第一篇:高考数学试卷(理科)(全国卷ⅰ)(含解析版),08版
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0} B.{x|x≥1} C.{x|x≥1}∪{0} D.{x|0≤x≤1} 2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A. B. C. D. 3.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B. C. D. 4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1 5.(5分)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2 B.e2x C.e2x+1 D.e2x+2 7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a的值为()A.2 B. C.﹣ D.﹣2 8.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D. 11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A. B. C. D. 12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48 二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 . 14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e= . 16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 . 三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;
(Ⅱ)求tan(A﹣B)的最大值. 18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,AB=AC.(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小. 19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围. 20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;
若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程. 22.(12分)设函数f(x)=x﹣xlnx.数列{an}满足0<a1<1,an+1=f(an).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;
(Ⅱ)证明:an<an+1<1;
(Ⅲ)设b∈(a1,1),整数.证明:ak+1>b. 2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0} B.{x|x≥1} C.{x|x≥1}∪{0} D.{x|0≤x≤1} 【考点】33:函数的定义域及其求法.菁优网版权所有 【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域. 【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0. 又因为x≥0,所以x≥1,或x=0;
所以函数的定义域为{x|x≥1}∪{0} 故选:C. 【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域. 2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A. B. C. D. 【考点】3A:函数的图象与图象的变换.菁优网版权所有 【专题】16:压轴题;
31:数形结合. 【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论. 【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;
在汽车的匀速行驶阶段,路程随时间上升的速度保持不变 故图象的中间部分为平升的形状;
在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;
分析四个答案中的图象,只有A答案满足要求,故选:A. 【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;
如果图象是凹陷上升的,表明相应的量增长速度越来越快;
如果图象是直线上升的,表明相应的量增长速度保持不变;
如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;
如果图象是凸起下降的,表明相应的量降低速度越来越快;
如果图象是凹陷下降的,表明相应的量降低速度越来越慢;
如果图象是直线下降的,表明相应的量降低速度保持不变. 3.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B. C. D. 【考点】9B:向量加减混合运算.菁优网版权所有 【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手. 【解答】解:∵由,∴,∴. 故选:A. 【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的 4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1 【考点】A4:复数的代数表示法及其几何意义.菁优网版权所有 【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0 【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D. 【点评】本题的计算中,要注意到相应变量的范围. 5.(5分)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 【考点】83:等差数列的性质;
85:等差数列的前n项和.菁优网版权所有 【专题】11:计算题. 【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解. 【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95. 故选:C. 【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式. 6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2 B.e2x C.e2x+1 D.e2x+2 【考点】4R:反函数.菁优网版权所有 【专题】11:计算题. 【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式. 【解答】解:∵,∴,∴x=(ey﹣1)2=e2y﹣2,改写为:y=e2x﹣2 ∴答案为A. 【点评】本题主要考查了互为反函数图象间的关系及反函数的求法. 7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a的值为()A.2 B. C.﹣ D.﹣2 【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有 【专题】53:导数的综合应用. 【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值. 【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2. 故选:D. 【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用. 8.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位 【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有 【专题】11:计算题. 【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案. 【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象. 故选:A. 【点评】本题主要考查诱导公式和三角函数的平移.属基础题. 9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.菁优网版权所有 【专题】16:压轴题. 【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案. 【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1. 故选:D. 【点评】本题综合考查奇函数定义与它的单调性. 10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D. 【考点】J9:直线与圆的位置关系.菁优网版权所有 【分析】用圆心到直线的距离小于或等于半径,可以得到结果. 【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D. 【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题. 11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A. B. C. D. 【考点】LP:空间中直线与平面之间的位置关系.菁优网版权所有 【专题】11:计算题;
31:数形结合;
4R:转化法;
5G:空间角. 【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;
法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦. 【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;
(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,BF=1,B1F=A1S=,AF=3,在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==. 故选:B. 【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力. 12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48 【考点】C6:等可能事件和等可能事件的概率.菁优网版权所有 【专题】16:压轴题. 【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果. 【解答】解:分三类:种两种花有A42种种法;
种三种花有2A43种种法;
种四种花有A44种种法. 共有A42+2A43+A44=84. 故选:B. 【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84. 二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 . 【考点】7C:简单线性规划.菁优网版权所有 【专题】11:计算题;
13:作图题. 【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可. 【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9. 【点评】本题考查线性规划问题,考查数形结合思想. 14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 . 【考点】K8:抛物线的性质.菁优网版权所有 【专题】11:计算题. 【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案. 【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,则 与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为 故答案为2 【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力. 15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=. 【考点】K4:椭圆的性质.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】设AB=BC=1,则,由此可知,从而求出该椭圆的离心率. 【解答】解:设AB=BC=1,则,∴,. 答案:. 【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算. 16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于. 【考点】LM:异面直线及其所成的角;
