第一篇:高等数学自我检查试题集上册
高等数学自我检查试题集
第一部分 高等数学上册
自我检查试题一
一、填空(每小题3分,满分15分)
1. 设f(x)的定义域为[1,5),则f(1x)的定义域为_________________。2. limarccos(x2x1x)_____________。
__。3. f(3)a,则limf(32t)f(3)
t__________
t0
c都是单位向量,b、__4.(不做)已知a、且abc0,则abbcac_
1。
5. 设f(0)0,f(1)a,则f(x)f(x)dx__________
0_。
二、单项选择(每小题3分,满分15分)
1.当x0时,变量1cosx是x的()无穷小。
(A)等价(B)同阶但不等价(C)高阶(D)低阶
2.设f(x)二阶可导,且limf(x)
ln(1xsinx)3,则f(0)是f(x)的()。2
x0
(A)极大值(B)极小值(C)驻点(D)拐点
13.设f(x)x3
a,0xsinttdt,x0x03,当a取()时,函数f(x)是连续函数。
(A)2(B)1(C)-1(D)0
4.已知曲线yf(x)在x1处有水平切线,且f(1)2,则曲线yf(x)在(1,f(1))处的曲率k为()。
(A)0(B)1(C)2(D)2
5.下列广义积分发散的是()。
(A)dx1
sinx1(B)1dxx2(C)e
0x2dx(D)2dxxln2x
三、计算题(每小题7分,满分49分)
1. 求lim(x01x1
ex1)。
2y2. 设yy(x)是由xyesiny所确定的隐函数,求dy
dx。
3. 设F(x)xxf(t)dt,其中f(x)在[1,)内具有一阶连续导数,求F(x)。
4. 求不定积分
sinxcosx1sin
x
dx。
12x
45. 已知f(x)ln(1x),且f(1),计算f(x)dx。
6.(不做)求过点(1,2,3)垂直于直线
线方程。
7. 设f(x)
y5
z6
且平行于平面7x8y9z100的直
x
e
t
costdt,试求f(x)在[0,]上的最大值和最小值。
四、应用题(每小题8分,满分16分)1. 设平面图形D由曲线yx,yx所围成,(1)求D的面积;
(2)求D绕x轴旋转一周所生成的旋转体的体积Vx。
2. 将长为a的铁丝分成两段,一段围成正方形,一段围成圆形。问这两段铁丝各长为多少时,正方形与圆形的面积之和为最小。
五、证明题(5分)
设f(x)在[0,1]上连续,且f(x)1,证明:2x
x
f(t)dt1在[0,1]上有且仅有一根。
自我检查试题二
一、填空(每小题3分,满分15分)
1. 若f(x)的定义域为(0,1),则f(e)的定义域为____________________。2. 设f(a)1,则lim
x
f(a3h)f(a2h)
h
_____________。
h0
3. 曲线y(x1)1的拐点是______________。4. 曲线yx4x3在点(2,1)处的曲率k_________
y。
5.(不做)位于yOz平面上的曲线ze(y0)绕z轴旋转一周所生成的旋转曲面方程是____________________。
二、单项选择(每小题3分,满分15分)1.函数f(x)xx在x0处()。
(A)连续且可导(B)连续但不可导(C)可导但不连续(D)不连续也不可导 2.设f(0)0,且lim
f(x)1cosx
3,则f(x)在x0处()。
x0
(A)不可导(B)可导,且f(0)0(C)取极大(D)取极小
3.设f(x)f(x)对一切x恒成立,且当x(0,)时,有f(x)0,f(x)0,则f(x)在(,0)内一定有()。
(A)f(x)0,f(x)0(B)f(x)0,f(x)0(C)f(x)0,f(x)0(D)f(x)0,f(x)0 4.双纽线(xy)xy所围成的区域面积可用定积分表示为()。
40
0
(A)2cos2d(B)44cos2d
(C)2
cos2d(D)
x52
y32
z
4340
2
(cos2)d
5.(不做)设直线L为:,平面为:x2y5z110,则直线L
与平面的相互关系是()。
(A)L∥π,但L不在π上(B)L在π上(C)L⊥π(D)L与π斜交
三、计算题(每小题7分,满分49分)1. 求极限lim
x0
xsinxxtanx。
2. 设f(x)x(x1)(x2)(x2004),求f(0)f(2004)。
xln(1t2)dydy,3. 设,求。2dxdxytarctant
4. 求不定积分xlnxdx。
5. 求定积分
x1
x
dx。
x4
y33
z22
6. 求过点(1,2,3)的直线L,使L与z轴相交且与已知直线l1:
垂直。
7. 曲线yx与yx所围图形绕y轴旋转,求旋转体的体积。
四、应用题(每小题8分,满分16分)
1. 求曲线ylnx在区间(2,6)内的一条切线,使得该切线与直线x2,x6和曲线ylnx所围成的图形面积最小。
2. 一正圆锥的半径以5cm/s的速率增加,而它的高以24cm/s的速率减少,求该圆锥在半径
为30cm,高为70cm时的体积变化率。
五、证明题(5分)
设在[a,b]上,f(x)0且可导,证明存在(a,b),设
f(b)f(a)
f()f()
ln(ba)。
自我检查试题三
一、填空(每小题3分,满分18分)1. 函数yln(x3
5x)的定义域为__________________。
2. 若limxn2,则lim
n
n
(xnxn1)__________
_____。
3. 如果连续函数在区间的内部只有一个极大值点,没有极小值点,那么函数的最______值与
极______值相同。4.
