第一篇:07公务员《行政能力测验》-数量关系
07公务员《行政能力测验》-数量关系(5)
一、数量关系测试题
(一)数字推理
下面的每一道试题都是按某种规律排列的数列,但其中缺少一项,请你仔细观察数列的排列规律,然后从四个供选择的答案中选择出正确的一项。
1.26,35,45,56,68,()
A.78B.79C.76D.81
2.15,30,60,120,()
A.240B.196C.156D.144
3.29,27,25,23,()
A.21B.20C.19D.15
4.1/100,1/50,3/100,1/25,()
A.1/20B.2/25C.3/50D.2/50
5.4/7,l,10/7,13/7,()
A.12/7B.11/7C.15/7D.16/7
(二)数学运算
1.从9点整到10点整,手表的秒针多少次经过了12点处?()
A.60B.62C.61D.59
2.6375+3108+2941+372+9564=()
A.18645B.18654C.22360D.22350
3.39.86-(53/4)-7.85()
A.18.24B.19.76C.18.76D.19.24
4.一排队伍共有19个人,站在正中间的是第几个人?()
A.7B.8C.9D.10
5.最小的二位数加最小的三位数,再加上最小的四位数,和是多少?()
A.1010B.1101C.11100D.1110
6.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?()
A.54.2%B.62.5%C.34.5%D.60%
7.一堆桃子,5个5个地分,剩余3个;7个7个地分,剩余2个,则这堆桃子的个数最少为()
A.23B.19C.41D.31
8.从3、5、7、ll四个数中任取两个数相乘,可以得到多少个不相等的积?()
A.5B.4C.6D.7
9.将某两位数的个位与十位上的数字互换,所得的数是原来的1/10,则此两位数是()
A.10B.12C.13D.11
10.10年前王锋的年龄是他女儿的7倍,15年后王锋的年龄是她女儿的2倍,问女儿的年龄是多少?()
A.10B.15C.30D.45
11.三个活动小组平均人数为17个人,而甲、乙两组平均人数为15,则丙组有多少人?()
A.18B.19C.20D.21
12.计算(1-1/10)×(1-1/9)×(1-1/8)×…(1—1/2)的值()
A.1/20B.1/10C.1/30D.1/108000
13.已知a是b的两倍,b的3倍减1等于14,则a为()
A.10B.8C.6D.4
14.一桶油连桶重100公斤,用去油的一半后连桶重60公斤,油桶重多少公斤?()
A。10B.20C.40D.80
15.修一条高速公路,已修的是未修的2/5,未修的与全长的比是()
A.5:2B.2:5C.2:7D.5:7
二、数量关系测试(二)参考答案
(一)数字推理
1.D2.A3.A4.A5.D
(二)数学运算
1.C2.C3.C4.D5.D6.B7.A8.C9.A
10.B11.D12.B13.A14.B15.D
第二篇:《行政能力测验》冲刺试题:数量关系(一)
(一)数学运算
计算下列各题,并选择出正确答案。
1.甲、乙两人从A地同时开车前往120公里外的B地去旅游,结果乙比甲提前l小时到达B地。已知甲比乙每小时少行10公里,求甲的速度?()
A.30公里/时B.40公里/时C.20公里/时D.50公里/时
2.解放军某部进行爬山训练,往返一次用去6小时,已知上山时每小时行5千米,下山时每小时行10千米,山顶到山脚的距离是多少千米?()
A.30B.20C.40 D.1
53.某农场用拖拉机耕地,5台拖拉机每天工作8小时,12天可以完成任务。现在增加同样效率的拖拉机3台,并且要求提前2天耕完,每天应耕地几小时?()
A.6B.10C.8 D.
44.甲、乙、丙三个数的平均数是6,它们的比值是1/2:2/3:5/6,则这三个数中最大的数是多少?()转自国家公务员考试网()
A.7B.8C.9 D.7.
55.94 815 645-5 789 213.986=()
A.89 026 431.014B.88 026 431.01
4C.3 692 350.014 D.3 792 350.014
6.在长150米的路旁每隔5米种一棵树,一共需要几棵树?()
A.29B.30C.31 D.
327.一件工程,甲单独完成需要2天,乙单独完成需要4天,如果甲干完一天后,剩下的工程由乙单独完成,则干完此项工程共需要多少天?()
A.3B.4C.5 D.6
8.在高为4,底边长为4的等腰三角形的内部贴纸片,每张纸片面积为1,那么需要几张纸片。
()
A.6B.8C.10 D.12
9.1,O,5三个数字可以组成——个三位数。()
A.7B.6C.5 D.4
10.1994年第二季度全国卖出汽车297 600辆,与上年同期相比增长了24%。问上年同期卖出多少辆汽车?()
A.240 000B.714 224C.226 176 D.369 024
(二)数字推理
下面的每一道试题都是按某种规律排列的数列,但其中缺少一项,请仔细观察数列的排列规律,然后从四个供选择的答案中选择出你认为最合适、最合理的一个,来填补空缺。
1.1,8,27,64,()
A.没给出B.120C.121D.116
2.10,1 100,111 000,()
A.1 111 000B.111 100C.11 110 000D.1 110 0000
3.1,1/3,1/3,1/9,1/27,()
A.1/243B.1/255C.1/162D.1/16
44.14,23,34,47,()
A.50B.57C.60D.6
25.1/2,1/6,1/12,1/20,1/30,()
A.1/40B.1/37C.1/31D.1/42
二、数量关系冲刺(二)参考答案
(一)数学运算
1.A2.B3.A4.D5.A6.C7.A8.B9.D10.A
(二)数字推理
1.A2.C3.A4.D5.D
第三篇:公务员考试行政能力测验解题心得
公务员考试行政能力测验解题心得
数列篇
第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)
第二步思路A:分析趋势
1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C.225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心
2,增幅较大做乘除
例2:0.25,0.25,0.5,2,16,()A.32 B.64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级
3,增幅很大考虑幂次数列 例3:2,5,28,257,()
A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉
第二步思路B:寻找视觉冲击点
注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引
视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。例4:1,2,7,13,49,24,343,()A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。总结:将等差和等比数列隔项杂糅是常见的考法。
视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。20 5 例5:64,24,44,34,39,()A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。
视觉冲击点3:双括号。一定是隔项成规律!例6:1,3,3,5,7,9,13,15,(),()A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C
例7:0,9,5,29,8,67,17,(),()
A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计
视觉冲击点4:分式。类型(1):整数和分数混搭,提示做乘除。例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10
类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。例9:3/15,1/3,3/7,1/2,()A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9 A.7/3 B 10/9 C-5/18 D-2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得
14,2,-5,-6,(-3.5),(-0.5)与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)=-2.5。因此(-2.5)/9=-5/18
视觉冲击点5:正负交叠。基本思路是做商。例11:8/9,-2/3, 1/2,-3/8,()
A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A
视觉冲击点6:根式。
类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内
例12:0 3 1 6 √2 12()()2 48 A.√3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A
类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)例13:√2-1,1/(√3+1),1/3,()A(√5-1)/4 B 2 C 1/(√5-1)D √3 解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/(√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=(√5-1)/[(√5)^2-1]=(√5-1)/4.视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。例14:2,3,13,175,()
A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。
视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。
例15:1.01,1.02,2.03,3.05,5.08,()A.8.13 B。8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。
总结:该题属于整数、小数部分各成独立规律
例16:0.1,1.2,3.5,8.13,()A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律