MJ:二面角的平面角及求法.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可. 【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,= 故EM,AN所成角的余弦值故答案为:
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;
(Ⅱ)求tan(A﹣B)的最大值. 【考点】GP:两角和与差的三角函数;
HP:正弦定理.菁优网版权所有 【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值. 【解答】解:(Ⅰ)在△ABC中,由正弦定理得 即sinAcosB=4cosAsinB,则;
(Ⅱ)由得 tanA=4tanB>0 当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为. 【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式. 18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,AB=AC.(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小. 【考点】LY:平面与平面垂直;
MJ:二面角的平面角及求法.菁优网版权所有 【专题】5F:空间位置关系与距离. 【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小. 【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC. 又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE. 再根据,可得∠CED=∠FDC. 又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G. ∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角. 作CH⊥AB,H为垂足. ∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角. ∵CE=,∴CH=EH=. 直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;
直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2. 由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,又,则,∴,即二面角C﹣AD﹣E的大小. 【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题. 19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围. 【考点】3D:函数的单调性及单调区间;
3E:函数单调性的性质与判断.菁优网版权所有 【专题】16:压轴题. 【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可. 【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx ∴ 解f′(x)>0,即:2x2﹣3x+1<0 函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立. 即a≤2x+恒成立. 设,则 ∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3. 【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强. 20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;
若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 【考点】C6:等可能事件和等可能事件的概率;
CH:离散型随机变量的期望与方差.菁优网版权所有 【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果. 【解答】解:(Ⅰ)若乙验两次时,有两种可能:
①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:
②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为. 若乙验三次时,只有一种可能:
先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为 ∴甲种方案的次数不少于乙种次数的概率为:
(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4. 【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响. 21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程. 【考点】KB:双曲线的标准方程;
KC:双曲线的性质.菁优网版权所有 【专题】11:计算题;
16:压轴题. 【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程. 【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴. ∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;
∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b. 由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB)=﹣cot(∠AOB)=﹣2,∴AB的直线方程为 y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1. 【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题. 22.(12分)设函数f(x)=x﹣xlnx.数列{an}满足0<a1<1,an+1=f(an).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;
(Ⅱ)证明:an<an+1<1;
(Ⅲ)设b∈(a1,1),整数.证明:ak+1>b. 【考点】6B:利用导数研究函数的单调性;
RG:数学归纳法.菁优网版权所有 【专题】16:压轴题. 【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而 进行证明.(2)由题意数列{an}满足0<a1<1,an+1=f(an),求出an+1=an﹣anlnan,然后利用归纳法进行证明;
(3)由题意f(x)=x﹣xlnx,an+1=f(an)可得ak+1=ak﹣b﹣ak,然后进行讨论求解. 【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0 故函数f(x)在区间(0,1)上是增函数;
(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,ak<ak+1<1成立,即0<a1≤ak<ak+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤ak<ak+1<1,得f(ak)<f(ak+1)<f(1),而an+1=f(an),则ak+1=f(ak),ak+2=f(ak+1),ak+1<ak+2<1,也就是说当n=k+1时,an<an+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,an<an+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,an+1=f(an)可得 ak+1=ak﹣aklnak=,1)若存在某i≤k,满足ai≤b,则由(Ⅱ)知:ak+1﹣b>ai﹣b≥0,2)若对任意i≤k,都有ai>b,则ak+1=ak﹣aklnak==≥a1﹣b1﹣ka1lnb=0,即ak+1>b成立. 【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.
第二篇:2016全国卷Ⅲ高考理科数学试卷与答案(word版)
2016年普通高等学校招生全统一考试
理科数学
第Ⅰ卷
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)
设集合,则
(A)
[2,3]
(B)(-,2]
[3,+)
(C)
[3,+)
(D)(0,2]
[3,+)
(2)
若,则
(A)
(B)
(C)
(D)
(3)
已知向量BA,BC,则
(A)30°
(B)45°
(C)60°
(D)120°
(4)
某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
(A)各月的平均最低气温都在0℃以上
(B)七月的平均温差比一月的平均温差大
(C)三月和十一月的平均最高气温基本相同
(D)平均最高气温高于20℃的月份有5个
(5)
若,则
(A)
(B)
(C)
(D)
(6)
已知,,则
(A)
(B)
(C)
(D)
(7)
执行右面的程序框图,如果输入的,那么输出的(A)3
否
是
n=0,s=0
输入a,b
输出n
开始
结束
a=b-a
b=b-a
a=b+a
s=s+a,n=n+1
s>16
(B)4
(C)5
(D)6
(8)
中,边上的高等于,则
(A)
(B)
(C)
(D)
(9)
如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为
(A)
(B)
(C)
(D)
(10)
在封闭的直三棱柱内有一个体积为的球.若,,则的最大值是
(A)
(B)
(C)
(D)
(11)
已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为
(A)
(B)
(C)
(D)
(12)
定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数
.若m=4,则不同的“规范01数列”共有
(A)18个
(B)16个
(C)14个
(D)12个
第Ⅱ卷
本卷包括必考题和选考题两部分。第(13)~(21)题为必考题,每个试题都必须作答。第(22)~(24)题为选考题,考生根据要求作答。
二、填空题:本题共4小题,每小题5分。
(13)
若满足约束条件则的最大值为
.
(14)
函数的图像可由函数的图像至少向右平移
个单位长度得到.
(15)
已知为偶函数,当时,,则曲线在点处的切线方程是
.
(16)
已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则
.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)
(本小题满分12分)
已知数列的前n项和,其中.
(I)证明是等比数列,并求其通项公式;
(II)若,求.
(18)
(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1~7分别对应年份2008~2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:
参考公式:相关系数,回归方程中斜率和截距的最小二乘数估计公式分别为:.
(19)
(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明:MN∥平面PAB;
(Ⅱ)求直线与平面所成角的正弦值.
(20)
(本小题满分12分)
已知抛物线C:焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
(21)
(本小题满分12分)
设函数,其中,记的最大值为.
(Ⅰ)求;
(Ⅱ)求;
(Ⅲ)证明.
请考生在第(22)~(24)题中任选一题作答,如果多做,则按所做的第一题计分。
(22)
(本小题满分10分)选修4-1:几何证明选讲
如图,⊙O中AB的中点为P,弦PC,PD分别交AB于E,F两点.(Ⅰ)若∠PFB=2∠PCD,求∠PCD的大小;
(Ⅱ)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.