ddx(log
a
x)
_____________。______
5.
1cosxxsinx
2-2
dx__________
x。
6. (xx)e
dx_______________。
二、单项选择(每小题2分,满分12分)1.(不做)下列陈述中错误的是()。(A)xy2z1图形是椭球面
(B)(x1)(y1)4的图形是母线平行于z轴的圆柱面(C)(xy)(yz)0的图形是直线(D)在空间直角坐标系中,xy
0的图形是原点
2.下列各极限中极限值为e的是()。(A)lim(1x)
x0
11x
(B)lim((1
x
1x)
x
(C)lim(1x)
x0
x
(D)lim(1x)
x0
x
1
sinx,3.设函数f(x)x
a,x0x0
在(,)处处连续,则a()。
(A)0(B)1(C)1(D)
24.在区间[1,1]上满足拉格朗日中值定理条件的函数是()。
(A)yln(x1)(B)y
sinxx
(C)yx
1(D)yx
5.设在区间I上g(x)G(x),则在I上g(x)dx()。
(A)G(x)(B)G(Cx)(C)G(x)C(D)CG(x)
sinx
6.设f(x)是连续函数,且
f(t)dtx,x(0,2),则f(22)()。
(A)1(B)
(C)2(D)22
三、计算题(每小题7分,满分49分)1. 求lim
e
x
e
x
x0
xsinxxx
1。
1lnx
2. 求lim(x1
)。
3. 设x1t,ytt,求
x
dydx。
4. 求曲线yxe在其拐点处的曲率。
xex,
5. 设函数f(x)1,1cosx
x01x0
z1,计算f(x2)dx。
6. 求过两平行直线7. 设f(x)
x33
y22
和
x33
y42
z11的平面方程。
x
11t
dt,求f(x)dx。
四、应用题(每小题8分,满分16分)
1. 一位飞机观察员观察到一架飞机正在1143m的高度向他飞来,仰角为30,并以3/s的速
度增加,问飞机的地面速度是多少?
