13级制药工程系生物制药技术4班

时间:2019-05-14 07:06:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《13级制药工程系生物制药技术4班》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《13级制药工程系生物制药技术4班》。

第一篇:13级制药工程系生物制药技术4班

心理主题班会报告

策划:

一、时间:2014年6月4日下午:五六节课

二、地点:一号教学楼北1304

三、主题:“认识自我,超越自我”

四、主办单位:13级制药工程系生物制药技术四班

五、目的:通过一系列的材料和互动沟通环节让同学们认识到生命的珍贵与奇妙,要让生命活出精彩,不要让韶华被裹上尘埃,失去朝气,认识自我,学会正确的看待自己,学会对现实说不,超越自我,让自己越来越强大,劝诫同学们不要因为大学给了我们相对自由的环境而放任自己,忘记过去,忘记当初的梦想,忘记当初的豪情壮志,被生活磨去了棱角,勉励同学们要正确的认识自我,认识自己身上存在的不足与优点,认识自己现处的环境,认识自己将来可以发展的方向,明确人生的主大调,不是好逸恶劳的活着,在最能吃苦的年纪选择安逸的享受,放纵自己。而是要艰苦奋斗,全心全意的去付出,去挑战未来。无论现在、将来处于怎样的环境,都要勇往直前,绝不退缩,不到最后一刻绝不放弃,朝着心中的彼岸步步走去。

六、特点:以丰富的材料来开展班会让班会气氛显得生动不空洞,利于同学们接受与采纳班会所传达的一种对生命,对人生的认识。

七、班会形式:以丰富多彩的材料为主,同学们相互沟通交流为辅,良性互补,加强相关概念的理解与接受。内容充实具有趣味性和相关性,有助于同学们进行自我思考。

创意阐述:

1、以一个小故事开始班会

从前有四个旅行者,他们一起寻找传说中神奇的仙果,他们怀着不同的愿望,但都为了一个目的,一起出发了,他们历辛艰苦,互相搀扶,互相鼓动,艰难踩着每一步。岁月的刻刀磨去了他们年少的轻狂,在他们的额头眼角刻下沧桑。他们开始衰老。他们中的三个人都放弃了,可是只有其中的一个人一次次挑战极限,死里逃生,五十年不停追寻着。终于有一天,他踏上了一块平地,他的手和脸已苍老得失去了知觉,只有一颗心依然顽强跳动,他看不明听不清,只能用心细细地感觉到这片土地,闻到叶的清香,花的浓烈,果的馥郁。他吃力地摘下一枚软果,咬了一口,奇迹般出现了,他清晰地看见果树成行。只有亲自摘品采新鲜的仙果,才能是最大的收获。由这则小故事让同学们得到个人方面的一些启示,总体要传达的概念是:为了自己的梦想而奋斗的过程是艰苦的,可是当你实现自己的梦想时你会发现所有所有的努力都是值得的,你会得到真正的快乐。任何东西都会随着时间的流逝而失去,只有经受时间的打磨,历经风霜,而培养的那种撼动天地的气魄是真正存留下来的。告诫大家明白既然选择了远方,便只顾风雨兼程,绝不退缩,梦想需要艰苦付出实践才能得以实现。

2、播放一段高考励志视频<诗>

即使我们已经高考完一年了,不再是冲刺在高考边缘的高三学子,没有了高三时那么沉重的压力与负担,没有了父母老师的殷殷期盼,再回过头来看这个视频的感慨不会像以前那么深,但高三赋予给我们的一种成长态度,对人的一生来讲都是具有相当重要的意义的。

3、加强互动性

提出一些问题,来引起同学们的思考,互相参与回答。(例如:向一位女同学询问:请问你认为自己是一个什么性格的女孩,你认为你身上存在着哪些优点和缺点,作为一名大学生,在现阶段,你认为你可以通过做哪些具体的行动来提高自己各方面的能力,逐步实现自己的目标?)紧扣主题“认识自我,超越自我”来进行互动,真正意义上让同学们进行自我认识,对自己个人发展的方向做出一份对自己的规划书,并明确自己应该为之付出努力的态度。

4、播放励志大戏《大长今》中的某一特定片段,《大长今》是韩国的一部励志大戏,这个优秀的文艺作品带给我们一个深刻的人生训诫:不管命运如何坎坷,挑战如何艰巨,前途如何未知,都应该全力以赴,不向现实低头。

八、班会流程:

1主持人为班会致辞并宣布班会开始;

2班会正式开始;

3以一则小故事来开始班会,渲染气氛;

4播放一段高考励志视频《诗》;

5互动环节,主持人来抽点班上几位同学进行提问,互动交流;

6播放励志大戏《大长今》中的某一特定片段增强大家对于自我成长,个人才干培养的认识;

7由学习委员总结班会内容;

8主持人宣布整场班会圆满结束;

班会组织人员:

班会总策划、总负责人:唐瑶、谈欣、吴致川

总结:

本次班会举行的很顺利,同学们都能积极的参与进来,进行自我认识,自我反思,深刻感受“认识自我,超越自我”所传达的一种人生态度,实现自我成长。

13级制药工程系生物制药技术4班班级代码:13030104

第二篇:生物制药技术

08药学***3陈省委

组合生物合成药物进展

摘 要50年来抗生素在人类疾病治疗中发挥了重要作用,今后的几十年里它们也将是关键的治疗剂。尽管在过去的20年中通过靶向筛选发现了一些微生物药物,但是这种筛选方法很难发现新类型药物。组合生物合成可以弥补这种不足,通过基因工程方法改造微生物基因和酶,产生新的抗生素,发现那些在自然界中不能发现的药物。

关键词 基因工程合生物合成新抗生素

微生物种类繁多,其产物化学结构丰富多彩,生物活性十分广泛,是开发各种新产品的丰富资源,但是传统的筛选方法已远远不能满足社会发展的需要。随着分子生物学和生物技术的发展,以及基因组学、蛋白质组学、生物信息组学、代谢组学研究的深入,人们对微生物基因组的研究也有了显著进展,已经阐明了许多与微生物代谢有关的生物合成基因,为微生物组合生物合成药物的研究和开发奠定了良好的基础。

