析和处理等内容。它是一门综合应用相关课程的知识和内容来解决机械行业设计和生产中所面临的测试问题的课程,基本理论较多,同时所研究的内容都直接面向工程应用中的测试问题,与工程应用紧密结合。由于各种基于新的测试原理和测试方法的新型传感器不断出现,课程的教学内容也处于不断更新的变化之中。
随着高校专业改革的发展,一方面测试技术课程的学时数逐渐减少,教学时数(包括理论教学和实验教学)已缩减为32学时,而另一方面为了适应现代工程测试技术发展的需要,对于机械工程测试技术课程的教学要求却又有所提高。因此,为了在减少学时的情况下达到相同的教学效果,机械工程测试技术的教学内容和教学模式也需要与时俱进。本文依照课程教学内容服从专业培养目标、课程教学方法服务于课程教学内容、素质教育贯穿于整个教学过程的原则,以培养学生的创新意识和分析解决工程实际问题的能力为目的,针对新形势下机械工程测试技术课程的教学内容和教学模式进行了一些研究与探索。
1以面向工程应用为主的教学内容体系的改革
按照教学内容服务于专业培养目标的原则,以面向工程应用为主要目的,将课程内容进行模块化整合,在教学过程中应以应用模块的教学为重点,以适应培养具有创新意识的工程应用型人才的需要。
机械工程中一个完整的测试系统一般包括:被测对象(通常是各类信号)、传感器、调理电路、信号采集与数字信号处理及反馈控制等,与此相应的理论内容主要有:信号及其描述方法、测试装置性能的静动态分析、各种常用传感器的原理及后接电路、信号调理、信号的显示与记录、信号处理等,这些内容构成了机械工程测试技术课程的基本理论部分,涉及知识面较广,知识点多而繁琐。同时课程也包括了常见物理量如位移、力、应力和应变、振动测试、温度及流体参量中的压力和流量等常见物理量的测试方法,还包括现代计算机测试系统等内容,这一部分属于应用性内容。
针对课程内容的特点,将教学内容划分为信号及其描述模块、信号传输系统性能模块、传感器模块、信号调理模块、信号处理模块及应用实例模块这六大模块。其中前五个模块属于该课程的理论部分,它们间的关系也非常明确,即按照信号的运行路径为主线组织知识点,此部分内容中传感器模块为重点内容,主要讲授常用传感器的工作原理及后接电路,该部分内容与工程应用紧密结合,其余内容如信号传输系统性能及信号调理等与学生学习过的自动控制原理及电工学等课程有重合,在教学过程中可以做简单回顾即可。最后的应用实例模块既是前面各模块的有机结合,又是该课程的目的所在,该模块含几个典型物理量的测试实例,每个实例应有具体的系统组成及适当的理论分析。这样组织教学内容,学生在学习时能清晰地理解各个知识模块的作用及在测试系统中的地位,对于测试系统的完整组成及性能分析有比较完整的概念,另外也可以学习到各种物理量测试技术的具体工程应用方法。
2教学方法与手段的改革
2.1工程实例教学法
按照教学方法服务于教学内容的原则,由于机械工程测试技术这门课程与工程实践联系紧密,直接面向工程应用,因此在教学过程中,应将适当的工程实例引入教学,这对于提高教学效果具有重要作用。
如在讲述传感器的原理时,除讲清楚各种传感器的原理之外,还需要通过大量的工程实例来使学生认识所学习的传感器是如何应用于实际工程量的测量。例如,笔者在讲述压电传感器时,给学生举了一个压电传感器应用于悬臂梁振动测试的例子。压电加速度计由惯性质量块和受压的压电陶瓷晶体等组成,固定安装在悬臂梁上,当给悬臂梁施加一定频率的激振信号时,压电加速度计感受与悬臂梁相同频率的振动,若振动频率远小于压电加速度计的固有频率,质量块便有正比于加速度的交变力作用在压电陶瓷晶体上,由于压电效应,压电陶瓷晶体上产生正比于运动加速度的表面电荷,通过电荷放大器等后接电路,便可以得到悬臂梁振动的加速度信号,再通过双重积分器即可得到悬臂梁的振动位移信号。