(23)
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(Ⅰ)写出的普通方程和的直角坐标方程;
(Ⅱ)设点在上,点在上,求的最小值及此时的直角坐标.(24)
(本小题满分10分)选修4-5:不等式选讲
已知函数.(Ⅰ)当时,求不等式的解集;
(Ⅱ)设函数.当时,求的取值范围.2016年全国卷Ⅲ高考数学(理科)答案
一、选择题:
(1)D
(2)C
(3)A
(4)D
(5)A
(6)A
(7)B
(8)C
(9)B
(10)B
(11)A
(12)C
二、填空题:
(13)
(14)
(15)
(16)4
三、解答题:
(17)(本小题满分12分)
解:(Ⅰ)由题意得,故,.由,得,即.由,得,所以.因此是首项为,公比为的等比数列,学科.网于是.
(Ⅱ)由(Ⅰ)得,由得,即,解得.
(18)(本小题满分12分)
解:(Ⅰ)由折线图这数据和附注中参考数据得,,.因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.(Ⅱ)由及(Ⅰ)得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.(19)(本小题满分12分)
解:(Ⅰ)由已知得,取的中点,连接,由为中点知,.又,故学.科.网平行且等于,四边形为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)取的中点,连结,由得,从而,且.以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,学科.网由题意知,,,,.设为平面的法向量,则,即,可取,于是.(20)解:由题设.设,则,且
.记过两点的直线为,则的方程为......3分
(Ⅰ)由于在线段上,故.记的斜率为,的斜率为,则
.所以.......5分
(Ⅱ)设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为.....12分
(21)(本小题满分12分)
解:(Ⅰ).
(Ⅱ)当时,因此,.
………4分
当时,将变形为.
令,则是在上的最大值,,且当时,取得极小值,极小值为.
令,解得(舍去),.
(ⅰ)当时,在内无极值点,,所以.
(ⅱ)当时,由,知.
又,所以.
综上,. ………9分
(Ⅲ)由(Ⅰ)得.当时,.当时,所以.当时,所以.(22)(本小题满分10分)
解:(Ⅰ)连结,则.因为,所以,又,所以.又,所以,因此.(Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此.(23)(本小题满分10分)
解:(Ⅰ)的普通方程为,的直角坐标方程为.……5分
(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,.………………8分
当且仅当时,取得最小值,最小值为,此时的直角坐标为.………………10分
(24)(本小题满分10分)
解:(Ⅰ)当时,.解不等式,得.因此,的解集为.………………5分
(Ⅱ)当时,当时等号成立,所以当时,等价于.①
……7分
当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.………………10分
第三篇:2008年四川省高考数学试卷(理科)答案与解析
2008年四川省高考数学试卷(理科)
参考答案与试题解析
一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•四川)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()
A.{3} B.{4,5} C.{3,4,5} D.{1,2,4,5} 【考点】交、并、补集的混合运算.
【分析】根据交集的含义求A∩B、再根据补集的含义求解. 【解答】解:A={1,3},B={3,4,5}⇒A∩B={3};
所以CU(A∩B)={1,2,4,5},故选D 【点评】本题考查集合的基本运算,较简单.
2.(5分)(2008•四川)复数2i(1+i)=()A.﹣4 B.4 C.﹣4i D.4i 【考点】复数代数形式的混合运算.
2【分析】先算(1+i),再算乘2i,化简即可.
22【解答】解:∵2i(1+i)=2i(1+2i﹣1)=2i×2i=4i=﹣4 故选A;
2【点评】此题考查复数的运算,乘法公式,以及注意i=﹣1;是基础题.
23.(5分)(2008•四川)(tanx+cotx)cosx=()A.tanx B.sinx C.cosx D.cotx 【考点】同角三角函数基本关系的运用.
【分析】此题重点考查各三角函数的关系,切化弦,约分整理,凑出同一角的正弦和余弦的平方和,再约分化简. 【解答】解:
2∵
=故选D;
【点评】将不同的角化为同角;将不同名的函数化为同名函数,以减少函数的种类;当式中有正切、余切、正割、余割时,通常把式子化成含有正弦与余弦的式子,即所谓“切割化弦”.
4.(5分)(2008•四川)直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A. B.
C.y=3x﹣3 D.
【考点】两条直线垂直与倾斜角、斜率的关系.
【分析】先利用两直线垂直写出第一次方程,再由平移写出第二次方程. 【解答】解:∵直线y=3x绕原点逆时针旋转90° ∴两直线互相垂直 则该直线为那么将,向右平移1个单位得,即
故选A.
【点评】本题主要考查互相垂直的直线关系,同时考查直线平移问题.
5.(5分)(2008•四川)若0≤α≤2π,sinα>A.(,)B.(,π)
C.(cosα,则α的取值范围是(),)D.(,)
【考点】正切函数的单调性;三角函数线. 【专题】计算题.
【分析】通过对sinα>cosα等价变形,利用辅助角公式化为正弦,利用正弦函数的性质即可得到答案.
【解答】解:∵0≤α≤2π,sinα>cosα,∴sinα﹣cosα=2sin(α﹣)>0,∵0≤α≤2π,∴﹣≤α﹣≤,∵2sin(α﹣∴0<α﹣∴<α<)>0,<π,.
故选C.
【点评】本题考查辅助角公式的应用,考查正弦函数的性质,将sinα>cosα等价变形是难点,也是易错点,属于中档题.
6.(5分)(2008•四川)从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种 B.112种 C.140种 D.168种 【考点】组合及组合数公式. 【专题】计算题.
【分析】根据题意,分析可得,甲、乙中至少有1人参加的情况数目等于从10个同学中挑选4名参加公益活动挑选方法数减去从甲、乙之外的8个同学中挑选4名参加公益活动的挑选方法数,分别求出其情况数目,计算可得答案.