一、研究背景

自1928年弗莱明发现青霉素和1942年瓦克斯曼发现链霉素以来,微生物药物在疾病防治和拯救人类生命中起着十分重要和不可替代的作用,特别是抗生素被国外科学家誉为20世纪医学领域的皇冠宝石。微生物药物一直是临床最常用的药物,在西方发达国家,抗生素占临床处方药物的20%以上,在中国约占处方药物的30%。但自上世纪70年代后,随着脊髓灰质炎、天花、麻风等传染性疾病先后在全球范围内被消灭,国家对微生物药物研究的支持逐渐下降,抗传染病药物研究进入了困难时期。上世纪90年代后,我国在已有亿乙肝病毒携带者的基础上,又出现了100万以上人类免疫缺陷病毒(HIV)携带者。2002年末以来,重急性呼吸窘迫综合征(SARS)的出现使我国的传病控制告急,不得不重新思考微生物药物的研究策略在新的时期里,微生物药物研究再度升温,原因

①新病原微生物不断出现,如SARS、艾滋病(AIDS)疯牛病等;②生物武器的使用,如炭疽等;③各种耐菌株在世界范围的传播;④许多传染性疾病,如肺核、血吸虫病等的死灰复燃。目前国内外侧重研究的生物药物,主要有抗新病原微生物,抗耐药菌,抗病毒,抗肿瘤抗生素以及微生物来源的生理活性物质。微物药物的研究主要

包括以下内容:①抗新病原微生药物的寻找与开发;②细菌耐药机制及其抗耐药细药物研究;③微生物药物的生物合成基因研究;④组生物合成微生物药物研究。其中组合生物合成微生药物是近年发展较快的研究领域,将在创新药物研中发挥重要作用。

二、组合生物合成生物技术,尤其是基因工程技术的不断发展,为生物医药领域开辟了广阔的前景;通过基因工程技术所得到的药物也在临床治疗某些疑难疾病中发挥着越来越重要的作用。

广义,基因工程产品分为两类

①单基因直接产物。通常是指单个基因编码序列的翻译产物(蛋白质),它们一般是生物大分子如干扰素和单克隆抗体,目前生物医药领域中开发的多数产品均属于此类,其中包含有效地用于临床治疗的如重组人胰岛素、干扰素和促红细胞生成素。我国在此领域独创的药物不多,而且这类药物的一个突出缺点是它们比较容易被仿制,只要有了相应的细胞系即可利用基本设备进行生产。

②多基因间接产物。是指由多基因编码的多酶体系介导而合成的小分子化合物和多肽,包括自然界由微生物和植物产生的天然产物,如抗生素、生理活性物质或萜类化合物等结构比较复杂的化合物。它们品种繁多,性能各异,仅就目前研究得比较深入的聚酮体和萜类化合物,就包括具有抗肿瘤作用的阿霉素、紫杉醇,具有免疫抑制作用的FK506、西莫罗司,具有降血酯作用的洛伐他汀、银杏内酯,具有抗结核杆菌作用的利福霉素,抗疟药物青蒿素等。

组合生物合成(combinatorial biosynthesis)是在微生物次级代谢产物合成基因和酶学研究基础上形成的。组合生物合成的概念是结构不同但生物合成途径相似的抗生素生物合成基因之间可以进行重组、组合或互补产生新结构的化合物。尽管微生物药物的结构多样,但形成这些产物的主要生化反应机制却基本相同,它们通常是由非常简单的化学物质,如小分子羧酸和某些氨基酸作为合成起始单位和延伸单位,通过由一系列基因编码的多酶体系参与的生物化学反应(构成一个合成途径)而形成的,参与这些天然产物生物合成的多酶体系是由多个结构明显分开的功能区域所组成。研究表明,参与这类小分子生物合成的基因通常是连锁或邻接而构成一个基因簇(cluster),这为基因的克隆和操作提供了方便,同时由于参与

次级代谢生物合成酶系对底物的特异性,专一性要求不是很严格的,对结构相类似的底物均可识别,这一特点为不同基因组合产生新的化合物创造了条件。因此,有针对性地对某些基因进行操作,如替换、阻断、重组以及添加、减少组件等,均有可能改变其生物合成途径而产生新的代谢旁路(metabolic pathway),继而形成新的化合物,这就为组合生物合成提供了基础,国际上已有通过这些手段得到多个化合物的报道。

三、研究的科学意义

开展微生物基因工程组合生物合成创制新型药物研究,具有如下意义。

1、利用组合生物合成体系,完成化学方法不能完或难以完成的活性化合物的合成,如抗癌药物紫杉(taxol)等;这类活性化合物在自然界中含量少、需要大、医学价值高,而且通常化学合成困难(成本高,难大,环境污染严重),为了确保红豆杉资源的可持续用,除正在开展的苗圃栽培,并以苗圃作为紫杉醇提的原料之外,通过生物合成来使它们具最终的商业值是一个极具潜力的手段。例如,与抗癌药物紫杉醇用相似的埃波霉素(epothilone)已在链霉菌中通过合生物合成方法获得表达,现已进入开发研究阶段。、对一些现有的结构复杂的天然产物如青蒿素银杏内酯等有效组分进行定向合成,对临床用抗生品种进行有针对性的修饰和改造,如对红霉素进行造产生酮内酯型的大环内酯类抗生素,获得对临床药菌具有活性的抗生素衍生物;或者通过对现有天产物或抗生素的结构改造,获得具有全新活性的或化性能有明显改善的天然产物或新抗生素。、组合生物合成产生新化合物的潜力很大,化合数是以可操作基因的指数方式形成,如设R为可利的基因数,n是每个基因的不同等位形式(即不同天产物来源的数目),从理论上讲经过基因组合可得Rn种排列组合,即得到Rn个化合物。通过组合生合成,获得一大批新化合物,作为高通量药物筛选样库的来源之一。、由于多基因组合操作的平台是以易于大规模产的微生物体系为基础,使创制新型药物的研究便产业化。、组合生物合成的研究,必将推动我国在基因水对天然资源的利用,更好地利用植物代谢产物,挖掘前实验室条件下无法进行培养的生物体,包括海洋的生物体。随着研究和应用的发展,植物和海洋生物级代谢产物的组合生物学研究,也将蓬勃