例如,在讲述关于滤波器的问题时,笔者通过LABVIEW给学生演示了一个滤波器应用程序,频率为10Hz、幅值为1的正弦波与频率为60Hz、幅值为0.1混叠有幅值为0.1的白噪声的正弦信号叠加的合成信号,通过无限长冲击响应(IIR)3阶低通滤波器进行滤波处理,当滤波器的截止频率分别为20Hz和65Hz时,通过观察滤波后信号的波形图,来了解滤波器的截止频率对于滤波效果的影响。
这些工程实例的引入,一方面能够激发学生学习相关知识的兴趣,了解相关知识的工程应用,同时又能提高学生应用所学内容分析和解决工程实际问题的能力。
2.2启发式教学法
启发式教学,就是根据教学目的、内容、学生的知识水平和知识规律,运用各种教学手段,采用启发诱导办法传授知识,使学生积极主动地学习,以促进能力培养。在课堂教学中,应尽量避免填鸭式教育,尽量启发学生利用已有知识去主动分析和解决理论推导和实际问题。在具体实施中,针对部分教学内容,以学生理解并掌握该部分内容为目标,可以先列出研究思路和步骤,然后在讲解过程依步骤逐步提示学生利用现有知识去进行思考,并尝试自己独立推理,然后再由教师进行详细讲解。
例如,在讲述关于非周期信号的傅立叶变换时,先列出学生已经学习过的周期信号的复指数展开式,提示他们可以将非周期信号看成是周期为无限长的周期信号,从而引导他们借用周期信号的复指数展开式去自己推导出傅立叶变换式。在讲述了傅立叶变换的基本概念之后,提示他们结合数学中的坐标变换去理解傅立叶变换实质上是一种积分变换,将一个信号通过积分变换变成另一个信号,两个信号相互之间有联系,傅立叶变换后得到的信号自变量已经变为频率而非时间,通过分析一个信号的傅立叶变换可以得到信号的频谱密度函数,从而了解了信号包含的各频率成份及特征。通过启发式教学,学生深刻地理解了傅立叶变换的意义,同时也加深了对信号时域分析和频域分析的理解。
实践证明,学生对于启发式教学方法比较感兴趣,他们也乐于在教师的启发下通过自己的思考去一步步解决实际问题,而非被动的接受教师的讲解,而经过对具体知识求解过程的锻炼,他们的自学能力及分析和解决实际问题的能力都得到较大程度的提高。
2.3将MATLAB及LabVIEW软件应用于课堂教学
机械工程测试技术作为一门与工程应用联系紧密的课程,其内容随着现代计算机技术的发展而不断完善,尤其是MATLAB软件及虚拟仪器技术等已成为测试系统分析与设计的重要工具。从工程实际需要出发,笔者在课堂教学中,将工程中广泛应用的MATLAB软件及虚拟仪器技术引入课堂教学,引导学生去了解这些软件在测试系统分析与设计中的作用。
例如,在讲述测试装置的静动态特性时,利用MATLAB的simulink仿真工具箱,建立一阶系统和二阶系统的仿真框图模型,给系统以不同的输入如单位阶跃输入、单位脉冲输入等,再通过改变一阶系统的时间常数及二阶系统的阻尼率和固有频率等参数,来模拟测试装置在不同输入下的响应,这些内容编写成一个个仿真子程序,在授课的时候直接调用子程序来运行。
讲述各种信号时,可以利用LABVIEW的信号仿真函数,产生不同频率和幅值的正弦波信号、方波信号及三角波信号等,同时利用频谱测量函数显示相应信号的幅值谱和相位谱。在讲述滤波器时,通过合并低频信号和高频信号或噪声信号组成混叠信号,并利用滤波器函数来编制应用程序来仿真高通滤波器、低通滤波器及带通滤波器等不同种类滤波器的滤波性能,从而使学生可以直观了解各种不同种类滤波器的性能。所有演示内容都编写成一个个应用实例,在课堂教学时直接调用。
通过将MATLAB和LabVIEW软件引入课堂教学,即避免了书本知识过于枯燥、学生易失去学习兴趣的问题,又能通过实例演示加深学生对于所学内容的直观印象,同时引导学生自己学习相应的软件,自己动手去处理实际问题,既提高了课堂教学效果,也培养了学生的应用相关软件去分析解决工程实际问题的能力。
2.4多媒体教学