4【解答】解:∵从10个同学中挑选4名参加某项公益活动有C10种不同挑选方法;
4从甲、乙之外的8个同学中挑选4名参加某项公益活动有C8种不同挑选方法;
44∴甲、乙中至少有1人参加,则不同的挑选方法共有C10﹣C8=210﹣70=140种不同挑选方法,故选C.
【点评】此题重点考查组合的意义和组合数公式,本题中,要注意找准切入点,从反面下手,方法较简单.
7.(5分)(2008•四川)已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)【考点】等比数列的前n项和.
【分析】首先由等比数列的通项入手表示出S3(即q的代数式),然后根据q的正负性进行分类,最后利用均值不等式求出S3的范围. 【解答】解:∵等比数列{an}中,a2=1 ∴∴当公比q>0时,当公比q<0时,;
.
∴S3∈(﹣∞,﹣1]∪[3,+∞). 故选D.
【点评】本题考查等比数列前n项和的意义、等比数列的通项公式及均值不等式的应用.
8.(5分)(2008•四川)设M,N是球心O的半径OP上的两点,且NP=MN=OM,分别过N,M,O作垂线于OP的面截球得三个圆,则这三个圆的面积之比为:()A.3,5,6 B.3,6,8 C.5,7,9 D.5,8,9 【考点】球面距离及相关计算. 【专题】计算题.
【分析】先求截面圆的半径,然后求出三个圆的面积的比.
【解答】解:设分别过N,M,O作垂线于OP的面截球得三个圆的半径为r1,r2,r3,球半径为R,则:
∴r1:r2:r3=5:8:9∴这三个圆的面积之比为:5,8,9 故选D 【点评】此题重点考查球中截面圆半径,球半径之间的关系;考查空间想象能力,利用勾股定理的计算能力.
9.(5分)(2008•四川)设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有()
A.1条 B.2条 C.3条 D.4条
【考点】空间中直线与平面之间的位置关系.
【分析】利用圆锥的母线与底面所成的交角不变画图,即可得到结果.
0【解答】解:如图,和α成30角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°,直线AC,AB都满足条件 故选B. 222 3
【点评】此题重点考查线线角,线面角的关系,以及空间想象能力,图形的对称性; 数形结合,重视空间想象能力和图形的对称性;
10.(5分)(2008•四川)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()
A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=0 【考点】函数y=Asin(ωx+φ)的图象变换. 【专题】计算题.
【分析】当f(x)=sin(ωx+φ)是偶函数时,f(0)一定是函数的最值,从而得到x=0必是f(x)的极值点,即f′(0)=0,因而得到答案. 【解答】解:∵f(x)=sin(ωx+φ)是偶函数
∴由函数f(x)=sin(ωx+φ)图象特征可知x=0必是f(x)的极值点,∴f′(0)=0 故选D 【点评】此题重点考查正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系.
11.(5分)(2008•四川)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()
A.13 B.2 C.
D.
【考点】函数的值. 【专题】压轴题.
【分析】根据f(1)=2,f(x)•f(x+2)=13先求出f(3)=,再由f(3)求出f(5),依次求出f(7)、f(9)观察规律可求出f(x)的解析式,最终得到答案.
【解答】解:∵f(x)•f(x+2)=13且f(1)=2 ∴,,∴,∴
故选C. 【点评】此题重点考查递推关系下的函数求值;此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解.
12.(5分)(2008•四川)已知抛物线C:y=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A.4 B.8 C.16 D.32 【考点】抛物线的简单性质. 【专题】计算题;压轴题.
2【分析】根据抛物线的方程可知焦点坐标和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0),根据及AF=AB=x0﹣(﹣2)=x0+2,进而可求得A点坐标,进而求得△AFK的面积.
2【解答】解:∵抛物线C:y=8x的焦点为F(2,0),准线为x=﹣2 ∴K(﹣2,0)
设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0)∵,又AF=AB=x0﹣(﹣2)=x0+2 222222∴由BK=AK﹣AB得y0=(x0+2),即8x0=(x0+2),解得A(2,±4)∴△AFK的面积为故选B.
【点评】本题抛物线的性质,由题意准确画出图象,利用离心率转化位置,在△ABK中集中条件求出x0是关键;
二、填空题(共4小题,每小题4分,满分16分)
34213.(4分)(2008•四川)(1+2x)(1﹣x)展开式中x的系数为 ﹣6 . 【考点】二项式定理. 【专题】计算题.
【分析】利用乘法原理找展开式中的含x项的系数,注意两个展开式的结合分析,即分别
2为第一个展开式的常数项和第二个展开式的x的乘积、第一个展开式的含x项和第二个展
2开式的x项的乘积、第一个展开式的x的项和第二个展开式的常数项的乘积之和从而求出答案.
342【解答】解:∵(1+2x)(1﹣x)展开式中x项为 ***040C31(2x)•C41(﹣x)+C31(2x)•C41(﹣x)+C31(2x)•C41(﹣x)
02112204∴所求系数为C3•C4+C3•2•C4(﹣1)+C3•2•C41=6﹣24+12=﹣6. 故答案为:﹣6. 【点评】此题重点考查二项展开式中指定项的系数,以及组合思想,重在找寻这些项的来源.
14.(4分)(2008•四川)已知直线l:x﹣y+4=0与圆C:(x﹣1)+(y﹣1)=2,则C上各点到l的距离的最小值为 .
【考点】直线与圆的位置关系;点到直线的距离公式. 【专题】数形结合.