2. 设图形由yx3x3与y1围成,求面积S,并求其绕y轴旋转一周所形成的封闭立体的体积。
五、证明题(5分)
设f(x)在[0,1]上连续,且f(0)0,使得f(x)dxf()。
f(x)dx0。证明在(0,1)内至少存在一点,
第二篇:微积分(下)自我检查试题集
微积分自我检查试题集
第二部分微积分下册
自我检查试题一
一、填空(每小题3分,满分15分)
1. 设f(xy,xy)2x(x2y2),则f(x,y)________________。
2. 曲面ezzxy30在点(2,1,0)处的切平面方程为______________________。
3. 微分方程yexy满足y(0)1的特解为_________________。
4. 设f(x)是以2为周期的函数,且f(x)x1,x0,则它的傅立叶级数在点12x,0x
x处收敛于________________。
5. 函数f(x)lnx在x1处的泰勒级数为___________________________________。
二、单项选择(每小题3分,满分15分)
x2y22,xy041.设函数f(x,y)xy2,在点(0,0)处为()。
220,xy0
(A)f(x,y)连续,但偏导数不存在(B)f(x,y)的偏导数存在但不连续
(C)f(x,y)连续且偏导数存在(D)f(x,y)不连续且偏导数不存在2.设u2xyz,则u在点(2,1,1)处的方向导数的最大值为()。
(A)26(B)4(C){2,4,2}(D){2,4,2}
3.曲线积分2L(x3xy2)dx(y3x2yx)dy,其中L是从O(0,0)经A(1,1),B(2,0)到O(0,0)的闭折线,则其值是()。
(A)2(B)1(C)0(D)1
4.设f(x,y)为连续函数,则I
(A)
(C)e1dxlnx0f(x,y)dy 交换积分次序后为()。e1e0dy1elnx0ef(x,y)dx(B)ydyf(x,y)dx 1e
0elnx0dyf(x,y)dx(D)dyyf(x,y)dx 1
5.设是平面xyz4被圆柱面x2y21截出的有限部分,则曲面积分()。
(A)0(B)
ydS的值是
(C)4(D)
3三、计算题(每小题7分,满分42分)
y2z
1. 设zsin(x),求。
2xy
2. 计算
dyexdx。
y
23. 设D:xyx,y0,求
y
D
x2y2dxdy。
(1)n1
4. 求幂级数(x1)n1的收敛区间及和函数。
n1n1
5. 设是x2y21,z0,z3所围立体的表面,取外侧,求曲面积分
x(yz)dydz(zx)dzdx(xy)dxdy。
6. 求微分方程yyy满足初始条件y
x0
0,y
x0
2的特解。
ex
四、(9分)设(1)e,且曲线积分[(x)]ydxx(x)dy 在右半平面x0内与积分
xL
路径L无关。
(1)求未知函数(x);
(2)计算从点(1,0)到(2,1)的曲线积分的值。
五、(11分)在曲面:之积为最大。
六、(8分)判别级数
xyz1 上,求该曲面的切平面,使其在三坐标轴上的截距
n2
(1)nn(1)
n的敛散性。
自我检查试题二
一、填空(每小题3分,满分15分)
1. 函数u(z2y)x 在点M0(1,0,e)处的梯度为____________________。2. 已知方程x2y2z22ez确定zf(x,y),则dz________________。
3. 一曲线构件L:x2y21上任一点M(x,y)处的线密度(x,y)3,则L的质量为
________________。
(3)n12n4. 幂级数x的收敛半径为________________。
nn1
5. 方程yy1的通解为___________________。
二、单项选择(每小题3分,满分15分)1.lim
x1y1
sin(xy)xy
().(A)0(B)1(C)2(D) 2.
。f(x,y)d=()
x
2x2y21
(A)4dx
0
dy
0x2
f(x,y)dy(B)dxf(x,y)dy
1
1
(C)
1
1x2
f(x,y)dx(D)dy
1y2
1y2
f(x,y)dx
3.设f(x)
x1,2x0,且以4为周期,则f(x)的傅立叶级数在x5处()。
x1,0x2
(A)收敛于3(B)收敛于2(C)收敛于1(D)收敛于0
4.若y1(x),y2(x),y3(x)是二阶非齐次线性方程yp(x)yq(x)yf(x)的三个线性无关的特解,C1,C2为任意常数,则该方程的通解是()。
(A)C1y1C2y2y3(B)C1(y1y2)C2(y1y3)(B)C1(y1y2)C2(y1y3)y3(D)C1(y1y2)C2(y1y3)y3 5.设k为正常数,则级数
(1)nknn
n
是()。
(A)发散(B)绝对收敛(C)条件收敛(D)敛散性与k有关
三、计算题(每小题7分,满分49分)
yx2z
1. 已知zxf()y(),其中f,有二阶连续导数,求。
xyxy
2. 设f((x,y,z)x2yz3,其中z是由ezxyze1所确定的x,y的函数,求fx(1,1,1)。3. 设D:xy1,yx,x2所围,求
x2
()dxdy。yD
4. 设:x2y21,0z1位于第一卦限的部分,求
xydv。
5. 计算曲线积分
xyx
L
ds,其中L为ylnx上点(1,0)和(e,1)间的弧段。