由于课程教学内容较多,同时又包含有大量工程应用内容,而教学课时数又相对较少,因此,对于大部分内容的讲解宜采用多媒体教学,这有利于发挥多媒体教学信息量大,且可以对大量实际工程应用进行动画显示等优点。例如,在讲述测试系统的组成时,为了加深学生对于测试系统各个组成环节的印象,笔者举了旋转轴偏心量监测系统的例子。位移传感器获取轴承在X、Y方向的位移信号,通过调理电路进行放大和滤波,再经过信号数据采集送入计算机,进行处理和显示。监测系统采用动画显示的方式,既利于学生形象地通过测试信号的传递及信号的变换与处理过程,也利于加深其对测试系统整体组成的理解,同时也可提高学生实际应用能力。
2.5小论文式大作业
在教学过程中,针对主要内容布置一些大作业,选题范围主要是一些相关的工程实际问题,也可以让学生自行选题,要求他们以小组的形式,按照测试系统的组成,自己选择相应的硬件去搭建能够投入工程实际应用的测试系统,并分析所组成的测试系统的性能,最后按照一般科技论文的格式完成一篇简单的小论文。例如,在课程学习基本完成之后,向部分学生布置了一道机床主轴转速测试系统的大作业,让学生自己选用合适的传感器,并选用相应的测试系统硬件,自己搭建一个转速测试系统,并应用LANVIEW软件编制信号采集及信号处理程序。实践表明,在教学中鼓励、指导学生进行小论文式的大作业的训练,可以更好地发挥其学习的主动性和创造性,也使得学生设计测试系统的能力和分析解决工程实际问题的能力得以提高,是一种非常有效的研究型教学方法。
3更新实验内容,实施开放式实验教学
实验教学内容既要服务于课程教学目标,同时也要紧跟工程实践要求,着重培养学生分析和解决工程实际问题的能力。为此,我们对实验内容进行适当改进,在保留了一些验证性的传统实验内容同时,也积极开设了一些设计性和创新性的实验项目。更新后的实验内容分为二个部分:第一部分为基本实验,主要包括电桥性能综合实验、霍尔测速实验及压电式加速度传感器测量振动实验,第二部分为综合创新性实验(机床主轴振动测试、液压系统流量测试及桁架应力综合测试)。基本实验以课程基本知识为载体,以基本知识和动手能力训练为重点,为必开实验。综合创新性的实验,以培养学生的设计能力、分析和解决工程实际问题的能力为目的,学生可以选做自己感兴趣的实验项目。
实验教学实施开放式、自主式教学,学生可以在实验室开放期间任何时间来做实验,由学生根据实验的要求自行选用相应传感器及相关硬件和软件搭建测试系统,并独立完成整个实验,从而使自己动手能力和实践能力得到加强。教师在实验结束后,对实验结果进行总结,指出实验过程中存在的一些不足,同学生进行讨论。这样,可以帮助学生发现问题,使他们掌握处理问题的技巧,从而更好地激发和培养他们的探索精神和创新能力。
4结论
机械工程测试技术教学的主要目的就是让学生更好地掌握测试系统的理论和测试系统性能分析的方法,并学会独立选用相应的硬件和软件去搭建测试系统去分析和解决工程实际中的工程量测试问题。近几年的教学实践表明:本文在教学内容、教学方法与手段、实验教学等方面进行的研究与探索,在提高教学效果方面显示了较好的作用。模块化且面向工程应用为主的教学内容体系更适合具有创新意识的应用型人才的培养需要,各种教学方法与手段的采用能够提高学生的学习兴趣、增强学生学习主动性和分析解决工程实际问题的能力,更新的实验教学内容和开放式实验教学能够加强学生动手能力和实践能力的培养。
第四篇:现代测试技术
《现代测试技术》
课程考核论文
学院:xxxxxxxxxxxxxxxxx
姓名:XXX班级:xxxx 学号:xxxxxxxxxxxxxx