视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。例17:1,5,11,19,28,(),50 A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。例18:763951,59367,7695,967,()A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。
例19:1807,2716,3625,()A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。
第三步:另辟蹊径。一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。
变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。例20:0,6,24,60,120,()A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。
变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。例21:2,12,36,80,()A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。
变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。例22:1/6,2/3,3/2,8/3,()A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。
第四步:蒙猜法,不是办法的办法。
有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。
第一蒙:选项里有整数也有小数,小数多半是答案。见例5:64,24,44,34,39,()
A.20 B。32 C 36.5 D。19 直接猜C!
例23:2,2,6,12,27,()A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6(2+6)*1.5=12(4+6)*1.5=15(6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5
第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。例24:-4/9,10/9,4/3,7/9,1/9,()A.7/3 B.10/9 C-5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。
第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十!例25:1,2,6,16,44,()A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。
例26:0.,0,1,5,23,()A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119 第四蒙:利用选项之间的关系蒙。例27:0,9,5,29,8,67,17,(),()A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B
例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A
第四篇:公务员考试行政能力测验解题心得
公务员考试行政能力测验解题心得
数列篇
第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)
第二步思路A:分析趋势
1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C.225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心
2,增幅较大做乘除
例2:0.25,0.25,0.5,2,16,()A.32 B.64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级
3,增幅很大考虑幂次数列 例3:2,5,28,257,()
A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉
第二步思路B:寻找视觉冲击点
注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引
视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。例4:1,2,7,13,49,24,343,()A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个 支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。总结:将等差和等比数列隔项杂糅是常见的考法。
视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。20 5 例5:64,24,44,34,39,()A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。
视觉冲击点3:双括号。一定是隔项成规律!例6:1,3,3,5,7,9,13,15,(),()A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C
例7:0,9,5,29,8,67,17,(),()A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计
视觉冲击点4:分式。
类型(1):整数和分数混搭,提示做乘除。例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10
类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。例9:3/15,1/3,3/7,1/2,()A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9 2 A.7/3 B 10/9 C-5/18 D-2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得
14,2,-5,-6,(-3.5),(-0.5)与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)=-2.5。因此(-2.5)/9=-5/18
视觉冲击点5:正负交叠。基本思路是做商。例11:8/9,-2/3, 1/2,-3/8,()
A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A
视觉冲击点6:根式。
类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内
例12:0 3 1 6 √2 12()()2 48 A.√3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A
类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)例13:√2-1,1/(√3+1),1/3,()
A(√5-1)/4 B 2 C 1/(√5-1)D √3
解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/(√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=(√5-1)/[(√5)^2-1]=(√5-1)/4.视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。例14:2,3,13,175,()
A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。
视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。
例15:1.01,1.02,2.03,3.05,5.08,()A.8.13 B。8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。总结:该题属于整数、小数部分各成独立规律
例16:0.1,1.2,3.5,8.13,()A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律
视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。例17:1,5,11,19,28,(),50 A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。例18:763951,59367,7695,967,()A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。
例19:1807,2716,3625,()A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。
第三步:另辟蹊径。一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。
变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。
例20:0,6,24,60,120,()A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。
变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。例21:2,12,36,80,()
A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。
变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。例22:1/6,2/3,3/2,8/3,()A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。
第四步:蒙猜法,不是办法的办法。
有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。
第一蒙:选项里有整数也有小数,小数多半是答案。见例5:64,24,44,34,39,()
A.20 B。32 C 36.5 D。19 直接猜C!