222 5 【分析】如图过点C作出CD与直线l垂直,垂足为D,与圆C交于点A,则AD为所求;求AD的方法是:由圆的方程找出圆心坐标与圆的半径,然后利用点到直线的距离公式求出圆心到直线l的距离d,利用d减去圆的半径r即为圆上的点到直线l的距离的最小值. 【解答】解:如图可知:过圆心作直线l:x﹣y+4=0的垂线,则AD长即为所求;
22∵圆C:(x﹣1)+(y﹣1)=2的圆心为C(1,1),半径为,点C到直线l:x﹣y+4=0的距离为∴AD=CD﹣AC=2﹣=,故C上各点到l的距离的最小值为故答案为:,.
【点评】此题重点考查圆的标准方程和点到直线的距离.本题的突破点是数形结合,使用点C到直线l的距离距离公式.
15.(4分)(2008•四川)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于 2 .
【考点】棱柱、棱锥、棱台的体积. 【专题】计算题;作图题;压轴题.
【分析】由题意画出图形,求出高,底面边长,然后求出该正四棱柱的体积. 【解答】解::如图可知:∵
∴∴正四棱柱的体积等于
=2 故答案为:2 【点评】此题重点考查线面角,解直角三角形,以及求正四面题的体积;考查数形结合,重视在立体几何中解直角三角形,熟记有关公式.
16.(4分)(2008•四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为 4 .
【考点】等差数列的前n项和;等差数列. 【专题】压轴题.
【分析】利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.
【解答】解:∵等差数列{an}的前n项和为Sn,且S4≥10,S5≤15,∴,即
∴
∴,5+3d≤6+2d,d≤1 ∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.
【点评】此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;
三、解答题(共6小题,满分74分)
2417.(12分)(2008•四川)求函数y=7﹣4sinxcosx+4cosx﹣4cosx的最大值与最小值. 【考点】三角函数的最值. 【专题】计算题. 【分析】利用二倍角的正弦函数公式及同角三角函数间的基本关系化简y的解析式后,再利用配方法把y变为完全平方式即y=(1﹣sin2x)+6,可设z═(u﹣1)+6,u=sin2x,因为sin2x的范围为[﹣1,1],根据u属于[﹣1,1]时,二次函数为递减函数,利用二次函数求最值的方法求出z的最值即可得到y的最大和最小值.
2422【解答】解:y=7﹣4sinxcosx+4cosx﹣4cosx=7﹣2sin2x+4cosx(1﹣cosx)=7﹣22222sin2x+4cosxsinx=7﹣2sin2x+sin2x=(1﹣sin2x)+6 22由于函数z=(u﹣1)+6在[﹣1,1]中的最大值为zmax=(﹣1﹣1)+6=10 2最小值为zmin=(1﹣1)+6=6 故当sin2x=﹣1时y取得最大值10,当sin2x=1时y取得最小值6 【点评】此题重点考查三角函数基本公式的变形,配方法,符合函数的值域及最值;本题的突破点是利用倍角公式降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键.
18.(12分)(2008•四川)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. 7 【考点】相互独立事件的概率乘法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】计算题. 【分析】(1)进入商场的1位顾客购买甲、乙两种商品中的一种,包括两种情况:即进入商场的1位顾客购买甲种商品不购买乙种商品,进入商场的1位顾客购买乙种商品不购买甲种商品,分析后代入相互独立事件的概率乘法公式即可得到结论.
(2)进入商场的1位顾客至少购买甲、乙两种商品中的一种的对立事件为,该顾客即不习甲商品也不购买乙商品,我们可以利用对立事件概率减法公式求解.(3)由(1)、(2)的结论,我们列出ξ的分布列,计算后代入期望公式即可得到数学期望. 【解答】解:记A表示事件:进入商场的1位顾客购买甲种商品,记B表示事件:进入商场的1位顾客购买乙种商品,记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记D表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,(Ⅰ)
===0.5×0.4+0.5×0.6=0.5(Ⅱ)==0.5×0.4 =0.2
∴(Ⅲ)ξ~B(3,0.8),3故ξ的分布列P(ξ=0)=0.2=0.008 12P(ξ=1)=C3×0.8×0.2=0.096 22P(ξ=2)=C3×0.8×0.2=0.384 3P(ξ=3)=0.8=0.512 所以Eξ=3×0.8=2.4 【点评】此题重点考查相互独立事件的概率计算,以及求随机变量的概率分布列和数学期望;突破口:分清相互独立事件的概率求法,对于“至少”常从反面入手常可起到简化的作用; 19.(12分)(2008•四川)如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE
(Ⅰ)证明:C,D,F,E四点共面;
(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.
【考点】与二面角有关的立体几何综合题;棱锥的结构特征. 【专题】计算题;证明题. 【分析】(Ⅰ)延长DC交AB的延长线于点G,延长FE交AB的延长线于G′,根据比例关系可证得G与G′重合,准确推理,得到直线CD、EF相交于点G,即C,D,F,E四点共面.
(Ⅱ)取AE中点M,作MN⊥DE,垂足为N,连接BN,由三垂线定理知BN⊥ED,根据二面角平面角的定义可知∠BMN为二面角A﹣ED﹣B的平面角,在三角形BMN中求出此角即可.
【解答】解:(Ⅰ)延长DC交AB的延长线于点G,由BC延长FE交AB的延长线于G′ 同理可得
得
故,即G与G′重合
因此直线CD、EF相交于点G,即C,D,F,E四点共面.(Ⅱ)设AB=1,则BC=BE=1,AD=2 取AE中点M,则BM⊥AE,又由已知得,AD⊥平面ABEF 故AD⊥BM,BM与平面ADE内两相交直线AD、AE都垂直. 所以BM⊥平面ADE,作MN⊥DE,垂足为N,连接BN 由三垂线定理知BN⊥ED,∠BMN为二面角A﹣ED﹣B的平面角.故
所以二面角A﹣ED﹣B的大小 9
【点评】此题重点考查立体几何中四点共面问题和求二面角的问题,考查空间想象能力,几何逻辑推理能力,以及计算能力;突破:熟悉几何公理化体系,准确推理,注意书写格式是顺利进行求解的关键.