发展起来。

四、国内外研究现状

1985年,Hopwood教授[4]在世界首次报道用遗工程的手段合成“非天然”的天然产物isochromanequinone,该工作为后来的组合生物合成奠定了础。在以后的十几年里,这一领域成为天然产物代工程研究中最活跃的领域,许多微生物次级代谢研的专家都加入这一领域的工作,因为组合生物合成潜力制造出很多先导化合物。目前的发展趋势由最初的基础研究逐步演变为基础与应用兼顾,有的地向产业化迈进。该领域的研究也同样得到工界的重视,美国加州高新技术产业公司研制的埃波素(epothilone D)已进入III期临床评价阶段。埃霉素原来由纤维堆囊黏细菌产生,其产量低,繁殖时间长,产品无法进行产业化生产。该公司利用基因组合技术使纤维堆囊黏细菌的埃波霉素生物合成基因在链霉菌中得到表达,并通过酰基转移酶域替换及羟基化酶基因的阻断,获得了主要产生埃波霉素中抗肿瘤活性最好组分的epothilone D的基因工程菌。我国自上世纪80年代初开展以多基因组合工程技术研制新药的研究,在聚酮类抗生素如大环内酯类抗生素、利福霉素、安莎霉素及抗生素产生菌分子生物学研究方面,取得一定进展。国家重大专项支持的基因工程必特螺旋霉素己进入临床研究,基因工程必特螺旋霉素的研制为组合生物合成技术应用于小分子化合物的创制中提供了良好的工作基础和经验。我国微生物代谢产品研究历史悠久,已形成多学科协调合作的体系,近年来在国家的支持下该体系已得到一定的发展,加强了微生物及代谢产物资源的开发。我们已逐步建立难培养极端微生物和未培养微生物资源及海洋微生物的挖掘工作,建立并完善从土壤或其他来源直接分离DNA技术。我国有很强的有机化学合成能力,可以合成进行组合合成的起始单元,开展前体介导的组合生物合成(precursor-directed biosynthesis)研究。我们已建立并不断完善多种生物活性筛选模型,有天然产物化学分离鉴定及药理、药效、毒理评估的配套学科。

目前基因工程技术的发展水平,在单基因操作方面已经比较成熟;在多基因操作层次上虽然技术难度相对比较大,但近年来在此研究领域已有了迅猛的发展,已积累了较好的研究基础,许多次级代谢产物生物合成基因簇已得到克隆,基因结构与功能已得到阐明,并且发展了一系列大容量载体和合适的宿主表达系统。组合生物合成已形成国际药物领域研究的热点和一个重要发展方向。

五、研究方向与前景

我国天然微生物及植物资源丰富,以微生物作为平台的药物生产历史悠久、种类繁多,利用这一宝库开展组合生物合成研究,建立新型化合物库,作为新型药物或先导化合物的重要来源之一,有重要的理论与实际意义。组合生物合成为当今世界研究热点,我国也有一定工作基础,开展这方面的研究将有利于加深对次级代谢生物合成机理的研究与应用、促进生物技术新药研制中的作用,对发展我国新药有重要意义,并推动新药研究中高通量筛选技术与方法的建立与善,筛选出有价值的新药。

我们要重点加强难培养微生物及海洋生物资源挖掘工作,建立并完善从土壤或其他来源直接分DNA技术,以丰富组合生物合成基因资源;加强微物天然化学研究,建立微量、快速、高效鉴定天然产化学结构的技术和方法;充分利用我们已经建立的种生物活性筛选模型,通过广泛地联合与协作,扩展合生物合成技术在创新药物中的应用,建立我国基工程微生物组合生物合成创制新型药物或先导化合研究的技术平台。该研究将有助于开拓和促进我国新技术在新药研究与开发中的应用,对创制具有我自主知识产权的新药将会有积极推动作用。

对本课程的意见:

1、可能是因为选课人太少的问题,上课的时候没有很好的听课气氛,不过主要

还可能是自己的原因,自己不能集中精神听讲。

2、以后只要选课的人比较多了,应该会好一些,上课的人少了,总是觉得就像

这门课不重要,老师讲的很清晰,主要是我们上课时常开小差。自从上了大学,就没太有人管了,有时听起课来就爱听不听,这倒是对每门课都差不多的。

3、课堂上可以稍微提问一下,因为提问往往可以引起同学们的注意,这样走神的情况可能会少一些。

4、课堂中还可以穿插一些与课程有关的历史、说一下那些地方比较适合做研究、考研究生去哪里比较好啊什么的,这样既可以对现在的科研大环境有所了解,课堂内容也不至于太单调。

最后谢谢老师兢兢业业地为我们把课上完,尽管上课人数少,你还是把课完整地给我们讲完,谢谢老师为我们的付出。

第三篇:生物制药技术

分离纯化酶的一般程序

1粗酶液的制备:材料的选择,发酵液处理,细胞破碎及酶的抽提 2酶的初步分离:盐析,等电点沉淀,有机溶剂沉淀,离心分离 3酶的高度纯化(酶的精制):层析法(凝胶过滤、离子交换层析、吸附层析及亲和层析),电泳(等电聚焦电泳)