例23:2,2,6,12,27,()A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6(2+6)*1.5=12(4+6)*1.5=15(6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5
第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。例24:-4/9,10/9,4/3,7/9,1/9,()A.7/3 B.10/9 C-5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。
第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十!例25:1,2,6,16,44,()A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。
例26:0.,0,1,5,23,()A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119
第四蒙:利用选项之间的关系蒙。
例27:0,9,5,29,8,67,17,(),()A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B
例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A 补充:如何考公务员的建议~~~~超级专业,先存着以后绝对用得着,不用满世界的找咯
第一阶段:认真看书(包括一些总结性的资料)。辅导书大同小异,不求太多,一套足已。从10月份开始正式准备公务员考试,我买了两套公务员辅导教材。并把两套教材都从头到尾认认真真的看了一遍。了解了行测的基本内容,并对基本题型有了一定的了解。再看一些总结性的资料,对题型方面有更深入的了解。从此我就把辅导教材扔在一边再也没有看过。当然,在看一遍的过程中,我已经做了详细的笔记。(大概需要半个月的时间)
第二阶段:初做真题。此后我开始做真题,不断的做,每天掐时间做,从国家的到地方的,做所有能找到的真题,不放过任何一道真题。这是对速度的训练。(大概一个月的时间)记着要留两到三套国家的真题到最后做模拟练习用。
第三阶段:再做真题。第二阶段的做真题是为了练习速度和训练我的时间概念,这次的再做真题则是为了提高我做题的正确率。这个阶段我花了近一个半月的时间。把以前做过的真题重新翻出来做一遍,这时我要求自己每天做两套题,在这个过程中,我要求自己无论自己做错的题目有多长都摘抄到我的错题本中,按类型把错题集中在一起,并注明做错的原因。每天必须把所有的错题都弄懂。就这样悄悄的,我就懂了很多,题目也越做越顺手,速度也越来越快。
第四阶段:做错题。在前一阶段,我摘抄了很多错题,虽然都弄懂了,但是时间长了难免会忘记一点。这个阶段我就复习错题,尤其是言语理解题,看了一遍又一遍,直到看出所以然来才罢休。关于数量关系,在注意总结一些特殊规律的同时,也不能忘记基本规律,碰到题目首先就应该拿基本规律去套,而不是一个劲的想符合哪个特殊的规律。在这个阶段,把一些比较经典错题重新摘抄下来,以便以后复习之用
第五阶段:做真题和温习经典错题。临近考试,很多人难免会有些着急、紧张情绪。我认认真真的做了以上的几个步骤,我不担心,不着急,也不急躁。因为我该做的能做的都已经做了,剩下的不是我能决定的,也不是我能左右的,这就是公务员考试中的一部分运气。
在整个阶段中,我每天晚上都会抽出一定的时间来浏览论坛的帖子,修改标题的同时注意帖子的内容,因此我在不断巩固原有知识的同时,吸收了很多新的题型新的知识。这也是一个很重要的步骤。去年国考的数学运算中有两个题目我在论坛上看到过,这两个题目不但为我节省了时间,还大大稳定了我紧张的情绪。
资料链接:数学部分:http://bbs.qzzn.com/read-htm-tid-9155257.html
http://bbs.qzzn.com/read-htm-tid-16664-fpage-2.html 再加上自己的摘抄和总结,数学部分一般都可以得分(除非题目特别变态,这种 情况也不需要担心,对你来说变态的题目,对其他人未必容易)PS:如果还有时间的话,也可以做做小学奥数
言语理解部分:http://bbs.qzzn.com/read-htm-tid-9383712.html(同学听课时顺便听了一下记下来的 笔记)http://bbs.qzzn.com/read-htm-tid-9437463.html http://bbs.qzzn.com/read-htm-tid-9358343.html(里面包含了很多人的经验,值得看看 http://bbs.qzzn.com/read-htm-tid-9350879.html 言语理解部分很难推荐,这些是我准备考试的时候看过的。希望能给大家一点提示
图形推理:http://bbs.qzzn.com/read-htm-tid-8902840-fpage-3.html 图形推理部分很有趣,很多人很喜欢。但是在考试中难免会遇到一些奇形怪状的图形,这时需要我们在掌握基本图形之外要注意特殊图形。特殊图形很难找,辅导书上一般也没有,我们的行测提问区是寻找特殊图形的重要来源,大家一定要注意哦
逻辑推理:http://bbs.qzzn.com/read-htm-tid-9395186.html
http://bbs.qzzn.com/read-htm-tid-9397562.html
http://bbs.qzzn.com/read-htm-tid-9398530.html
http://bbs.qzzn.com/read-htm-tid-9400076.html
http://bbs.qzzn.com/read-htm-tid-9401353.html
http://bbs.qzzn.com/read-htm-tid-9404854.html
http://bbs.qzzn.com/read-htm-tid-9419399.html 逻辑推理部分我看的材料就这一部分。原本有个下载版的,在哪已经找不到了,各位见谅。逻辑推理的思维模式和我们日常生活中的思维模式有很大的不同。大家一定要注意区别。当然,看这些资料之前,肯定要先看看辅导书上的基础资料。
法律常识部分:http://bbs.qzzn.com/read-htm-tid-9415487-keyword-.html 由于本人事学法律的,对于法律常识部分并没有做专门的复习。这是我们的bfd1123 帮宝为我们整理的关于法律方面比较全面的资料。
类比推理和资料分析我只是看了辅导书上的内容,没有进行专门的复习,再加上晚上浏览论坛记下的一些关于这方面的东西,就这样参加考试去了。另外推荐的复习的好去处:http://bbs.qzzn.com/read-htm-tid-9683163.html
http://bbs.qzzn.com/read-htm-tid-9718867.html 关于申论的复习
关于申论,我不能谈太多,因为我的申论并不好。但是考过了多多少少还是有些经验的。
个人认为申论的必备资料:万能八条、理论面对面、半月谈、十七大报告、两会的相关内容。当然如果还有空可以看一下人民日报
第一阶段:阅读辅导书和万能八条。阅读辅导书的主要作用是导你入门。所以申论的辅导书简单的看一遍,留下一些自己认为比较有用的东西,这样辅导书就可以丢到角落去了。万能八条要记住,因为对策文的文章结构大体就是这么几条。但是要注意一点,万能八条并不万能,只有合适的能用的上的才能运用到文章里,否则就是生搬硬套,整片文章就没有了生机。(大概十天左右即可)
第二阶段:摘抄有用句子和对策。这些句子要自己认真阅读半月谈、理论面对面去挖掘,不一定要是很拗口的那些专业用语和标准用语,只要自己认为有用、能用的句子和对 策可以直接摘抄下来。对于在十七大报告和两会相关内容中出现的一些不同于以往的名词和新词,尤其要注意摘抄理解并能在自己写申论的时候运用进去。
第三阶段:背诵所摘抄的句子。将一篇申论文章比作是一个人的话,万能八条就是一个大体的结构和骨架,而我们摘抄的句子就是充实骨架的血肉。由于这些句子是我们自己从各种各样的文章里摘抄出来的,相对具有独创性,这样的一篇文章就不容易落入俗套。我们也可以把我们所摘抄的句子组织成一篇文章,没事的时候可以拿出来背背。(这个阶段的任务相对比较重,可以边抄边记,可以加深记忆。这两个阶段(第二阶段和第三阶段)合起来需要一个半月的时间)
第四阶段:练习真题。真题是最接近我们要考的题目的试题,一方面从真题当中我们可以总结出大概的题型,另一方面从真题出发我们可以衡量考试的难易程度。记住:这个阶段绝不能偷懒,一定要动笔写。很多人可能能把相关对策等东东都在脑子里快速反映出来,但实际要动笔写却不知该从何下手。还有一点:一定要掐时间写。而且要注意符合题目要求的字数。因为考试时给的方格纸上的方格是固定的,一旦超出它设定的方格数,改卷老师可以很明显的看出你的字数超了,从而你的分数就受到影响。
临近考试,我们要更看重自己所摘抄的句子,如果有时间的话,可以从摘抄出来的句子再摘抄出重要句子,使我们的摘抄本更精简,方便记忆。
当然,在前三个阶段进行的时候也需要时不时的写写文章,一方面是练笔,另一方面是巩固所学的知识,使记忆更加深刻。
资料链接:万能八条:http://bbs.qzzn.com/read.php?tid=9630227 注意:万能八条只是提供一个思维方式。如果能想出更新颖的做法或者对策,千万不要让自己局限再这八条里面。
推荐一位前辈的经验贴里的申论资料:http://bbs.qzzn.com/read-htm-tid-9095923.html
申论资料很多,推荐不过来了。那就推荐一个好去处吧:http://bbs.qzzn.com/read-htm-tid-9648527.html