摘要:CCD,英文全称:Charge-coupled Device,中文全称:电荷耦合元件。可以称为CCD图像传感器。CCD是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微小光敏物质称作像素(Pixel)。一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。CCD上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。关键字:电信号、图像信号、相机、摄像机。
该传感器的工作原理
构成CCD的基本单元是MOS(金属-氧化物-半导体)结构。CCD的基本功能是电荷的存储和电荷的转移。工作时,需要在金属栅极上加一定的偏压,形成势阱以容纳电荷,电荷的多少与光强成线性关系。电荷读出时,在一定相位关系的移位脉冲作用下,从一个位置移动到下一个位置,直到移出CCD,经过电荷ˉ电压变换,转换为模拟信号。由于在CCD中每个像元的势阱所容纳电荷的能力是有一定限制的,所以如果光照太强,一旦电荷填满势阱,电子将产生“溢出”现象。另外,在电荷读出时,由于它是从一个位置到下一个位置的电荷转移过程,所以存在电荷的转移效率和转移损失问题
电荷耦合摄像器件(CCD)的突出特点是以电荷为信号载体。它的功能是接受存储模拟电荷信号,并将它逐级转移(并存储)输送到输出端。其基本工作过程主要是信号电荷的产生、存储、转移和检测,因此实际上相当于一个模拟移位存储器。主要有信息处理用延迟线、存储器和光电摄像器件三个方向应用
CCD有表面(沟道)CCD(SCCD)和埋沟CCD(BCCD)两种基本类型。作为图像传感器用摄像器件还另外具有光敏元阵列和转移栅,以进行光电转移,并将光电转换的信号电荷转移到CCD转移电极下。
该传感器的的测量的物理量及范围
线型CCD即CCD的感光元件排列在一条直线上。它成像方式是CCD在光学系统成像所在的焦平面上垂直扫过,地到一幅完整的影像。传统的扫描仪都使用这种类型的CCD,因此我们又称它为扫描型CCD。线性CCD的这种工作方式决定了
2它得到一幅完整的影像需要很长的时间,即嚗光时间很长。自然它就无法用于拍摄动态的物体,另外在嚗光过程中需要一致的光线环境,它也不支持闪光拍摄。虽然有如此重大的缺陷,但线性CCD的感光元件可以做到很高的线密度,这样用线性CCD可以得到极高像素数量的影像,因此它仍然被用于数码相机,拍摄需要超高分辨率的静物影像。典型的例子是Agfa的StudioCam相机,它用三条线性CCD分别感应红蓝绿三色光,每条3648像素,色彩灰度为12位,可得到1640万像素分辨率高达4500*3648的图象,最终的影像容量高达50-100MB。其预扫描时间需要12秒,每一线依精度需要1/15-1/200秒。
面型CCD 又称全幅式CCD,阵列型CCD。面型CCD的嚗光方式有以下三种。1.单CCD芯片三次嚗光:即通过三色滤镜轮盘分别将红蓝绿三色光投射在CCD上,三次采集后合成得到影像。这种方式得到的影像质量很高,但三次嚗光,不能用于拍摄动态影像。
2.三CCD一次嚗光:三个CCD芯片,分别感应红绿蓝三色光(或其中两片感应绿色光,另一片感应红蓝光),自然光通过分光棱镜系统将三色光分别投影在CCD上,一次嚗光得到完整影像。这种方式得到的影像质量和单芯片三次嚗光一样,而一次嚗光可拍摄动态影像.缺点是三CCD的成本很高,分光棱镜的制作技术难度也很大。
3.单CCD芯片一次嚗光:CCD上组合排列感应三种色光的像素,一次嚗光后得到影像,由于人眼对绿色最为敏感,通常CCD上的感绿色像素最多。这种方式的影像质量最低,但受成本的限制和对动态影像的拍摄要求,市面上主流产品大都采用单CCD芯片一次嚗光。
CCD-CCD原理
说到CCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。感光器件的面积大小,CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。
CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面
该传感器的对测量某一物理量的具体应用
CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。CCD一般可分为线阵CCD和面阵CCD两大类。线阵CCD将CCD内部电极分成数组,并施加同样的时钟脉冲,以满足不同场合的应用。面阵CCD较线阵CCD结构更为复杂,由很多光敏区排列成一个方阵并以一定的形式连接成一个器件,以获取大量信息,完成复杂图像的处理。
一般考察CCD质量性能,可以对其不同参数进行考虑。包括CCD的光谱灵敏度、暗电流与噪声、转移效率和转移损失率、时钟频率的上、下限、动态范围、非均匀性、非线性度、时间常数、CCD芯片像素缺陷等。
CCD图像传感器一般体积较小,功耗也较低,因此适应于各类电子产品而不会占用太大空间。同时CCD灵敏度高、噪声低、动态范围大、响应速度快、像素集成度高、尺寸精确等,都让它的应用得到普及。
含格状排列像素的CCD应用于数码相机、光学扫瞄仪与摄影机的感光元件。经冷冻的CCD亦广泛应用于天文摄影与各种夜视装置,而各大型天文台亦不断研发高像数CCD以拍摄极高解像之天体照片。CCD能使固定式的望远镜发挥有如带追踪望远镜的功能,让CCD上电荷读取和移动的方向与天体运行方向一致,速度也同步,以CCD导星不仅能使望远镜有效纠正追踪误差,还能使望远镜记录到比原来更大的视场。一般的CCD大多能感应红外线,所以衍生出红外线影像、夜视装置、零照度(或趋近零照度)摄影机/照相机等
该传感器的技术指标及参考价格、可能的生产厂家 1.光谱灵敏度
CCD的光谱灵敏度取决于量子效率、波长、积分时间等参数。量子效率表征CCD芯片对不同波长光信号的光电转换本领。不同工艺制成的CCD芯片,其量子效率不同。灵敏度还与光照方式有关,背照CCD的量子效率高,光谱响应曲线无起伏,正照CCD由于反射和吸收损失,光谱响应曲线上存在若干个峰和谷。
2.CCD的暗电流与噪声
CCD暗电流是内部热激励载流子造成的。CCD在低帧频工作时,可以几秒或几千秒的累积(曝光)时间来采集低亮度图像,如果曝光时间较长,暗电流会在
4光电子形成之前将势阱填满热电子。由于晶格点阵的缺陷,不同像素的暗电流可能差别很大。在曝光时间较长的图像上,会产生一个星空状的固定噪声图案。这种效应是因为少数像素具有反常的较大暗电流,一般可在记录后从图像中减去,除非暗电流已使势阱中的电子达到饱和。
晶格点阵的缺陷产生不能收集光电子的死像素。由于电荷在移出芯片的途中要穿过像素,一个死像素就会导致一整列中的全部或部分像素无效;过渡曝光会使过剩的光电子蔓延到相邻像素,导致图像扩散性模糊。
3.转移效率和转移损失率
电荷包从一个势阱向另一个势阱转移时,需要一个过程。像素中的电荷在离开芯片之前要在势阱间移动上千次或更多,这要求电荷转移效率极其高,否则光电子的有效数目会在读出过程中损失严重。
引起电荷转移不完全的主要原因是表面态对电子的俘获,转移损失造成信号退化。采用“胖零”技术可减少这种损耗。
4.时钟频率的上、下限
下限取决于非平衡载流子的平均寿命,上限取决于电荷包转移的损失率,即电荷包的转移要有足够的时间。
5.动态范围
表征同一幅图像中最强但未饱和点与最弱点强度的比值。数字图像一般用DN表示。
6.非均匀性
表征CCD芯片全部像素对同一波长、同一强度信号响应能力的不一致性。
7.非线性度
表征CCD芯片对于同一波长的输入信号,其输出信号强度与输入信号强度比例变化的不一致性。
8.时间常数
表征探测器响应速度,也表示探测器响应的调制辐射能力。时间常数与光导和光伏探测器中的自由载流子寿命有关。
9.CCD芯片像素缺陷
a.像素缺陷:对于在50%线性范围的照明,若像素响应与其相邻像素偏差超过30%,则为像素缺陷。
b.簇缺陷:在3*3像素的范围内,缺陷数超过5个像素。