6. 已知 4x3ydxxf(x)dy 在右半平面内是某个二元函数u(x,y)的全微分,其中f(x)可
导,且f(1)2,求f(x)及u(x,y)。7. 求微分方程yycosxesinx的通解。
四、(8分)求级数
x4n1的和函数,并求其收敛区间。n14n1
xy
五、(9分)设F2xi2yj,试问将质点M从原点沿直线移到直线1上哪一点时,ab
作功最小?并求最小的功。
六、(4分)若级数
a
n1
2n
和
b
n1
2n
都收敛,求证:
(a
n1
n
bn)2收敛。
自我检查试题三
一、填空(每小题3分,满分15分)
1. 周期为2的函数f(x)在一个周期内表达式为f(x)x,1x1,则它的傅立叶级数的和函数在x
处的值是________________。
2x
2. 设f(x,y,z)()z,则df(1,1,1)__________。_______
y
3. 若二重积分
___。3d的积分域D的面积为A,则3A(3A)d__________
D
D
4. 设L为(xx0)2(yy0)2R2,则1ds_____________。
L
5. 微分方程
dyxy
的通解为______________________。2dx1x
二、单项选择(每小题3分,满分15分)
1.微分方程y5y6yxe2x的特解形式是()。
(A)ae2x(bxc)(B)(axb)e2x(C)x(axb)e(D)x(axb)e 2.设f(x,y)(xy)
xy
32x
2x,则下列结果中错误的是()。
(A)fx(0,1)3(B)fy(1,0)3
(C)f(1,1)32(D)fy(1,1)16(2ln2)3.设f(x,y)是连续函数,则(A)(C)
a
。dxf(x,y)dy()
x
dy
ay
f(x,y)dx(B)dyf(x,y)dx
y
aa
dy
ay
a
f(x,ydx(D)dyf(x,y)dx
aa
4.设简单闭曲线L所围区域的面积为S,则S =()。
xdxydyydyxdx(B)2L2L11
(C)ydxxdy(D)xdyydx
2L2L
(A)
5.设常数k0,则级数
(1)n
n1
kn
()。2
n
(A)发散(B)绝对收敛(C)条件收敛(D)收敛或发散与k的取值有关
三、计算题(每小题8分,满分48分)1. 设
zzxz
ln,求和。
xyzy
2. 求函数Ux2y2z2在曲线xt,yt2,zt3上点(1,1,1)处,沿曲线在该点处的切线正方向(对应于t增大的方向)的方向导数。3. 计算二重积分4. 计算
y22xedxdy,其中D是曲线和在第一象限所围区域。y4xy9xD
xdydzydzdxzdxdy,
为球面x2y2z2a2的外侧。
x2n
5. 求幂级数的和函数(x)。
(2n)!n0
6. 求微分方程y2ye2x0满足条件y(0)1,y(0)1的解。
四、应用题(每小题9分,满分18分)
1. 某演出团欲印刷节目海报5000份,印刷版面大小是96(cm)2,上下各留1cm的空白,左
右各留1.5cm的空白,试问印刷版面长宽各多大,才能耗费最少量的纸张?
2. 一桶内有100m的水,现以浓度为2kg/m的盐溶液用3m/min的速率注入桶内,同时,被搅拌均匀的混合溶液以同样的速率流出。(1)求任一时刻t桶内盐的含量Q;(2)何时桶内存盐100kg?
五、证明题(4分)xdxydy
在整个xOy平面除去y的负半轴及原点的开区域G内是某个二元函数的全微22
xy
分,并求出一个这样的二元函数。
第三篇:高等数学上册
《高等数学》上册
一、函数与极限
1.函数基本概念—了解
1. 集合及集合的运算
2. 数轴、无穷大和无穷小的几何表示、区间 3. 常量和变量
4. 函数的定义和函数的表达方式 5. 函数的定义域和函数的计算 6. 基本初等函数
7. 复合函数和初等函数 8. 分段函数
2.函数的极限及运算法则—理解极限的含义,会计算求极限的题目;涉及范围较广,高等数学上册下册均有求极限的题目,极限的方法是研究函数的工具。(不会涉及证明用极限定义证明极限的题目)
1. 数列及数列极限 2. 函数的极限
3. 无穷大和无穷小的极限表示
4. 无穷大和无穷小的关系及无穷小的性质(运算注意前提条件有限个和无限个的区别)5. 极限的有界性定理及应用
6. 复合函数求极限(变量代换的方法)
3.两个重要极限(两个极限的运算法则的条件、推广和应用)
1. 第一个重要极限
2. 第一个重要极限的应用 3. 第二个重要极限
4. 第二个重要极限的应用(注意:单调 且有界是证明题的关键部分)4.无穷小的比较
等价无穷小及其应用
重要部分!5.函数的连续性和间断点
1. 增量
2. 函数连续的两个定义 3. 左连续和右连续
4. 函数的间断点分类(重要,出小题)
5. 连续函数四则运算的连续性(运算法则的条件、推广和应用)6. 反函数和复合函数的连续性
7. 连续函数的性质(注意:闭区间上连续函数的性质,重要,但一般不单独出题)一致连续性不用看 练习题一
2.导数与微分(重要,小题必考章节!)1.导数的定义和导数四则运算法则
1. 导数的定义(重要),2. 导数的几何意义(理解;其中数一数二导数的物理意义;数三,经济意义、边际函数、弹性函数)
3. 函数可导性与连续性的关系(必需的!)4. 求导公式表(必需的,熟悉到1+1=2!)