PS:申论考试写最后一道题目的时候,我突然发现我第二道题目看错了,吓得我满头大汗,当时进行到规模的修改不仅是卷面不清楚,时间也不够了。情急之下,我再后面加了几句话,勉强能符合题中所问。修改完了以后,我心里觉得大势已去,写不写最后一道题目都已经无所谓了。正打算放弃的时候,我看见了周围正在奋笔疾书的战友们,突然有一种坚持的意念出现在我的脑海,于是我拿起笔继续写,但是由于紧张,我已经忘记我该怎么写,这时,我平时背的一些句子、成段的片段在我脑海中出现,于是这些句子和片段很自然而然的从笔尖滑落到了纸上,直到一篇文章写完考试结束,我还是处于一种混沌状态。所以————————不管发生什么情况,把那张纸填满是我们在考试是最重要的任务。
第五篇:公务员考试行政能力测验解题心得
公务员考试行政能力测验解题心得
数列篇
第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)
第二步思路A:分析趋势
1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C.225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。总结:做差不会超过三级;一些典型的数列要熟记在心
2,增幅较大做乘除
例2:0.25,0.25,0.5,2,16,()A.32 B.64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级
3,增幅很大考虑幂次数列 例3:2,5,28,257,()A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉
第二步思路B:寻找视觉冲击点
注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引 视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。例4:1,2,7,13,49,24,343,()A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的
等差数列,很快得出答案A。
总结:将等差和等比数列隔项杂糅是常见的考法。
视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。20 5 例5:64,24,44,34,39,()10 A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。
视觉冲击点3:双括号。一定是隔项成规律!例6:1,3,3,5,7,9,13,15,(),()A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C
例7:0,9,5,29,8,67,17,(),()A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计
视觉冲击点4:分式。
类型(1):整数和分数混搭,提示做乘除。例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10
类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。例9:3/15,1/3,3/7,1/2,()A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9 A.7/3 B 10/9 C-5/18 D-2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得
14,2,-5,-6,(-3.5),(-0.5)与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)=-2.5。因此(-2.5)/9=-5/18
视觉冲击点5:正负交叠。基本思路是做商。例11:8/9,-2/3, 1/2,-3/8,()A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A
视觉冲击点6:根式。
类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内 例12:0 3 1 6 √2 12()()2 48 A.√3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A
类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)例13:√2-1,1/(√3+1),1/3,()A(√5-1)/4 B 2 C 1/(√5-1)D √3
解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/(√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=(√5-1)/[(√5)^2-1]=(√5-1)/4.视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。例14:2,3,13,175,()
A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。
视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。
例15:1.01,1.02,2.03,3.05,5.08,()A.8.13 B。8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。总结:该题属于整数、小数部分各成独立规律
例16:0.1,1.2,3.5,8.13,()A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律
视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。例17:1,5,11,19,28,(),50
A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。例18:763951,59367,7695,967,()A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。
例19:1807,2716,3625,()A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。
第三步:另辟蹊径。
一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。
变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。
例20:0,6,24,60,120,()A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。
变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。
例21:2,12,36,80,()A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。
变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。例22:1/6,2/3,3/2,8/3,()A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。
第四步:蒙猜法,不是办法的办法。
有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。
第一蒙:选项里有整数也有小数,小数多半是答案。见例5:64,24,44,34,39,()
A.20 B。32 C 36.5 D。19 直接猜C!
例23:2,2,6,12,27,()A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6(2+6)*1.5=12(4+6)*1.5=15(6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5
第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。例24:-4/9,10/9,4/3,7/9,1/9,()A.7/3 B.10/9 C-5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。
第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十!例25:1,2,6,16,44,()A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。
例26:0.,0,1,5,23,()A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119
第四蒙:利用选项之间的关系蒙。
例27:0,9,5,29,8,67,17,(),()A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B
例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A 考霸心经(二)---数运篇,秒杀数学运算题的无赖解法!