c.列缺陷:在1*12的范围内,列的缺陷超过8个像素。
d.行缺陷:在一组水平像素内,行的缺陷超过8个像素
价格:600~800元之间
生产厂家:索尼、尼康
优缺点
优点:CCD制造工艺较复杂,成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确一般是颜色好,缺点:费电,曝光时间长的时候温升大,噪点相对严重,最重要的是大规格的成品率低,成本高
针对缺点有何改进措施
1)围绕空间CCD相机的设计技术要求,本文在相机的结构设计过程中完成了以下工作:(a)通过对星载空间相机常用材料的性能分析比较,合理地完成部件结构的材料选择,为达到轻量化的设计要求奠定基础;(b)应用有限元分析方法,对相机关键部件——主镜筒和支架进行了优化设计;2)在该相机精确CAD模型的基础上,对CCD相机进行了简化造型。利用简化后的模型建立了整机的有限元模型,完成了该相机结构动态特性分析计算
参考文献
[1].曾光奇.工程测试技术基础.武汉:华中科技大学出版社.2002.36
第五篇:测试技术心得体会
燕 山 大 学
测试技术三级项目
学 院: 机械工程学院 年级专业: 学生姓名: 学 号: 指导教师: 李明
燕山大学三级项目
测试技术心得体会
一、新颖的教学模式—课堂小组教学
本学期我们学了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、变换、信号分析和特征识别、诊断等。
刚开始接触这门课程的时候,由于它涉及了很多理论知识以及一些我以前从未接触过的领域,我对这门课程并没有太大的兴趣。后来任课老师根据班级的情况,“因地制宜”地给我们分配了学习小组。每个小组有5—6个成员,课上进行小组讨论,课下互帮互助,共同学习。
我觉得课堂小组教学在课堂学习方面给予了我很大的帮助和动力,课上的时候,老师提问,小组进行讨论,不仅能够带动课堂的学习气氛,也使我们在一个活跃轻松的环境下掌握了知识,除此之外,还加深了同学之间的感情,这不仅促使我们在学习上共同进步,也让我们在生活上成了很好的朋友。
课堂小组教学的模式也对我们的学习起到了一定的监督作用,在课堂出勤记录、作业完成情况方面有一定的促进作用。除此之外,老师会在每节课开始之前,给每个小组发一张白纸,让每个小组将一节课的重要知识点及小组的讨论内容记录在纸上。这使我们及时有效地掌握了每节课的重要知识,也养成了做笔记的好习惯。
课堂学习小组打破了传统的教学模式,使我们能够在一个轻松活跃
燕山大学三级项目 的课堂环境下高效的学习。
二、实验辅助教学
实验是课堂知识的实践,巩固加深课堂知识方面有着至关重要的作用。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题,也使我感到理论知识的重要性。但是我并没有就此放弃,在实验中发现问题,自己看书,独立思考,最终解决问题,从而也就加深我对课本理论知识的理解。
我们做了金属箔式应变片:单臂、半桥、全桥比较, 回转机构振动测量及谱分析, 悬臂梁一阶固有频率及阻尼系数测试三个实验
实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法;了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟仪器的使用方法等等。实验过程中培养了我在实践中研究问题,分析问题和解决问题的能力以及培养了良好的工程素质和科学道德,例如团队精神、交流能力、独立思考、测试前沿信息的捕获能力等;提高了自己动手能力,培养理论联系实际的作风,增强创新意识。