5. 函数导数的四则运算(必需的,熟悉到1+1=2!)2.不同类型函数的求导法则及高阶导数
1. 复合函数的求导法则(必需的,熟悉到1+1=2!)2. 隐函数的求导法则(必需的,熟悉到1+1=2!)
3. 参数方程所确定的函数的求导法则(小题,理解!多元隐函数的求导)4. 高阶导数(重要)
3.函数的微分及应用(理解,重要同导数必考,小题)
1. 微分的定义
2. 微分的几何意义
3. 微分的基本公式和运算法则 4. 复合函数的微分公式
5. 利用微分进行近似计算(除去不用看)练习题二
3.导数的应用(考大题 难题,重要章节!)
1.中值定理和洛必达法则(中值定理包括费马定理的应用及相关的证明题,必须会做证明题!)
1. 罗尔定理及几何意义
2. 拉格郎日中值定理及几何意义
3. 利用拉格郎日中值定理证明不等式
4. 洛必达法则(必考;泰勒公式及其应用,参照张宇的老师的导学或视频)2.函数的极值和最值(考小题,单调性及极值点、最大值最小值)
1. 函数的单调性及判断 2. 函数的极值 3. 函数的最值
3.曲线的凸凹性,拐点及函数作图(考小题,单调性及极值点、凹凸性及拐点、渐近线的定义理解)
1. 曲线的凸凹性及判断 2. 曲线的拐点 3.曲线的渐近线
4.函数作图(会大致描绘图形帮助做题)5.曲率
(了解即可)练习题三
4.不定积分(重要!运算的基础知识。与数
一、数三相比,数二有可能大题。)
1.不定积分的概念和基本公式
1. 原函数与不定积分(理解原函数)
2. 不定积分的定义(必需的,熟悉到1+1=2!)3. 不定积分的性质(必需的,熟悉到1+1=2!)4. 基本积分表(必需的,熟悉到1+1=2!)5. 直接积分法(必需的,熟悉到1+1=2!)2.换元积分法
1. 换元积分法的引入
2. 第一类换元法(必需的,熟悉到1+1=2!)
3. 第一类换元法的应用(必需的,熟悉到1+1=2!)4. 第二类换元法(必需的,熟悉到1+1=2!)
5. 第二类换元法的应用(必需的,熟悉到1+1=2!)3.分部积分法和不定积分技巧的综合应用
1. 分部积分法(必需的,熟悉到1+1=2!)
2. 被积函数和积分变量的选取(必需的,熟悉到1+1=2!)
3.有理函数的积分(重要,常见的一些题型,基本的运算方法的综合利用)4.综合题举例(积分表不必看)
5.定积分(重要!非常重要,是多元函数的二重积分,三重积分,线面积分的基础)1.定积分的定义和基本运算
1. 定积分的定义(理解!)
2. 定积分的性质
3. 变上限的积分函数(理解!)
4. 牛顿—莱布尼兹公式 各种题型的必需的,熟悉到1+1=2!
2.定积分的换元法和分部积分法
若不定积分学好,这一部分涉及的计算应该1. 定积分的换元法 很简单!2. 定积分的分部积分法
3. 利用方程和数列求定积分
常见的各种类型的题目一定要熟悉,再熟悉,3.广义积分(理解!考小题)再再熟悉,怎么熟悉都不为过!