大家好,我又来聒噪了!对于数学运算题,系统的解题思路我就不再罗嗦了,因为我相信任何一本公务员辅导教材的系统讲解都比我的只言片语强的多.不过有多少人能在紧张的心态下和有限的时间里把那些标准化的解题方法都施展开来呢?作为一个智商不高又极容易向命运妥协的人,于是我逐渐琢磨出了一些不用正儿八经运算也能八九不离十做对题的“投机取巧大法”,这里总结出来与大家共享.大法一:逐项递推法:对付数列式运算,且项数较大的情况。
例1:十阶楼梯,小张每次只能走一阶或两阶,请问走完此楼梯共有多少种走法? A.55 B.67 C.74 D.89 解:如果直接求算走十阶楼梯的各种情况,复杂而易出错.而如果逆向思维,假设只有一阶楼梯,只有1种走法;假设有二阶楼梯,则有2种走法(一阶两步和两阶一步);假设有三阶楼梯,则有3种走法(一阶三步,两阶一步一阶一步,一阶一步两阶一步);假设有四阶楼梯,则有5种走法(一阶五步,一阶三步两阶一步,一阶一步两阶两步,两阶两步一阶一步,两阶一步一阶三步),以上都是很快就能枚举出来的,一观察,1,2,3,5,明显的和递推数列,所以该数列延伸下去是8,13,21,34,55,89,正好是选项D.例2:1+2+2^2+2^3+2^4+...2^99 解:如果记得等比数列的求和公式自然很快,不过即使不记得也没关系,我们可以从小到大逐项递推= 1=2^1-1 1+2= 3=2^2-1 1+2+2^2= 7=2^3-1 1+2+2^2+2^3=15=2^4-1 因此原式=2^100-1 总结:上述办法是在项数(或可能性)众多,而脑子又发蒙一下子找不到直捣黄龙的办法时用的,有时可以起死回生.大法二:倍数猜测法:对付自然数环境中出现比值的情况.例3:甲乙二人分16个苹果,分完后,甲将自己所得的1/3给了乙,然后乙又将自己现有苹果的1/3还给甲;最后甲又将自己现有苹果的1/3给了乙,这时两人苹果数恰好相等.问:最初甲分的几个苹果? A7 B10 C13 D15 解:分苹果,是一个典型的自然数环境,因为苹果的个数一定是一个自然数,注意题干,甲分了1/3给乙,又求甲,可知甲的苹果个数肯定是3的倍数(否则其1/3不可能也是自然数),观察选项,只有D是3的倍数,锁定!
例4:甲、乙、丙三人合修一条公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。共得收入1800元,如果按工作量计酬,则乙可获得收入为()A.330元 B.910元 C.560元 D.980元
解:观察题目可知,工酬是计算到元,并无小数,所以各人的报酬就是自然数了.又发现乙工作了13天,所以乙的收入=13*一个自然数,即是13的倍数,很快就挑出B.大法三:余数代入法:对付分组分队分不干净的情况。
例5:如果每一把长椅子上坐1位老师和4位学生,就有3名学生没座位;如果每一把长椅子上坐5位学生,就有2个空座位,问至少有多少位学生? A.13 B.19 C.23 D.28 解:看题干,求学生数量,跟老师没关系,迅速判断老师的数量是一个干扰信息.凡是分组分队分不干净的情况,都有一个隐含前提,总数量不变,假设为A,应这样解读题干:A除以4余3,除以5余3,代入选项很快得出C.注:A其实可以为20n+3,当n=1时,A最小为23.当然,我们选出正确答案即可,这些根本不用考虑.大法四:参照值法:对付题目中有明显的参照值(可以提高选项区分度的值)的情况.例6:计算:1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+……+1/(1+2+3+……+99+100)的值为()A.999/1010 B.200/101 C.888/999 D.101/99 解:注意到原式=1+一个正分数,所以一定比1大,可以立即排除A.C;再观察最后一项数的分母,有没有想起小学语文里学过的小高斯做算术的故事1加到100=5050? 根据通分的基本原理,原式值的分母必然是5050的因数,立即选B.例7:2004*(2.3*47+2.4)/(2.4*47-2.3)A.2003 B.2004 C.2005 D.2006 解:观察,整个算式是在2004的基础上做乘除,因而算式的值应该是2004的倍数(包括分数倍)关系,而ACD选项只可能与2004有加减关系,惟独B可能(1倍),选B.大法五:假设特殊值法:对付比值/比例/浓度/价钱/不定式等问题特别好用.例8:地球表面的陆地面积和海洋面积之比是29:71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是多少?
A.284:29 B.113:55 C.371:313 D.171:113 解:陆地面积与海洋面积的比大致是30:70,就设陆地全面积为30,海洋全面积为70(同时可知全球面积为100,半球面积为50),则北半球陆地为30*(3/4)=90/4,南半球陆地为30*(1/4)=30/4;所以南半球海洋面积为50-30/4=170/4;北半球海洋面积为50-90/4=110/4.显而易见,比值为170:110,选D.例9:已知某数N除以45余12,则N的12倍除以45的余数是多少? A.26 B.19 C13 D.9 解:假设N就是12(除以45得0余12),12的12倍除以45余数为9,很快得出.大法六:最无赖的办法,利用选项关联大蒙猜:对付选项存在关联、暗示着答案的情形,这种方法一般运用于难题和最后关头搏一把时.例10:龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑,兔子却是一边跑一边玩,它先跑一分钟,然后玩15分钟,又跑两分钟,然后玩15分钟,又跑3分钟,然后又玩15分钟......那么先到达终点的比后到达终点的快多少分钟? A 104分钟; B 90.6分钟; C 15.6分钟; D 13.4分钟
解:首先统一单位,跳过陷阱,兔子分速为1/3千米,乌龟分速为1/20千米。从而可知兔子跑全程要15.6分钟正好是C选项;乌龟跑完全程要104分钟,正好是A选项.揣摩出题人心理,A/C都是迷惑选项,不选.再看问题是求“快多少分钟”,所以答案必然是通过跟15.6或者104有关的减法得出的,而很快发现选项中就隐藏着一个减法104-90.6=13.4.马上猜D.(未完待续)
考霸心经第三篇(上)像做图形题一样做阅读理解,不用搞懂也能选出答案!