4浓缩干燥及结晶:透析,旋转蒸发,超滤,冷冻干燥

酶的主要纯化技术-层析技术

利用混合液中各组分的物理化学性质的不同,(分子的大小和形状、分子极性、吸附力、分子亲和力、分配系数),使各组分以不同的比例分布在两相中,当流动相以一定的速度流经固定相时,各组分的移动速度不同,从而使不同的组分分离的技术过程。称为层析技术(chromatography)

离子交换层析(ion exchange chromatography)

在一定的pH条件下,带电荷的蛋白质与高分子不溶性固定相偶联的离子交换基团相吸附,流动相中解离的离子与被吸附的酶发生可逆的交换,而对不同吸附能力的蛋白质进行分离 离子交换剂的选择:阴离子交换剂用于处理净电荷为负的蛋白质,阳离子交换剂用于处理净电荷为正的蛋白质

样品在低离子浓度条件下上柱,逐渐增加洗脱液的离子浓度,使蛋白依次被洗脱下来 洗脱方式可以是步进式洗脱或线性梯度洗脱 洗脱液一般用 NaCl

凝胶过滤法(gel filtration)亦称分子筛层析、排阻层析,是利用生物大分子的相对分子质量的差异进行层析分离的一种方法

凝胶层析的固定相是惰性的珠状凝胶颗粒,凝胶颗粒的内部具有立体网状结构,形成很多孔穴。当含有不同分子大小的组分的样品进入凝胶层析柱后,各个组分就向固定相的孔穴内扩散,组分的扩散程度取决于孔穴的大小和组分分子大小。比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,它们经历的流程短,流动速度快,所以首先流出;而较小的分子则可以完全渗透进入凝胶颗粒内部,经历的流程长,流动速度慢,所以最后流出;

分离提纯 脱盐 测定高分子物质的相对分子量

疏水层析(hydrophobic chromatography)

原理:蛋白质分子中含有亮氨酸、缬氨酸和苯丙氨酸等疏水性较强的氨基酸,当蛋白质溶液经过疏水层析介质的疏水配基时,蛋白的疏水性集团(疏水补丁)会与疏水配基发生亲和作用而被吸附在介质上。不同蛋白质分子中疏水基团的数量和特性有所不同。在洗脱时通过改变洗脱液的极性达到分离的目的

亲和层析(affinity chromatography)

也称功能层析、生物专一吸附或选择层析。根据生物分子与特定的固相化配基(ligand)之间的亲和力而使生物分子得到分离的方法 酶与激活剂/抑制剂/底物/辅酶;抗原与抗体;激素/配体与受体;蛋白质与DNA/RNA上特定区域

特定的配基(激活剂/抑制剂/底物/辅酶)固定于惰性载体 目的酶与配基特异性亲和吸附,杂质被洗脱 改变洗脱条件,解除目的酶与配基的专一性结合

固定化酶(细胞)的定义

优点:

1.稳定性显著提高;

2.同一批固定化酶能重复多次地使用; 3.固定化后,很容易与反应物分开(过滤),不污 染产物,而且有利于控制生产过程,同时也省去了 热处理等使酶失活的步骤;

4.可长期使用,并可预测衰变的速度; 5.提供了研究酶动力学的良好模型。缺点:

①固定化时,酶活力往往有损失。②增加了生产的成本,初始投资大。

③只能用于可溶性底物,而且较适用于小分子底物,对大分子底物不适宜。④非均相反应。

①注意维持酶的催化活性及专一性。在酶的固定化过程中,酶与载体的结合部位不应当是酶的活性部位,而且要尽量避免那些可能导致酶蛋白高级结构破坏的条件。②固定化应该有利于生产自动化、连续化。为此,用于固定化的载体必须有一定的机械强度,不能因机械搅拌而破碎或脱落。

③固定化酶应有最小的空间位阻,尽可能不妨碍酶与底物的接近,以提高产品的产量。④酶与载体必须结合牢固,从而使固定化酶能回收贮藏,利于反复使用。

⑤固定化酶应有最大的稳定性,所选载体不与废物、产物或溶剂发生化学反应。⑥固定化酶成本要低,以利于工业使用。

载体结合法

1物理吸附法2离子结合法3共价结合法 是将酶结合于不溶性载体上的一种固定化方法。1)物理吸附法 作用方式:非特异性物理吸附作用:范德华力;氢键;疏水作用;静电作用 优点:制作简单,酶分子的构象很少或基本不发生变化,固定化酶活力较高 缺点:酶与载体结合力弱,酶易从载体脱落 载体:纤维素、琼脂糖、活性炭、沸石及硅胶等 2)离子结合法

作用方式:离子键结合

优点:制作简单,处理条件缓和,酶蛋白的活性中心和高级结构破坏较少,可以制得活力较高的固定化酶。

缺点:离子键结合较松散,如在高离子强度下进行反应时,酶与载体易分开。载体:多糖类离子交换剂,合成高分子离子交换树脂 3)共价键结合法

作用方式:共价键结合

优点:酶分子和载体间的共价键较牢固,有良好的稳定性及重复使用性 缺点:制备过程复杂,反应条件比较剧烈,酶活性损失比较严重。

制作方法:先将载体活化,在载体上引入一个活化基团,然后该活化基团再与酶分子表面的基团(羧基/氨基/羟基)反应结合。有戊二醛法、重氮化法、烷基化法等。

交联法

利用双功能(或多功能)基团的试剂,使酶蛋白分子之间发生交联,凝集成网状结构而成为固定化酶

常用的双功能试剂有戊二醛、己二胺、顺丁烯二酸酐和双偶氮苯等。其中最常用的是戊二醛

包埋法

1网格型2微囊型

将酶包埋在凝胶的微小空格内或埋于半透膜的微型胶束内,但底物仍能渗入到里面与酶接触。

载体:凝胶,高分子聚合物(半透膜)