在实验的过程中我们要培养自己的独立分析问题和解决问题的能力。在这学期的实验中,在收获知识的同时,还收获了阅历,收获了成熟。在此过程中,我们通过查找大量资料,请教老师,以及不懈的努力,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。
三、测试技术应用实例
燕山大学三级项目
测试技术与科学研究、工程实践密切相关。在各种现代装备系统的设计和制造工作中,测量工作已占首位,它是保证现代工程装备正常工作的重要手段,是其先进性能及实用水平的重要标志。科学技术与生产水平的高度发达,要求以更先进的测试技术与仪器为基础。现如今测试技术是试验技术的主要组成部分,提高试验技术水平首先要改善测试技术。除了先进的实验设备之外,测试手段及测试技术也是试验研究中的决定性因素之一。在在我们身边有许多测试技术应用的实例。
1、超声波在混凝土结构无损检测中的应用
超声法测强采用单一声速参数推定混凝土强度。当影响因素控制不严时,精度不如多因素综合法,但在某些无法测量回弹值及其他参数的结构或构件(钢管混凝土等)中,超声法仍有其特殊的适应性。
声波的指向性比较好,其频率越高,指向性越好。超声波传播能量大,对各种材料的穿透力较强。超声波的声速、衰减、阻抗和散射等特性,为超声波的应用提供了丰富的信息。超声检测具有适应性强、检测灵敏度高、对人体无害、设备轻巧、成本低廉,可即时得到探伤结果,适合在实验室及野外等各种环境下工作,并能对正在运行的装置和设备实行在线检查。超声法检测过程无损于材料、结构的组织和使用性能;直接在构筑物上测试验并推定其实际的强度;重复或复核检测方便,重复性良好[1];超声法具有检测混凝土质地均匀性的功能,有利于测强测缺的结合,保证检测混凝土强度建立在无缺陷、均匀的基础上合理地评定混凝土的强度。
应用超声来进行无损检测也有其相应的缺点。对于平面状的缺陷,例如裂纹,只要波束与裂纹平面垂直,就可以获得很高的缺陷回波信号。但是对于球面状的缺陷,例如空洞,假如空洞不是很大或分布不是较密集的话,就难以得到足够的回波信号或是其时间变化不明显;另外,对于各向非同性的材料,例如混凝土,相应会存在材料的离析,使得材料
燕山大学三级项目
密度不均匀,这使得人们把离析误判为是内部的空洞而导致决策上的失误;对于表面缺陷的检测,超声波法的灵敏度要低得多,但超声无损检测方法可以较为精确的确定混凝土表面的裂缝深度。
房屋和桥梁等建筑物的质量无论是对人民的生命财产,还是对国民经济来说,都是十分重要的。对建筑物的所有要求中,安全性是第一位的。近年来,一系列灾难性的桥梁倒塌事故主要也是由于在设计施工中出了问题,加上对成桥的维修保养不力,出现了诸如混凝土内部空洞、离析,钢筋锈蚀,预应力钢筋失效,梁体受力部位开裂等病害,无损检测是防止这类恶性事件发生的重要手段。另一方面,对现有旧建筑物的维修和保养要耗费大量资金。无损检测技术的应用可使维修保养大大减少盲目性,从而可大大节约这项开支。土木工程无损检测技术有助于评估新旧建筑物的稳定性和整体性,能够对新旧建筑物整体或部分作质量状态监视,能够用来估计建筑材料和结构的性质和性能。
2、元素成分分析在现实中的应用
物质都是由各种元素组成的,要知道一个样品是由哪些元素组成,最重要的分析手段就是原子光谱分析。它是利用原子(包括离子)所发射的辐射或原子(或与射的相互作用而进行样品分析的一类测试技原子荧光光谱法(AFS)和X射线荧光光谱法(XFS)。前三种方法涉及的是原子(或离子)外层电子的能级跃迁过程中的辐射发射、吸收和荧光的产生。火焰发光谱法、原子吸收光谱法和原子荧光光谱法最简单的工作原理示意图。三种原子光谱法的关键都是使试样产生原子(游离态气体原子或离子)及激光等,其中火焰是最简单和广泛使用的原子蒸汽源。
在原子发射光谱法,试样的气态原子蒸汽进一步受热激发,使原子(或离子)外层电子由最低能态(称基态)激发到较高能态(称激发态),当其返回低能态或基态时,便发射出在紫外和可见光区域内的特征辐射,这就是发射光谱。根据原子结构理论,由于原子的电子能级高低和分布是