20.(12分)(2008•四川)设数列{an}的前n项和为Sn,已知ban﹣2=(b﹣1)Sn
n﹣1(Ⅰ)证明:当b=2时,{an﹣n•2}是等比数列;(Ⅱ)求{an}的通项公式. 【考点】数列的应用. 【专题】计算题;证明题.
n【分析】(Ⅰ)当b=2时,由题设条件知an+1=2an+2an+1﹣(n+1)•2=2an+2﹣(n+1)nn﹣1n﹣1•2=2(an﹣n•2),所以{an﹣n•2}是首项为1,公比为2的等比数列.
n﹣1(Ⅱ)当b=2时,由题设条件知an=(n+1)2;当b≠2时,由题意得
=的通项公式.
【解答】解:(Ⅰ)当b=2时,由题意知2a1﹣2=a1,解得a1=2,n且ban﹣2=(b﹣1)Sn
n+1ban+1﹣2=(b﹣1)Sn+1
n两式相减得b(an+1﹣an)﹣2=(b﹣1)an+1
n即an+1=ban+2①
n当b=2时,由①知an+1=2an+2
nnnn﹣1于是an+1﹣(n+1)•2=2an+2﹣(n+1)•2=2(an﹣n•2)
0n﹣1又a1﹣1•2=1≠0,所以{an﹣n•2}是首项为1,公比为2的等比数列.
n﹣1n﹣1(Ⅱ)当b=2时,由(Ⅰ)知an﹣n•2=2,n﹣1即an=(n+1)2 当b≠2时,由①得=因此即所以
. =
=,由此能够导出{an}
n.由此可知nn 10 【点评】此题重点考查数列的递推公式,利用递推公式求数列的通项公式,同时考查分类讨论思想;推移脚标两式相减是解决含有Sn的递推公式的重要手段,使其转化为不含Sn的递推公式,从而针对性的解决;在由递推公式求通项公式是重视首项是否可以吸收是易错点,同时重视分类讨论,做到条理清晰是关键.
21.(12分)(2008•四川)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率(Ⅰ)若,右准线为l,M,N是l上的两个动点,求a,b的值;
与
共线.
(Ⅱ)证明:当|MN|取最小值时,【考点】椭圆的应用. 【专题】计算题;压轴题.
【分析】(Ⅰ)设,根据题意由得,由,得,由此可以求出a,b的值.
(Ⅱ)|MN|=(y1﹣y2)=y1+y2﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a.当且仅当或共线.
【解答】解:由a﹣b=c与l的方程为设则
222
222
时,|MN|取最小值,由能够推导出与,得a=2b,22,11 由(Ⅰ)由得,得
①
②由①、②、③三式,消去y1,y2,并求得a=4 故2
③
2(Ⅱ)证明:|MN|=(y1﹣y2)=y1+y2﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a 当且仅当此时,故与共线.
或
时,|MN|取最小值
【点评】此题重点考查椭圆中的基本量的关系,进而求椭圆待定常数,考查向量的综合应用;熟悉椭圆各基本量间的关系,数形结合,熟练地进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中的灵活应用.
22.(14分)(2008•四川)已知x=3是函数f(x)=aln(1+x)+x﹣10x的一个极值点.(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围. 【考点】函数在某点取得极值的条件;利用导数研究函数的单调性. 【专题】计算题;压轴题;数形结合法.
2【分析】(Ⅰ)先求导﹣10x的一个极值点即
2,再由x=3是函数f(x)=aln(1+x)+x求解.
2(Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x﹣10x,x∈(﹣1,+∞)再由f′(x)>0和f′(x)<0求得单调区间.
(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2﹣21,16ln2﹣9). 【解答】解:(Ⅰ)因为所以因此a=16
12(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x﹣10x,x∈(﹣1,+∞)当x∈(﹣1,1)∪(3,+∞)时,f′(x)>0 当x∈(1,3)时,f′(x)<0 所以f(x)的单调增区间是(﹣1,1),(3,+∞)f(x)的单调减区间是(1,3)(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0 所以f(x)的极大值为f(1)=16ln2﹣9,极小值为f(3)=32ln2﹣21
因此f(16)>16﹣10×16>16ln2﹣9=f(1)f(e﹣1)<﹣32+11=﹣21<f(3)所以在f(x)的三个单调区间(﹣1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)因此,b的取值范围为(32ln2﹣21,16ln2﹣9).
【点评】此题重点考查利用求导研究函数的单调性,最值问题,函数根的问题;,熟悉函数的求导公式,理解求导在函数最值中的研究方法是解题的关键,数形结合理解函数的取值范围. 2﹣2 13
第四篇:2008年 四川省高考数学试卷(理科)
2008年四川省高考数学试卷(理科)
一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•四川)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()
A.{3} B.{4,5} C.{3,4,5}
2D.{1,2,4,5} 2.(5分)(2008•四川)复数2i(1+i)=()A.﹣4 B.4 C.﹣4i D.4i
3.(5分)(2008•四川)(tanx+cotx)cosx=()A.tanx B.sinx C.cosx D.cotx
4.(5分)(2008•四川)直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A. B.
C.y=3x﹣3 D.