优点:利用此法制得的固定化酶,由于酶分子仅仅是被包埋起来,而未受到化学作用。酶蛋白几乎不起变化。

缺点:酶被包埋在内部,对大分子底物很难发生催化作用。所以用包埋法制备的酶,一般只适用与小分子底物。

包埋法分为:网格包埋法和微囊包埋法。

酶传感器(enzyme sensor)1生物传感器的概念

由生物识别物质(如酶、微生物、动植物组织、抗体等)和能量转换器相结合所构成的分析仪器,可以简便快速的测定各种特异性很强的物质 要求识别物质对被测物具有高度的敏感性和选择性

根据识别物质可分为:酶传感器、组织传感器、微生物传感器、免疫传感器

2、生物传感器的一般结构与工作原理 结构:有两个部分组成

生物分子识别元件(感受器):酶、核酸、抗体、细胞等 信号转换器(换能器):电化学电极、光学检测元件、热敏电阻、表面等离子共振器件等 原理:待测物质经扩散作用进入生物传感器,通过分子识别发生特异的生物化学反应,产生的生化信号经换能器转换为可定量和可处理的电信号,进而可检测出该物质的浓度.根据反应产生的信号不同,可选择相应的换能器.抗体

多克隆抗体:由于一个抗原通常都有几个抗原决定簇,因此每个免疫细胞都可能产生一种针对某一抗原决定簇(antigenic determinant)的抗体,这些由同一抗原产生的不同抗体统称为多克隆抗体。这些由不同B细胞克隆产生的抗体,称为多克隆抗体(polyclonal antibodies,PcAb)。

单克隆抗体:单一类型的只针对某一抗原决定簇的抗体分子,是由单一的B淋巴细胞克隆产生的结构和特异性完全相同的高纯度抗体。

抗原的制备

1.用基因工程技术制备重组蛋白抗原

2.提取纯化天然抗原

3.合成多肽半抗原

4.小分子半抗原

5.多肽半抗原及小分子半抗原与载体偶联

免疫

动物选择:Balb/c小鼠,品系一致

途径

体内,体外,脾内免疫

筛选阳性克隆及克隆化

克隆:由单个细胞繁殖扩增而形成性状均一的细胞集落的过程。

目的:筛选阳性克隆;确保杂交瘤细胞所分泌的抗体具有单克隆性以及从细胞群中筛选

出具有稳定表现型。

筛选阳性克隆鉴定

单克隆抗体活性检测方法:

1)酶联免疫吸附实验(ELISA):可溶性抗原、细胞核病毒。2)放免测定(RIA):可溶性抗原、细胞抗体。3)FAC(荧光激活细胞分选仪,流式培养仪):针对细胞表面

抗原的抗体检测。

4)IFA(间接免疫荧光法):用于细胞和病毒抗体的检测。

杂交瘤细胞的克隆化

(1)有限稀释技术 柏松分布(2)半固体琼脂培养法

0.5%琼脂培养基中进行克隆

1ml含不同数量的细胞悬液

1ml42度0.5%的琼脂液

单克隆抗体的大量制备

基因工程抗体(genetically engineered antibodies,gAb)

是通过基因工程技术研制的,即通过PCR技术获得抗体基因或抗体基因片段,与适当载体重组后引入不同表达系统所产生的抗体。基因工程抗体既保持了单抗的均一性、特异性强的优点,又能克服其为鼠源性的不足,是拓展单抗广泛人体使用的重要途径。

(一)嵌合抗体(chimeric antibody)

特点:是用人抗体的C区替代鼠的C区。效果:使鼠源性单抗的免疫原性明显减弱,并可延长其在体内的半衰期及改善药物的动力学。嵌合抗体的优点:

保持了亲本鼠单抗的特异性和亲和力;

减少人源性的恒定区的HAMA现象;

能有效地介导产生补体依赖的细胞毒作用(CDC)、抗体依赖性细胞介导的细胞毒作用(ADCC)及免疫调理作用。缺点:

目前已有数十种嵌合抗体进入了临床试用,虽然HAMA现象较鼠单抗大为下降,但有相当比例的患者仍会出现HAMA症状,针对可变区的抗独特型抗体反应仍很明显。

(二)改型抗体(reshaped antibody,RAb)亦叫“重构抗体”,“CDR移植抗体(CDR grafting antibody)”。它是利用基因工程技术,将人抗体可变区(V)中互补性决定区(complementarity determinative region,CDR)的氨基酸序列改换成鼠源单抗CDR 序列。

特点:此种抗体可以使人单抗获得鼠单抗的特异性又保持人源抗体的亲和力。

动物

动物细胞分类

1、贴壁依赖性细胞 概念:anchoraged-dependent cell需要有适量带电荷的固体或半固体支持表面才能生长的细胞 大多数动物细胞都属于此类。

2、非贴壁依赖性细胞

概念:anchoraged-independent cell不依赖于固体支持物表面生长的细胞,可在培养液中悬浮生长,被称为悬浮细胞。举例:血液、淋巴细胞、肿瘤细胞和某些转化细胞,Namalwa细胞。

3、兼性贴壁细胞

概念:对支持物的依赖性不严格,既可贴壁生长,也可悬浮生长。举例:CHO细胞、BHK细胞、L929细胞。理想的药物生产细胞系

转基因技术的基本原理

将体外构建的重组DNA分子(目的基因或基因组片段)通过显微注射、或转染胚胎干细胞等方法注入动物的受精卵或着床前的胚胎细胞,然后将此受精卵或胚胎再植入受体动物的输卵管或子宫中,使其发育成携带外源基因的转基因动物。

同源重组

双链DNA的两个区段的DNA序列基本一致,但不一定完全相同,叫做同源区。同源的双链DNA可以通过相互交换进行重组。

外源DNA如有同源区,也可通过类似的同源重组过程整合到生物的染色体基因组上。

胚胎干细胞(Embryonic Stem Cell,ES)是从早期胚胎的内细胞团经体外培养建立起来的多潜能细胞系,具有胚胎细胞相似的形态特征和分化特征。

新型

反义技术:根据碱基互补原理,使用与目标靶的遗传物质(DNA或mRNA)特定互补的核苷酸片段来封闭基因表达的技术方法。

反义药物:人工合成或生物合成的DNA或RNA,能与RNA互补,抑制疾病基因的表达。反义核酸(antisense nucleic acid)是一段与靶基因的某段序列互补的天然存在或人工合成的核苷酸序列。它可通过碱基配对与细胞内核酸特异结合形成杂交分子,从而在转录和翻译水平调节靶基因的表达,具有合成方便、序列设计简单、容易修饰、选择性高、亲和力高等特点。