燕山大学三级项目
每一种元素所特有的,因此元素都有各自的特征光谱.而谱线的强度与其元素的含量成正比。在原子吸收光谱法,辐射源辐射出待测元素的特征辐射通过样品的原子蒸汽时,被蒸气中待测元素的的地方基态原子所吸收。由辐射强度的减弱程度即可以求出待测元素的含量。在原子荧光光谱法,当样品的原子蒸汽受一次辐射源照射,待测元素基态原子吸收辐射后跃迁到较高能态(激发态),激发态原子再以辐射跃迁形式过渡到基态。由此而获 得的辐射光谱称为原子荣光光谱。荧光光谱的观测方向与一次辐射方法直接成90°角。通过测量待测元素的原子蒸汽可以非常灵敏地测量元素的含量。三种原子光谱分析仪除上述各自的特点外,度的检测和记录是三种仪器所共同的。X射线荧光光谱法涉及的是原子内层电子能级的跃迁。当用X射线轰击试样中的原子时,一个电子从原子的内层(例如K层)被袭击,此时较高能级电子层(例如L层)的一个电子会立即填补空位,同时多余的能量被释放出来。如果这种能量以辐射形式释放,则产生次级X射线,也称为X荧光,各种元素所发射的X荧光的波长决定于它们的原子序数,原子序数越高,X荧光的波长越短。所以根据X射线荧光的波长可以对元素进行定性分析.同样.根据谱线的强度可以定量分析。
3、分子结构与含量分析的应用
对分子的结构分析和定量测定是分析化学中最繁重的任务。随着现代科学的发展,特别是生命科学和环境科学的发展,人们不仅要知道一个生物大分子的一级结构,还要知道它的二级、三级甚至更高级的构造。从量的角度来说,现代分析化学早已从常量、微量分析发展到痕、超痕量分析,甚至发展到单个分子的测定。它是研究分子结构和定量分析中最常:用的方法,包括可见收;分子荧光等方法。分子对辐射能吸收比单个原子对辐射能的吸收要复杂得多。因为对于分子的能级跃迁而言,除了分子外层价电子跃迁所引起的电子能态的变化外,还有分子中原子
燕山大学三级项目
或原子团在它们的平衡位置上作相对振动产生的振动能态的变化以及整个分子旋转产生的转动能态的变化。通常在分子每个电子能态下,都有若干个可能的振动能态,而在每个振动能态下又有若干个转动能态。换言之,分子的电子能态的变化所需酌能量比振动能态的变化大,振动能态的变化所需的能量比转动能的大。分子的外层电子跃迁所需的能量通常对应于紫外、可见辐射,而振动。
紫外和可见吸收光谱法。紫外和可见吸收光谱法研究被测物质对可见和紫外区域辐射吸收。当分子吸收了此区域内的辐射,分子的价电子发生跃迁,所以也称为电子不廉。因为分子电子能级改变的同时也伴随着振动能级和转动能级的变化,因此,分子的电子光谱。可见和紫外吸收光谱是应用范围十分广泛的分析方法。在现代分析化学中差不多有60%左右的分析任务是由该方法完成的。该方法利用化合物的吸收过程波长的变化可以对许多的有机化合物,特别是具有共轭体系的有机化合物进行定性分析,而利用被测物对某一波长的辐射的吸收程度(称吸光度)进行定量分析。
红外吸收光谱法。利用物质分子受红外辐射照射后,分子吸收部分红外辐射使分子的振动能级和转动能级跃迁而产生的吸收光谱。红外吸收光谱与分子结构有着密切的关系。因为分子结构的微小变化,都会引起分子振动能级的改变,所以,除了光学异构体外,凡是具有结构不同的两个化合物其红外吸收光谱必然不同。通常,红外吸收带的波长和吸收谱带的强度反映了分子结构的特性,可以用于鉴定未知物的结构或确定某些基团。同时,吸收谱带的吸收强度与分子组成或其化学基团的含量。
分子荧光光谱法。利用许多化合物分子吸收紫外可见区域的辐射后,会再发射出波长相同或不同的特征辐射,即分子荧光,通过测量其荧光强度,对痕量化合物进行定性定量分析。分子荧光光谱法的最大特
燕山大学三级项目
点是具有很高的灵敏度和非常好的选择性,比可见吸收光谱的灵敏度高2~3个数量级,因此,它在生命科学中有着重要的应用。