阅读理解篇
一,总论
阅读理解有两种考法,一种是片段阅读,即题干为一长句或是几个短句组成的小片段,一个题干对应一个问题;另一种是篇章阅读,题干是一篇完整的文章,一个题干对应若干个问题。根据国考的趋势看,片段阅读已经成为主流,篇章阅读逐渐淡出历史舞台,2008年广东省考的大改革也印证了这一点。因此,这里我只总结了片段阅读的解题技巧。
就我自己的备考经验来看,我们通常会对阅读理解题产生这些误读:认为阅读理解题主观性很强,不像数学题一样做出来就肯定对;认为阅读理解题很耽误时间,还不一定能保证正确率;认为阅读理解题练与不练,效果差别不大。而随着训练的深入,我逐渐发现其实——阅读理解题的题干中出题人已经给我们留下了线索,按图索骥可以客观而准确地选出出题人想要的答案;阅读理解题耗时多主要在于文字阅读量大,而实际上大多数情况是不需要完全搞懂题干和题支在讲什么就可以秒杀的;掌握了相应的技巧后,多练习可以大大提高做题的速度和正确率。
二,解题方法示例
先拿广东省2008年的阅读理解题来练练手,看看如何高正确率地秒杀阅读理解题。
26尽管严格按照科学的思维方式进行行政决策可以减少失误,达到精确,但是,决策毕竟是人的行动,人并不是像机器那样按照规律运行,按照规模生产产品。这段文字意在告诉我们:
A行政决策过程中人的主观因素是不可忽视的 B人的主观性常常是造成决策失误的主要原因 C作为行政决策的主体,人需要规范自己的行为 D科学的思维方式是实行行政决策科学化的前提
解:瞟一眼题干,发现了一个很突兀的词,被一个逗号显眼地隔开“但是”,这时马上要反应出做阅读理解题的第一条不变法则:转折决定一切!。这时候,转折词前一切都不用看不用管了,直接盯住与转折词最近的意群“决策毕竟是人的行动”,在讲“决策”“人”“主观性”,请注意,做阅读理解题就是不断在脑中闪出关键词,不需要去把它们造成很美丽的句子,这样可以大大节省思考的时间。此时,可以毫不犹豫地去选项里找包含这三个词汇意思的选项了,瞬间得出A。
27中国传统文化的内容,体现了当今全人类的普遍价值观念,极富现代意蕴。这些内容。既是民族的,又是全人类的:既是传统的,又是现代的。我们把这些内容用国际社会容易理解的形式对外传播,比较容易得到认同,从而有助于提升中华文化的国际影响力和亲和力,提升我国在国际社会中的软实力。同时,这也有助于在全世界塑造我们国家的文明、友好、开放、包容的形象。
这段话主要谈论的是: A中国文化的国际影响力 B提升我国软实力的途径 C中国传统文化的现代价值 D弘扬中国传统文化的意义
解:蹦着词扫描完题干,发现这是一个典型的总分段(为什么?因为后面的分句都是以“这些内容”领起的,而“这些内容”正是指向总起句的主语“中国传统文化的内容”的)。阅读理解题第二法则:明显的主旨句一出,其他一概不管。
然后,重读总起句,闪出三个词汇“中国传统文化”“人类普遍价值观”“现代意蕴”,这时阅读理解题第三法则有用了:关键词匹配。马上到选项中去找包含这三个词意思的选项,瞬间选C。
28中国传统文化的生活方式是子孙满堂,这点很令美国老年人羡慕,儒家文化提倡“父母在,不远游”,贫困地区的父母更是把生男孩作为自己养老的保障。而美国人则认为,培养孩子是一种社会责任而不是自我“牺牲”,孩子的回报并不是反哺父母,而是努力使自己成才,尽管美国有较为完善的社会福利制度来保障老年人的日常生活,但老年人在情感上与后代缺少交流,他们感到无助、孤独,长期与家人分开,享受不到天伦之乐。
这段话主要谈论的是:
A美国人羡慕中国人的生活方式 B中国的社会福利制度尚不完善
C中国老年人存在情感上的无助、孤独等现象 D中美两国老人的晚景截然不同,是中美文化使然
解:阅读理解题第四法则:主体分析法的经典运用,完全不用搞懂在讲什么,直接选出来。跳读题干,发现是在比较两个主体(两国老年人),而问的又是topic,直接到选项里去找涉及两个主体之间比较的选项(至于结论如何根本不重要)。有的人可能会认为A也是涉及两方主体啊,但是A选项是在说一方主体(美国人)的单方行为(羡慕),不是比较,而D选项“截然不同”是典型的比较,符合题干意思。
29亚洲的困境在于——破坏环境的力量正是创造经济奇迹的动力,经济增长意味着更多产量、更多工作、更多餐桌上的食物,但是也意味着更多的烟雾被排放,更多的树木被砍伐,更多化学物质倾向河流。A亚洲的经济发展与环境问题存在冲突 B环境问题制约着亚洲经济的长期发展 C绿色产业将成为亚洲经济发展的新动力 D亚洲的经济发展以资源的过度的消耗为代价
解:扫描题干,眼前一亮,发现了一个破折号,马上用第五法则:指示性标点(破折号、冒号、引号)指向答案!只看破折号附近的意群“破坏环境的力量正是创造经济奇迹的动力”,结合选项很易得出A。30自然界中,物种间的相互依赖给相关物种带来许多好处。但是当其中一个物种受到灾害影响时也会影响相关物种。因此,依赖昆虫授粉的植物可能会因为授粉昆虫被杀虫剂杀伤而数量减少,面临灭亡。这段话主要说明:
A物种间的相互依赖的负面效应 B动植物间相互依赖的事实 C灾害间接导致物种灭绝的过程 D人类行为在自然界中引发的后果
解:跳读题干,发现三个句子由两个关联词连接。这道题综合运用三个做题原则,首先转折决定一切!,只看“但”以后的部分;第二,关键词匹配,“但”后面最近的意群中有三个关键词“物种”“灾害”“影响”,至此已经可以排除B,D,因为B,D分别在讲“动植物”和“人类行为”,关键词不匹配,但是仍然无法排除C;接着用阅读理解解题第六法则:指示性关联词(后有总结)提示答案!,结合因此后的内容,知道在讲负面影响,选A。