1. 积分区间为无穷区间的广义积分 一元函数的极限,导数,微分,不定积分,定2. 被积函数有无穷间断点的广义积分(Г积分这是高等数学的基础,根本所在;然后多函数不用看)元函数(二元函数)的类似运算,只要把定义4.定积分的运用(会应用)相关推理过程理解了,则 自然会有 水到渠成1. 定积分的元素法 效果,难点不再难点!2. 利用定积分求平面图形面积
3. 利用定积分求体积(数三只看旋转体 体积)
4.曲线的弧长(数
一、数二公式记住,数 三不考)
第四篇:《高等数学上册考试试题》
………密……………封……………线……………以……………内……………答……………题……………无……………效…………… 《高等数学(上)考试试题》
一、填空题(每小题4分,5个小题,共计20分)学院 _____________班级名称_______________学号_____________姓名_____________教师________________1.limx(13x)(12x)(14x)2201030_________。2.设f(x)x(x1)(x2)(x3)(x4),则f(x)0有且仅有_______个实根。________3.设 ysin(1x2),则y4.设 y12xe2x。,则其反函数x(y)的导数x(y)________f(a)f(ax)2x5.设 f(x)为可导函数且满足lim x01,则曲线yf(x)在点(a,f(a))处的切线斜率为________。
二、选择题(每小题4分,5个小题,共计20分)121.当x0时,(1ax)31与cosx1是等价的无穷小,则常数a(32)A、32B、23C、D、23 2.已知axb,当x1f(x)2 处处可导,则有(x,当x1)A、a2,b1B、a2,b1C、a1,b2D、a1,b2 3.设 limx0f(x)f(0)ln(13x)x24,则f(0)等于()A、3B、4C、1D、43)4.设函数yf(x)在点x处可导,则它在点x处的微分dy是指(A、f(x)B、f(x)C、xD、f(x)x 5. 设常数k 0,函数f(x)lnxxek在(0,)内零点个数为()A、1B、2C、3D、01
三、解答题(每小题7分,6个小题,共计42分)
1.计算极限
lim(xe
x0
2x)sinx。
2.设y
y(x)由方程e
xy
sin(xy)y确定,求
dydx。
3.设
xtlntyt
t,(t
1e)确定了函数yy(x),试求
dydx。
4.设函数
f(x)具有连续二阶导数,且f(0)f(0)0,f(0)6,求
f(sin2
lim
x)。
x0
x
5.求数列的极限
limn1
11
n2
n22nn2n.
6.讨论函数
f(x)lim
1x2nn
1x
2n
x的连续性,若有间断点,判断其类型。
四、证明题(每小题9分,2个小题,共计18分)
1.证明:当
0ab时,bab
ln
ba
baa
成立.2.设f(x)在[0,a]连续,在(0,a)内可导,且f(a)0,证明存在一点
使得3f()f()0。
(0,a),…
………
… _效__…__…__…__…__…__无__…_师…教… … _…__题__…__…__…__…__…名答姓…__…__…__…__…__内__…_号…学…_…__…__以__…__…__…__…__…称线名…级…班…__…__…__封__…__…__…_ …院…学密………
答案:
一、填空题(每小题4分,5个小题,共计20分)
1.()
2.43.y2cos(1x)4xsin(1x)4.