核酶(ribozyme)具有酶活性的RNA,可降解特异的mRNA序列。

RNA干扰(RNA interference,RNAi)

由双链RNA介导的细胞内特异性mRNA降解过程,导致靶基因的表达沉默。

基因导入方式

直接体内疗法(in vivo)

是指将目的基因直接导入体内有关的组织器官,使其进入相应的细胞并进行表达。间接体内疗法(ex vivo)

是指在体外将目的基因导入靶细胞,经过筛选和增殖后将细胞回输给患者,使该基因在体内有效地表达相应产物,以达到治疗的目的。

肿瘤的基因治疗

(一)通过抑癌基因抑制肿瘤细胞生长和诱导细胞凋亡。

(二)通过病毒感染杀伤肿瘤细胞

(三)通过诱导免疫系统识别并杀伤肿瘤细胞

(四)肿瘤的自杀基因治疗

(五)肿瘤抗原靶向的肿瘤基因治疗

(六)细胞因子基因治疗

第四篇:生物制药技术在制药工艺中的应用

生物制药技术在制药工艺中的应用

【摘要】生物制药技术在近些年来的发展速度极快,而且被广泛的应用到西药制药中,通过在大量的临床实验中的应用,对提高西药制药效果以及促进制药发展有着深远的影响。

【关键词】生物制药技术 制药工艺 应用

一、前言

随着科技的发展,生物制药技术日新月异。技术的研究程度也上升到了更高水平,更加准确细致地改善人们身体的各个部分的机能,使人们的身体素质得到更有效的提升。诸如基因工程技术、酶及细胞固定化技术、细胞工程及单克隆抗体等,也已成为生物制药方面的热点词汇,而肿瘤药物、免疫性药物、冠心病治疗药物等也成为了人们生活中常见的药品。由此可以看出,生物制药技术在制药工艺方面的应用已经十分广泛,同时也达到了一定的水平。生物制药技术逐渐成为制药工艺的中流砥柱,成为制药工艺发展的强心剂。

二、生物制药技术在制药中的应用

1.在研制冠心病治疗药物方面的应用。冠心病是现代社会常见的一种疾病,据统计,我国每年死于冠心病的患者约有100万。在冠心病防治方面,目前市场上出现多种防治药物,冠心病防治药物的需求在一定程度上推动西药制药行业的快速发展。随着生物制药技术的日益发展,基因操作技术得到迅速地发展,其中,基因测序技术及基因治疗的发展前景广阔,目前已经逐渐进入商业化开发阶段,促进冠心病临床治疗的进展。

2.在研制抗肿瘤药物方面的应用。肿瘤是现代社会常见的疾病之一,随着生物制药技术的不断进步,抗肿瘤药物日益增多,预计在未来的5年内,我国抗肿瘤药物将得到迅速的发展,比如可以运用基因治疗法治疗肿瘤,主要运用γ-干扰素基因治疗骨髓瘤;可以运用基因药物抗体,抑制患者体内肿瘤的扩散,可以运用IL-2受体的融合毒素,促进CTCL肿瘤患者疾病的治疗;运用基质金属蛋白酶(TNMPs),可以抑制患者肿瘤血管的扩散,同时可以阻拦肿瘤在机体内的转移。关于这方面的药物,未来将成为抗肿瘤的主要药物之一,给肿瘤患者带来新的希望。目前,在肿瘤临床治疗中,已经有三种化合物进入临床试验阶段,相信不久就可以得到广泛地应用。

3.在研制免疫性药物方面的应用。无数的临床试验表明,现代社会大多的疾病都与患者自身的免疫系统有着密切的关系,免疫力低下或者免疫缺陷都可以引发多种疾病,比如风湿性关节炎、斑狼疮、多发性硬化症以及哮喘等等。随着生物制药技术的不断发展,越来越多的制药公司开始研制出相关的风湿性关节炎药物。比如,美国Cetor′s公司目前已经研制出TNF-α抗体,这种抗体在治疗风湿性关节炎方面,可以取得满意的疗效,有效率可达80%以上。在哮喘疾病治疗中,Genentech公司已经研制出单克隆人源化免疫球蛋白E抗体,这种药物可以有效地改善哮喘患者的疾病症状,促进患者疾病的治疗,目前进入Ⅱ期临床试验阶段。此外,在糖尿病治疗方面,一些公司还研制出基因疗法,即在糖尿病患者的皮肤细胞中,注入胰岛素基因,使工程细胞能够全程供应胰岛素。

4.在研制蛋白质治疗药物及基因重组多肽药物方面的应用。基因重组,主要指将两种不同生物的DNA进行有机结合的技术。通过基因重组技术,可以将两种完全不同的生物基因进行融合,使一种基因进入到另一种基因中,摆脱生物物种之间的束缚,并在分子水平上对一些重要基因进行相关的操作。运用基因重组技术,可以研制出相关的蛋白质治疗药物及基因重组多肽药物,比如,运用基因重组技术可以研制出激素、多肽、细胞因子、蛋白质、酶、单克隆抗体及疫苗等等。

5.在研制神经性药物方面的应用。运用生物制药技术可以制造多种神经性药物,这些神经药物对脑中风、脊椎损伤、老年痴呆症、帕金森氏病等疾病的治疗有着非常重要的意义。目前,已经进入临床试验阶段的有胰岛素成长因子rhIGF-1。同时进入临床试验阶段还有脑源神经营养因子(BDNF)与因子(NGF),这两种因子主要用在脑萎缩硬化症患者及末梢神经炎患者的疾病治疗中。