25.(5分)(2008•四川)若0≤α≤2π,sinα>A.(,)B.(,π)
C.(cosα,则α的取值范围是(),)D.(,)
6.(5分)(2008•四川)从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种 B.112种 C.140种 D.168种
7.(5分)(2008•四川)已知等比数列{an}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)
8.(5分)(2008•四川)设M,N是球心O的半径OP上的两点,且NP=MN=OM,分别过N,M,O作垂线于OP的面截球得三个圆,则这三个圆的面积之比为:()A.3,5,6 B.3,6,8 C.5,7,9 D.5,8,9
9.(5分)(2008•四川)设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有()
A.1条 B.2条 C.3条 D.4条
10.(5分)(2008•四川)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()
A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=0
11.(5分)(2008•四川)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()A.13
12.(5分)(2008•四川)已知抛物线C:y=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A.4 B.8 C.16 D.32
二、填空题(共4小题,每小题4分,满分16分)
13.(4分)(2008•四川)(1+2x)(1﹣x)展开式中x的系数为
.
14.(4分)(2008•四川)已知直线l:x﹣y+4=0与圆C:(x﹣1)+(y﹣1)=2,则C上各点到l的距离的最小值为
.
15.(4分)(2008•四川)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为
16.(4分)(2008•四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为
.
三、解答题(共6小题,满分74分)
17.(12分)(2008•四川)求函数y=7﹣4sinxcosx+4cosx﹣4cosx的最大值与最小值.
18.(12分)(2008•四川)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.
19.(12分)(2008•四川)如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE
2B.2 C. D.,则该正四棱柱的体积等于
.
(Ⅰ)证明:C,D,F,E四点共面;
(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.
20.(12分)(2008•四川)设数列{an}的前n项和为Sn,已知ban﹣2=(b﹣1)Sn
n﹣1(Ⅰ)证明:当b=2时,{an﹣n•2}是等比数列;(Ⅱ)求{an}的通项公式.
21.(12分)(2008•四川)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离
n心率(Ⅰ)若,右准线为l,M,N是l上的两个动点,求a,b的值;
与
共线.
(Ⅱ)证明:当|MN|取最小值时,22.(14分)(2008•四川)已知x=3是函数f(x)=aln(1+x)+x﹣10x的一个极值点.(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.3
第五篇:2013年高考理科数学试卷及答案---全国卷(新课标版)word版A3版
2013年全国卷新课标数学(理)
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A{1,2,3,4,5},B{(x,y)|xA,yA,xyA},则B中所含元素的个数为
A.3B.6C.8D.10
2.将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有A.12种B.10种C.9种D.8种 3.下面是关于复数z
是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.18
8.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y216x的准线交于A,B,两点,|AB|4,则的实轴长为
A.2B.22
C.4D.8
2的四个命题: 1i
9.已知0,函数f(x)sin(x
)在(,)单调递减,则的取值范围是 42
C.(0,]
P1:|z|2
P2:z22i P4:z的虚部为
1A.[,]
524
B.[,]
132412
D.(0,2]
P3:z的共轭复数为1i
其中的真命题为
10.已知函数f(x)
B.P1,P2
C.P2,P4
D.P4 3,P,则yf(x)的图像大致为
ln(x1)x
A.P2,P
3x2y23a4.设F1,F2是椭圆E: 221(ab0)的左右焦点,P为直线x上的一点,△F2PF1是底角为30的等
2ab
腰三角形,则E的离心率为
A.2
B.3
C.4
D.5
5.已知{an}为等比数列,a4a72,a5a68,则a1a10
A.7
B.5
C.5
D.7
6.如果执行右边的程序框图,输入正整数N(N2)和
A.AB为a1,a2,,aN的和 B.实数a1,a2,,aN,输出A,B,则
11.已知三棱锥SABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC2,则此棱锥的体积为
A.26
B.6C.23
D.2
12.设点P在曲线y
1x
e上,点Q在曲线yln(2x)上,则|PQ|的最小值为 2
B.AB
为a1,a2,,aN的算术平均数 2
A.1ln22(1ln2)C.1ln2
D.2(1ln2)
C.A和B分别是a1,a2,,aN中最大的数和最小的数 D.A和B分别是a1,a2,,aN中最小的数和最大的数
二、填空题.本大题共4小题,每小题5分.13.已知向量a,b夹角为45,且|a|1,|2ab|,则|b|
7.如图,网格纸上小正方形的边长为1,粗线画出的 xy1 14.设x,y满足约束条件
xy30则Zx2y的取值范围为.x y0
15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设
三个电子元件的使用寿命(单位:小时)服从正态分布
N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为.16.数列{a n}满足an1(1)nan2n1,则{an}的前60项和为.三、解答题:解答题应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosCasinCbc0.(Ⅰ)求A;
(Ⅱ)若a2,△ABC的面积为3,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰 花做垃圾处理.(Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解
析式;(以
(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.(本小题满分12分)如图,直三棱柱ABCA
11B1
C1
中,ACBC
2AA1,D是棱AA1的中点,DC1BD(Ⅰ)证明:DC1BC
(Ⅱ)求二面角A1BDC1的大小.19.20.(本小题满分12分)
设抛物线C:x22py(p0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于
B、D两点
(Ⅰ)若BFD90,△ABD面积为42,求p的值及圆F的方程;
请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF//AB,证明:(Ⅰ)CDBC;
(Ⅱ)△BCD∽△GBD.(Ⅱ)若A、B、F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n的距离的比值.21.(本小题满分12分)已知函数f(x)f(1)e
x
1f(0)x
2x.(Ⅰ)求f(x)的解析式及单调区间;(Ⅱ)若f(x)
x2
axb,求(a1)b的最大值
23.(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线Cx2cos
1的参数方程是
3sin
(为参数),以坐标原点为极点,yx轴的正半轴为极轴建立极坐标系,曲线
C2的极坐标方程是2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(Ⅰ)点A,B,C,D的直角坐标;
(Ⅱ)设P为C2
1上任意一点,求|PA||PB|2
|PC|2
|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)|xa||x2|.(Ⅰ)当a3时,求不等式f(x)3的解集;(Ⅱ)f(x)|x4|的解集包含[1,2],求a的取值范围.参考答案
1-12:DACCDCBCABAB 13、14、3,3.15、又
DC1BD,DC1DCD,DC1平面BDC.16、1830.8
BC平面BDC,DC1BC.(Ⅱ)由(Ⅰ)
知,DC1,BC1,又已知DC1BD,BD.17、解:(Ⅰ)
由acosCsinCbc0及正弦定理可得
sinAcosCAsinCsinBsinC
0,在Rt△ABD中,BD,ADa,DAB90,AB
2ACBCAB,ACBC..sinAcosCAsinCsinACsinC
0, AsinCcosAsinCsinC0,sinC
0,AcosA10,取A1B1的中点E,则易证
C1E平面BDA
1,连结DE,则C1EBD,已知DC1BD,BD平面DC1E,BDDE,1
2sinA10,sinA,662
5
0A,A
666,A
(Ⅱ)
C1DE是二面角A1BDC1平面角.1,
CDE30.