31任何事物的发展都是一个不断完善的过程,国家的发展也是如此。在发展的道路上不存在没有问题的国家。如果仅仅因为问题没有爆发,在不采取任何有针对性的防范措施,那么矛盾就会越积越多,问题的“能量储备”也会越来越大,一旦爆发就是灾难性的。这段文字意在强调:
A没有一个国家的发展能避免出现问题 B国家发展是不断发现和解决问题的过程
C采取有效的防范措施以防止问题的爆发 D加强对群众心理情绪的积极疏导和化解
解:跳读题干,发现指示性关联词“如果„„那么”,提示答案在该句中,接下来对该句进行关键词匹配,“防范措施”“矛盾”或“问题”“爆发”,到选项中去找,很快得出C。
32如果一直往上看的话,就会觉得一直在下面;如果一直往下看的话,就会觉得一直在上面;如果一直觉得在后面,肯定是一直在向前看。目光决定不了位置,但位置却永远因为目光而存在。关键是,即使我们处于一个确定的位置,目光却仍然可以投往任何一个方向。
符合这段文字的寓意的是:
A即便现在处于逆境,我们也应当积极面对未来 B我们应当树立远大目标来鼓励自己并为之努力
C我们应当切实地认识自己,不要为虚无的幻想所牵绊
D不论是何时、何地、何种情况,我们都应当独立地进行思考
解:寓意题相对复杂,不能直接找到关键词匹配,在使用各法则时要更为精细一些。首先跳读题干,发现指示性关联词“关键是”,前面一概不管了,只看后面。有两个象征对象“确定的位置”和“任何一个方向”。看A,逆境对应前者,“积极面对”对应后者,初步可以认定;继续看B,“远大目标”是定向性的,跟“任何一个方向”不太匹配,排除;看C,“认识自己”倒是可以跟“确定的位置”匹配,可是“即使”决定了不是文意的重点,排除;D,“独立的思考”跟文中两个对象都无法匹配,排除。此时可以很肯定地选A了。
33艺术是民众创造的,离不开民众的生活。而在民众的社会生活中,经济因素又是一个非常重要的因子。我们很难想象,离开了经济因素,民众的社会生活将是什么样子。我们同样也很难想象,没有民众经济生活参与的艺术,将如何能得到发展。具体到戏曲而言,它在宋代形成,除了有各种因素以外,还和宋代的演艺市场日益商品化有密切关系。可以说,这是戏曲赖以形成、生存和发展的重要原因。最后一句话中的“这”指的是: A民众的社会生活 B民众的艺术生活 C民众的经济生活 D戏曲艺术的大众化 解:指代题是最容易秒杀的,基本原则就是找代词最近的独立意群,其他文字一概不用看。首先定位“这”的位置,往前找最近的独立意群“宋代的演艺市场日益商品化”,扫描选项,跟C最接近,直接选。如果不放心的话,可以在这题做个小记号,如果回头有时间的话再把剩下部分的文字看看,印证一下,一般来说不会出问题,正确率90%以上。
34怀旧是人的一种挥之不去的情愫。怀旧之所以在经过岁月淘洗之后历久弥新,并非由于它本身具有多大的魅力,而是旧事能给回忆的人以深思的素材,使人们于曾经历过或正在经历的某种或剧烈或断裂的变动过程中,触发生活的感悟,或是从中汲取生活的动力。符合这段文字的内容是:
A怀旧是一种情感,具有一定的心理功效 B对过去的事情的回忆是人的最基本的情感 C怀旧的对象是引起生活发生剧烈变化的事情 D怀旧的原因在于旧事对人具有特定的积极作用
解:跳读题干发现指示性关联词“之所以„„是由于”,直接到选项中找原因,瞬间锁定D。至此已经可以pass到下一题了,但有人为了稳妥且时间充裕也可以进行下面的步骤:因为“是由于”部分是重点,而又出现“并非„„而是„„”,只看“而是”部分。“而是”部分都在讲好的,即“积极作用”印证了D选项的正确。
35古代帝国的政治集权虽然是它的力量所在,可也是它的弱点所在。它凭借军事暴力和贸易中的垄断优势来保证经济资源从边缘流向中心,却因为官僚机构吸收利润过多而造成社会虚弱。当帝国的统治成本过高以至无法支撑帝国的统治时,衰败便不可避免了。这段话论述了:
A古代帝国的政治与经济如何互相影响
B集权政治如何在古代帝国的演变中发生作用 C高额的统治成本是古代帝国灭亡的根本原因
D古代帝国的官僚机构在经济资源分配中的消极作用
解:跳读题干,发现这又是一个典型的总分段(为什么?因为后面的分句不是讲力量就是将弱点,已经完全被首句包括)。阅读理解题第二法则:明显的主旨句一出,其他一概不管。然后,重读总起句,闪出三个词汇“政治集权”“力量”“弱点”,根据第三法则:关键词匹配。马上到选项中去找包含这三个词意思(可能不全包含)的选项,瞬间选B。
36所谓的“现代化”,是用高科技去保存一个民族最珍贵、最重要的东西,而不是适得其反地将过去连根拔起,慌忙移植一个外国的东西。所有对文化的保存都不是单纯为了缅怀过去,恰恰是为了未来,因为没有过去的人必然失去未来。这段文字主要是强调:
A在未来的发展离不开民族文化的重塑 B运用高科技保存民族文化的意义 C保护文化对民族未来发展的价值 D民族文化应如何面对多元文化的冲击
解:这题的语言特征不是很明显,两个“是„„不是„„”,不太容易搞得清楚层次和重点。可以反向使用关键词匹配法,从选项倒推到题干进行匹配。A选项,“未来”“民族文化”“重塑”,“重塑”在题干中没有匹配信息;B选项“高科技”“保存”“民族文化”,都有匹配信息,待选;C选项,“保护”“文化”“未来”,都有匹配信息,待选;D选项“民族文化”“多元文化”“冲击”,后两者没有匹配信息,排除。最后在B/C中选择,发现B以偏概全,没有涉及第二个“不是„„是„„”的内容,所以选C。