中风是现代社会常见的一种疾病,临床试验表明,由生物制药技术研制出的CerestaL可以有效地改善中风患者脑力方面的症状,对中风患者的疾病治疗起着非常重要的作用,目前,在我国临床医学中,CerestaL已经逐渐进入Ⅲ期临床阶段,相信未来会在中风疾病治疗方面发挥重要的作用

三、生物制药技术的发展前景

1.生物制药技术的发展面临的挑战

伴随着生物制药产业与人们生活的关系愈加紧密,生物制药技术的发展的步伐刻不容缓。我国生物制药技术和产业在发展过程中更多的是借鉴国外的先进技术和经验,虽然在人才方面,我国所拥有的数量已经十分庞大,但真正拥有科技创新能力的精英少之又少。同时,与国外相比,我国生物制药产业缺乏技术高超的带头人。一个新兴的产业,倘若没有高素质、高水平的并且深谋远虑的领头羊,即使拥有再多的科技研发人员、再先进的技术及设备,那也是一盘散沙,成不了气候。当然,我们也不能闭门造车,即使我过生物制药技术发展迅猛,但仍旧存在许多不足之处,依旧需要与国外合作交流。因此,只有加强国内外合作,取其精华去其糟粕,才能使我国在激烈的竞争中取得好的结果。

2.生物制药产业的发展趋势

随着科技的发展,生物制药技术的研究领域也到达了分子水平。同时,对人体遗传物质的研究以及对各种疾病的致病机理的探索,也为生物技术的发展注入了强大的活力,使得生物制药技术发展的方向和目的更加明确。在未来,生物制药技术的发展不再仅仅局限与药品的研发,更渗透到有关人体生长发育和生存的各个方面。

毕竟,生物制药技术的产生本生就是为了人们能够拥有更加强健的身体和更长的寿命。而科学家的关注点,也逐步转移到提高产品研制的成功率、降低试验制造成本、拓宽药物适用市场范围上。总之,与各个学科的结合与发展,再试图通过科学技术手段使生物制药技术带来更多收益,为医药行业提供更多价格低廉、效果明显的药物是生物制药产业未来发展的方向。

四、结语

生物制药技术的发展,关系到人们身体健康和生活质量的提高,也关系到其他各个领域的发展,关系到国家的长治久安和经济建设,是在社会主义发展的新时期不可忽视的方面之一。而它的发展,也需要国家的大力支持,依赖大量科技人才和资金的投入,也需要正确的引导。生物制药技术在制药工艺中的运用,也暗示着更方便、更有效的生物制药的出现,给和谐社会的建设更添一丝活力。

【参考文献】

[1]张蕊,田澎.生物制药产业现状分析及我国企业的发展战略[J].工业工程与管理,2013,16-21.[2]焦伟堂,冯旭东,叶旭,孙竹范.多相循环流化床流动规律的研究[J].北京工商大学学报(自然科学版),2012,4-25

第五篇:西药制药生产中生物制药技术的应用

西药制药生产中生物制药技术的应用

【摘要】生物技术发展日新月异,呈现出良好的发展势头和巨大的发展前景,从而使得生物制药业进入了一个前所未有的发展时期。当前,生物制药技术在西药制药生产中也有着十分广泛的应用。生物制药技术在西药研发和生产上具有非常重要的意义。因此,本文就当前生物制药技术的现状进行了分析,并且对其在西药制药中的应用进行了论述。

【关键词】西药制药;生产;生物制药技术;应用;

【中图分类号】R-0【文献标识码】B【文章编号】1671-8801(2014)06-0353-02

前言

进入21世纪以后,生物制药技术得到了迅猛的发展,成为最具潜力的技术之一,拥有非常广阔的发展前景。无数事实表明,生物制药技术对研制新药物,解决临床医疗难治疾病有着非常重要的意义。西药制药生产中常用的生物制药技术

当前在西药制药生产过程中用到的生物制药技术主要有基因工程技术、酶及细胞固定化技术、细胞工程与单克隆抗体技术等,下面对这几种生物制药技术进行简单的介绍。

2.1 基因工程技术

基因工程技术是将重组对象的目的基因插入载体,拼接后转入新的宿主细胞,构建成工程菌,实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。人体在生存和运动过程中需要大量的激素和活性因子,这是保障人体进行新陈代谢和调节生理机能的基础。临床医学实验表明,急速和活性因子能够有效的帮助调节人体生理机能,促进人体正常新陈代谢。但是自然状态下,人体中这些物质含量非常有限,根本无法满足临床医学的需求。基因工程技术的出现很好的解决了这个问题。基因工程使得激素和活性因子等物质的获取变得十分简单。例如治疗糖尿病的主要药物胰岛素,一般在动物体内获得。利用基因工程技术将动物体内的胰岛素合成基因分离,之后再转移到微生物细胞当中,通过基因表达的方式就能够获得更多的胰岛素激素,从而实现了生物制取胰岛素的过程。

2.2 酶及细胞固定转化技术

固定化酶技术是从20世纪60年代发展起来并广泛应用在制药领域的生物制药技术。广义的固定化酶包括固定化辅酶、固定化细胞和固定化细胞器。固定化酶主要指在一定的空间范围内呈闭锁状态存在的酶,能够连续进行反应,反应后的酶能够回收重复使用。而固定化细胞就是将细胞限制或定位与特定空间位置的方法。生物制药技术中固定化细胞,尤其是微生物细胞在合成生产抗生素、激素和氨基酸等药物中有着非常广泛的应用,并且取得了巨大的成效。固定化酶技术能够弥补酶的缺陷,例如利用大肠杆菌酞化酶生产6-APA、乳酸菌转化蔗糖制备右旋糖醉等等。