在Rt△C1DE中,sinC
1DE
6
A
C1E
C1D
即二面角A1BDC1的大小为30.20、解:(Ⅰ)由对称性可知,△BFD
为等腰直角三角形,斜边上的高为p,斜边长BD2p.1bc4,S△
ABCbcsinA
3解得bc2.a2,A
,abc2bccosAbcbc4,bc8.2222
2点A到准线l的距离dFBFD由S△ABD,.18、解:(Ⅰ)y
10n80,n15(nN); 80,n16
1BDd2p2
2p2.圆F的方程为xy1
8.(Ⅱ)(ⅰ)若花店一天购进16枝玫瑰花,X的分布列为
X的数学期望EX=60×0.1+70×0.2+80×0.7=76,X的方差DX=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.(ⅱ)若花店计划一天购进17
X(Ⅱ)由对称性,不妨设点AxA,yA在第一象限,由已知得线段AB是圆F的在直径,ADB90o,BD2p,yA
直线m的斜率为
kAF
p,代入抛物线C:x22py得xA.2
X的数学期望EX=55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.476,所以应购进17枝玫瑰花.19、(Ⅰ)证明:设ACBC
.直线m的方程为x
0.
xx
2由x2py 得y,y.p2p
AA1a,2
直三棱柱ABCA1B1C1,DC1DC,CC12a,由y
DC12DC2
CC12,DC
1DC.pxp.故直线n与抛物线C的切点坐标为, x, 3p36
直线n的方程为x0.所以坐标原点到m,n
3.21、解:(Ⅰ)f(x)f(1)ex1f(0)x,令x1得,f(0)1,再由f(x)f(1)ex
1f(0)x12
2x,令x0得f1e.所以f(x)的解析式为f(x)ex
x122
x.f(x)ex1x,易知f(x)ex1x是R上的增函数,且f(0)0.所以f(x)0x0,f(x)0x0,所以函数f(x)的增区间为0,,减区间为,0.(Ⅱ)若f(x)
xaxb恒成立, 即hxf(x)12
x2axbex
a1xb0恒成立,hxexa1,(1)当a10时,hx0恒成立, hx为R上的增函数,且当x时, hx,不合题意;(2)当a10时,hx0恒成立, 则b0,(a1)b0;
(3)当a10时, hxex
a1为增函数,由hx0得xlna1,故f(x)0xlna1,f(x)0xlna1,当xlna1时, hx取最小值hlna1
a1a1lna1b.依题意有hlna1a1a1lna1b0, 即ba1a1lna1,a10,a1ba12a12
lna1,令uxx2
x2
lnxx0,则ux2x2xlnxxx1
2lnx,u(x)00xu(x)0x,所以当x, ux
取最大值u
e
.故当a1be2
时, a1b取最大值2.综上, 若f(x)
12x2
axb,则(a1)b的最大值为e2
.22、证明:(Ⅰ)∵D,E分别为△ABC边AB,AC的中点,∴DE//BC.CF//AB,DF//BC,CF
BD且 CF=BD,又∵D为AB的中点,CF
AD且 CF=AD,CDAF.CF//AB,BCAF.CDBC.(Ⅱ)由(Ⅰ)知,BC
GF,GBCFBD,BGDBDGDBCBDC
△BCD∽△GBD.23、解:(Ⅰ)依题意,点A,B,C,D的极坐标分别为.所以点A,B,C,D的直角坐标分别为、(、(1,、1);(Ⅱ)设P2cos,3sin,则 |PA|2|PB|2|PC|2|PD|
2
12cos2
3sin
2
2cos
13sin2
12cos2
3sin
2
2cos
13sin2
16cos236sin2163220sin232,52.所以|PA|2
|PB|2
|PC|2
|PD|2的取值范围为32,52.24、解:(Ⅰ)当a3时,不等式f(x)3 |x3||x2|3
x22x3xx3x23或x3x23或3
x3x23 或x4.所以当a3时,不等式f(x)3的解集为
xx1或x4.(Ⅱ)f(x)|x4|的解集包含[1,2],即|xa||x2||x4|对x1,2恒成立,即|xa|2对x1,2恒成立,即2ax2a对x1,2恒成立,所以2a1
2a2,即3a0.所以a的取值范围为3,0.