37古车上的篷盖有的用席蓬,有的用麻布之类制作,顶上比较陡,到篷边上挑起而成为曲线。这样的好处,一是可以不挡住乘车人的视线,二是可以使顶篷上的雨水排得更远。这段话的主要内容是:
A介绍古车篷盖的材料及特点 B介绍古车篷盖的形状与功效
C说明古车篷盖在设计上非常注重实用性 D说明古车篷盖在设计上兼顾实用与审美
解:指示性关联词(包括序数词)“一„„二„„”非常显眼,序数词一出,其本身并不重要,总领序数词的语句必是考点,即“这样的好处”,马上就可以排除A、B。再看看“一„„二„„”的内容,就容易选出C了。
38我国的矿产资源利用方式还比较粗放,在一些地方采富弃贫,一矿多开、大矿小开的现象较为普遍。我国矿产资源总回收率金额共伴生矿产资源综合利用率分别为30%和35%左右,比国外先进水平低20个百分点。大中型矿山中,几乎没有开展综合利用的矿山占43%。随着矿产资源开发强度进一步加大,矿山环境保护与恢复治理难度将越来越大。这段话主要强调我国矿产资源应: A加快转变矿产资源利用方式 B加强矿山保护和恢复治理
C下大力气提高矿产资源开发强度 D严厉制止矿产开发中的浪费行为
解:跳读题干,又是总分段,看关键句即首句,闪出关键词“资源利用方式”,瞬间定位A。39影视剧翻拍从来都是既讨好又挨骂——利用经典多年来积下的人气口碑,至少在吆喝声上就比原创剧占了便宜,但它们也必须面对老观众挑剔的目光。这段话主要谈论影视剧翻拍: A可能遇到的难题 B必须应对的处境 C有利和不利的条件 D不同于原创剧的特点
解:一眼看见指示性标点——破折号,破折号前后必有考点。定睛一看,破折号前方是重点“既讨好又挨骂”,注意,这是讲境况不是讲条件,小心大意错选C。正解是B。
40已经没有多少人注意到瓶装饮用水的“真实身份”了。在商业部制定的软饮料分类国家标准中,瓶装饮用水是作为“饮料”一类定义的,其中包括了“饮用天然矿泉水、饮用纯净水和其他饮用水。”现在几乎没人把它当作饮料。它并非像形形式式的碳酸饮料那样可以选择,在人们看来,它们是一个整体,是城市日常生活饮用水源的组成部分——可供选择的,无非是品牌。
这段话表达的主要观点是: A对瓶装饮用水的定义需要修改 B市场上瓶装用水的品种太少 C各种品牌的瓶装饮用水差别甚微 D喝瓶装饮用水已是极其自然的事情
解:同上题,破折号一出直接去看破折号前后,从“日常生活饮用水源”得出D.41当小机器人“金字塔漫游者”吃力地沿着长约64米的“南通道”独自向上攀爬时,这段90分钟的孤独之旅显得格外漫长,一如这昏暗的甬道本身的寿命。“人畏惧时间,而时间畏惧金字塔”这句阿拉伯谚语的真意,在此刻突显无疑。这段话意在强调:
A小机器人的攀爬过程非常缓慢 B金字塔“南甬道”路况非常糟糕 C阿拉伯人充分了解金字塔的特点 D小机器人攀爬的金字塔历史悠久
解:该题大量出现引号,强烈刺激眼球。指示性标点——引号表引用时,其本身必是考点。直接看“人畏惧时间,而时间畏惧金字塔”,讲的是历史悠久,瞬间定位D。
42原本生长于三峡地区的野生猕猴桃,于上世纪被带到新西兰培育。如今这种被命名为“奇异果”的水果,每年给新西兰带来三亿美元收益。“出口”到中国后,每公斤售价50元。这段话主要告诉我们:
A中国没有很好开发野生猕猴桃的价值 B新西兰的环境更适合猕猴桃的生长 C“奇异果”的价值远优于野生猕猴桃 D野生猕猴桃具有极高的市场价值
解:主体分析法,题干讲了两个主体两件事“中国猕猴桃贱”,“到了新西兰贵”,得出结论A。
43劳动密集型出口始于沿海地区,现在已经开始向内陆扩散,而沿海地区和内陆的一些城市开始了产业升级。世界经济的发展符合雁行模式,即较高技术的产业不断由较发达的国家向较不发达的国家转移。中国经济的发展也符合雁行模式,产业发展正在形成由沿海向内地的梯度转移,产业发展正在形成由沿海向内地的梯度转移。在可以预见的未来,这一模式还将持续下去。这段文字主要说明了:
A内陆地区亟需加快产业升级 B沿海地区的发展已经走到了尽头 C中国经济的发展模式与世界一致 D沿海地区应减少劳动密集型产业份额
解:跳读,发现一个词汇几次出现,运用解题法则七:高频词汇提示答案!联系高频词汇出现的三处,不难得出答案C
44社会保障体系建设的目标,即到2020年人人不同程度地享有社会保障。社会保障体系的底线是,要防止任何人由于生活困难陷入绝望的境地,要消除他们的生存危机和生存恐惧。只要有一个人因为生活困难而绝望了,那么这个保障的网络就是有漏洞的。这段文字主要阐述社会保障体系建设的: A原则 B期限 C目标 D意义
解:太简单了,关键词匹配“社会保障体系建设的目标”,当然选目标,一秒钟!45.近年来,各种搞笑、轻浮的网络语言大规模地侵入了传统汉语的领地,影像馆大有不断壮大之势。对待网络语言,虽然学界和社会上还有很多不同的声音,但可以肯定的是,如果缺乏及时合理的鉴别和引导,任其自流,无疑将会消解传统汉语的诗意和韵味,割裂汉语的文化传承脉络,同时也将使国家语言文字的严肃性和规范性受到挑战,使其陷入游戏和随意改写的危险中。这段文字旨在说明
A应该对网络语言进行及时合理的鉴别和引导 B传统汉语的地位岌岌可危
C网络语言的诗意和韵味远不如传统语言 D网络语言对传统汉语形成了一定的冲击
解:跳读题干,“但可以肯定的是”映入眼帘,转折决定一切!只看后面的部分。后面又出现指示性关联词“如果不(‘缺乏’的同义代换)„„将会„„”,“如果不”是重点。“如果不”引领的语句关键词是“鉴别和引导”,定位A。
接下来还有更为详细的解题方法概括,因选取例题比较麻烦,可能得耗费一点时间,不好意思啦~