2.3 细胞工程及单克隆抗体

细胞工程是生物工程的一个重要方面,主要技术包括细胞培养、细胞融合、细胞拆合、染色体操作及基因转移等等。单克隆抗体技术是指由单一B细胞克隆产生的高度均

一、仅针对某一特定抗原表位的抗体。一般单克隆抗体是通过杂交瘤技术进行制备的。细胞工程和单克隆抗体培养技术为西药制备提供了一个全新的途径,同时也提供了全新的资源。例如我国的中草药之前都是靠采摘的方式获得,工作量大,工作环境复杂,并且无法满足产业化生产。后来经过学者的研究,利用细胞工程技术和单克隆抗体技术对植物细胞进行培养,从而获取含量成分与天然植物相似的植物细胞,从而满足了制药的需求。生物制药技术在西药制药中的应用

3.1 肿瘤药物

肿瘤疾病在各种疾病中死亡率一直处于首位。肿瘤是一种非常复杂的疾病,由多种机制导致而成。目前用于治疗肿瘤疾病的主要有早期诊断、手术、放疗、化疗等手段。因此,当前抗肿瘤药物的研发也是非常热门的课题,是许多学者关注的焦点课题。生物技术的发展为肿瘤药物的研发带来了新的途径。近些年,利用生物制药技术对肿瘤药物开发和研究的课题有很多,并且先后取得了一定的成果。例如利用基因药物抗体对肿瘤细胞的发展和扩散进行控制;利用基因治疗法对肿瘤疾病进行辅助治疗;利用基质金属蛋白酶对肿瘤血管的生长进行抑制等等。

3.2 神经性药物

常见的神经性疾病有老年痴呆症、脑中风、帕金森氏疾病以及脊椎损伤等。目前利用生物技术治疗神经性疾病非常常见。例如利用胰岛素生长因子rhIGF-1,神经生长因子NGF以及脑源神经营养因子BDNF等,都已进入三期临床试验阶段。

3.3 冠心病治疗药物

冠心病是现代社会非常常见的一种疾病,据不完全统计,我国每年由于冠心病死亡的病例有一百万。当前市场上有很多治疗冠心病的药物,例如Cen-tocor’s Reopro已经成功的研制出有效治疗由冠心病引起的心绞痛的单克隆抗体,对冠心病患者心脏功能的恢复有非常重要的意义。

除此之外,生物制药技术在研制免疫性西药和蛋白质治疗药物及基因重组多肽药物方面也有着十分广泛的应用。结束语

综上所述,现代生物制药技术的不断发展与应用为西药制药提供了更合理,更科学,更经济的制药工艺,将成为影响西药制药业发展的关键因素。未来西药制药生产水平如果想要得到进一步的提高,就必须不遗余力的加强研发力度,使生物制药技术能够在西药制药中得到更好的发挥,从而切实促进我国医药生产水平整体性的提高。

参考文献:

[1]雷中良,张晓红.生物制药技术的发展现状及未来趋势[J].黑龙江科技信息.2007(09).[2]宋佳,张国莲.小议我国生物制药技术的现状及趋势[J].黑龙江科技信息.2011(11).[3]彭文章,蒋力敏.生物技术药物的研究开发与产业化现状及前景[J].生物技术通讯.2009(02).[4]唐凯峰,仝致琦,祁佩时,李正,赵乐军,郭淑琴.复合式交替流生物工艺处理制药废水的研究[J].中国给水排水, 2007,(09).[5]杨佳宁,孙翠玲.浅谈生物制药技术在西药制药中的应用[J].黑龙江科技信息, 2011,(06).[6]史艳秋,陈畅,顾黎,邹思湘,宋静,王鹏.重组人β干扰素在DHFR~--CHO细胞中的高效表达[J].中国生化药物杂志, 2006,(03).

下载13级制药工程系生物制药技术4班word格式文档
下载13级制药工程系生物制药技术4班.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2011级生物制药技术班 毕业散伙饭

    2011级生物制药技术班 毕业散伙饭 策划书策划人:谢卓良 时间:2013年4月17日一、活动目的 大学生活即将说再见,不得不感叹这时间如行云流水,快得我们都来不及珍惜。亲爱的同学们,......

    论生物制药技术在制药工艺中的应用

    论生物制药技术在制药工艺中的应用 [摘 要]本文首先分析了我国生物制药技术发展现状,并对生物制药技术在制药工艺中的应用进行全面阐述,最后对生物制药技术的前景进行展望,生物......

    生物制药技术(5篇模版)

    一名词解释 基因治疗:将外来的基因导入细胞,用正常的基因置换病源基因或补充缺失的基因,从而达到治疗的效果。 抗体:是指浆细胞分泌的能和相应抗原特异性结合的具有免疫功能的球......

    生物制药技术介绍

    生物制药技术作为一种高新技术,是70年代初伴随着DNA重组技术和淋巴细胞杂交瘤技术的发明和应用而诞生的。三十多年来,生物制药技术的飞速发展为医疗业、制药业的发展开辟了广......

    《生物制药技术》实验

    《生物制药技术》实验指导 实验一 金霉素链霉菌培养基的制备(验证型) 实验目的: 1、学会培养基的配制 2、掌握灭菌方法。 实验原理: 金霉素链霉菌(Streptomyces aureofaciens)亦称......

    《生物制药技术》知识点

    《生物技术制药》知识点 第一章 绪论 一、需掌握的名词 药品 化学药品 中药 天然药物 基因工程药物 生化药物 生物制品 血液制品 生物技术制药二、概述性知识 1、我国《药品......

    2012生物制药工程系学生会学期工作计划

    2011-2012学年 生物制药工程系学生会工 作 计 划 生物制药工程系学生会 二〇一二年一月四日 生物制药工程系学生会2011-2012学年工作计划新学期开始,生物制药工程系学生会面......

    制药工程系2012年度工作计划[五篇]

    制药工程学院2012年度工作计划 新学期伊始,本学期系学生会将在领导的指导下,本着为同学服务的原则,积极配合学校做好各项学生工作;以丰富多彩的活动为载体,在同学中营造一种积极......