222
(2xe)e4x
x
2x2
(x0)5. 2
二、选择题(每小题4分,5个小题,共计20分)
1.C2.A3.D4.D5.B
三、解答题(每小题7分,6个小题,共计42分)
x
xe1
2x
1
1.lim(xe
x0xy
2x)sinlim{[1(xe
x0
2x
1)]xe
2x
}
sinx
e。
xy
2.e(yxy)(yxy)cos(xy)y,y
dy
3. y
t
y(ecos(xy))
xy
1x(ecos(xy))。
dtdxdt
t(lnt1)lnt1
t
t。
4.因f(x)具有连续二阶导数
则lim
12
x0,则f(x)及f(x),f(x)在x0都连续 f(sinx)sin2x
4x
f(sinx)x
lim
x0
lim
f(sin
x
x)
x0
lim
f(sin
x)sin2x
limf(sin
x0
x)3 f(0)
x0
2x
11n15.2n222n2,由夹逼准则有nnnn2nn
n
111
limn2221。nn2nnn
6.f(x)lim
1x1x
2n2n
n
x,|x|1
x0,|x|1,x,|x|1
x1
x1
x1
x1
在分段点x
lim
x1
1处,因为limf(x)lim(x)1,limf(x)limx1,即
f(x)lim
x1
f(x),x1是f(x)的跳跃间断点(第一类);
x1
x1
x1
在分段点x
1
处,因为lim
x1
f(x)limx1,limf(x)lim(x)1,即limf(x)limf(x),x1
x1
x1
是f(x)的跳跃间断点(第一类)。
四、证明题(每小题9分,2个小题,共计18分)
1.证明:令f(x)lnx,则f(x)在(0,)连续,可导
当0ab时,对f(x)在[a,b]上应用拉格朗日中值定则至少存在理
(a,b),使f(b)f(a)f()(ba)
ba1
即lnblnaln
(ba),又ab且(ba)0,则
1b
1a,故:当0ab时,bab
ln
ba
baa
成立.。
2.证明:令F(x)x3f(x),因为f(x)在[0,a]连续,在(0,a)内可导,所以F(x)在[0,a]连续,在(0,a)内可导,且F(0)F(a)a3f(a)0,满足罗尔中值定理条件,至少存在一点(0,a),使得
F()3f()f()0,即3f()f()0。
第五篇:高等数学上册总结
《工程应用数学A》课程总结
无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。
一、课程主要知识
本课程主要以函数为起始,然后引出极限的定义以及极限的应用。然后以极限为基础介绍导数,微分。在微分中主要讲了一些求微分的定理,例如拉格朗日中值定理,柯西中值定理等等。其次讲了函数微积分,重点讲了一些求积分的方法,例如换元积分法,分部积分法。最后学习微分方程,这一块可以说是比较难的一章,什么一阶微分方程,二阶微分方程,二阶常系数齐次线性微分方程等等,计算量也比较大。所以总的来说全书的知识点都是相连起来的。后面知识总是以前面所学知识为基础,一层一层展开的。
二、个人学习心得体会
其实不瞒老师,我高中的时候数学不是太好,平时考试数学有就有点拖后腿,而且我高考数学只考了70多分。有一天老师说,高考没及格的同学数学一定要好好学,否则极有可能挂科。当时,我还不相信,至少认为这种事不会发生在我身上。自己平时在数学上多少也花了点功夫。可以说做的准备工作比高中还多。基本上在每次上课前
都能预习,课上也认真听,而且课也差不多都能听懂,作业也都是自己独立完成的。我想及格应该不是问题,但后来的第一次过程考核,我才发现差距在哪,题目基本上不怎么会写,而且后来成绩出来,刚好考了60分。当时心就碎了。感觉落差好大。于是感叹“高树”太高了!我想是不是我题目做少了,难道说大学学数学也要用题海战术吗?可是我看班里有些同学平时上课也不听,作业基本靠抄,有事没事就拿着手机看电子书,但是考试却比我高,我就很郁闷,难道是他们比我聪明还是他们另有技巧?
经过一段时间的学习之后,我发现课前预习很重要。课前预习能够让你上课更有效率,也不会那么累。老师上课在黑板上的板书很多都是书上的。如果你课前预习了,就会知道老师说的在哪,书上有没有,记笔记的时候就可以抓住重点。不用完整地抄下来。但是你不预习的话,因为不知道书上有没有或是哪里是重点就得全部抄下来,很浪费时间,这样一来一节课就全部用在记笔记上了,根本没什么时间去听课,上课也就不会有效率。所以课前预习很重要。其次必要的练习也不可缺少。比如说上课老师说的定理不太懂,这时候就需要用练习来加强对知识的理解。
三、本课程对个人的影响
高等数学在整个大学的学习过程中占有一定的重要地位,它不仅对以后将会学到的线性代数和概率统计有影响,而且还是考研必考的科目。对于我们网络工程专业准备考研的同学来说,这绝对是一个重
头戏。对于不准备考研的同学来说,也有一定的影响,它可以培养我们的逻辑思维能力、计算能力,使我们的思维更缜密。数学是科学之母,任何学科的发展都离不开它。所以高数一定要学好。
四、总结
学习如逆水行舟不进则退,对于高数这门课程尤其是这样。因为只要你一节课没跟上就会步步跟不上,所以高数的学习不能放松,必须抓紧。相信我能学好!一定可以的!