风雨储的联合发电系统设计论文(共五篇)

时间:2019-11-16 18:25:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《风雨储的联合发电系统设计论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《风雨储的联合发电系统设计论文》。

第一篇:风雨储的联合发电系统设计论文

摘要:开发和利用新能源是当前能源产业的发展趋势,通过分析风能、雨能、石墨烯、储能的特点,设计了适用于城市楼宇的风雨储联合发电系统,并对该系统包含的风力发电系统、雨水发电系统、石墨烯发电系统、储能装置进行了阐述。该系统不仅能解决能源短缺的问题,而且能有效净化与利用水资源。随着当前城镇化进程的加快,本系统具有广阔的应用前景。

关键词:风能;雨能;储能;联合发电;石墨烯

引言

能源是人类赖以生存、发展的物质基础,是社会正常运转的血液。优质能源的出现和先进能源利用技术的使用对于一个国家或地区的社会经济发展具有重要作用[1]。随着世界化石能源剧烈消耗而引起的能源危机与低碳经济的兴起,寻找可替代能源和发展清洁能源更是迫在眉睫。目前,我国能源供需缺口在不断变大,使得对外依存度不断升高,已成为危及国家安全的因素[2]。在当前日益严峻的节能减排压力下,加快发展可再生能源已成为我国当务之急[3]。此外,我国水资源占全球总量的6%,人均占有量只有世界平均水平的25%,是全球人均水资源最贫乏的国家之一。与此同时,水污染严重,导致水生态明显退化,水质普遍恶化,各种突发性水污染事件频发,水资源短缺问题日益突出。风是空气的水平运动,空气运动产生的动能即为风能。风能是一种巨大的、无污染的、永不枯竭的重要自然资源。风能的主要应用是风力发电。在我国可再生能源发电领域,风力发电一直是领跑者。风能资源丰富的地区一般都在比较偏远的地区,风电场场址多选在此处。雨水作为一种极有价值的水资源,早已被人们发觉。目前对雨水利用的研究主要用在解决作为水资源短缺地区的饮用水和农田灌溉问题上[4]。石墨烯作为一种新型纳米材料有着独有的特性,石墨烯与雨水作用时可产生电能。城市楼宇顶部具有丰富的风力资源,楼宇顶部可以汇集大量的雨水,可进行水力发电。目前未有将风能、雨能、石墨烯、储能作为一个发电系统进行研究,鉴于此,本文通过对风力发电技术、水力发电技术、储能技术和石墨烯发电技术进行研究,提出了一种适用于城市楼宇的高效的风雨储联合发电系统的方案,并对系统进行了设计。

1风雨储联合发电系统结构

目前风力发电技术比较成熟,雨水发电多是采用雨水汇集后再进行水力发电的方法。雨水从高空落下具有一定的动能,为了充分地利用风能以及雨能,采取风力发电为主,在风力发电机风轮叶片上布置雨水收集槽以构成风雨联动发电机的风轮叶片,从而进行发电。经研究发现,雨水在石墨烯薄膜表面流过及通过含氧化石墨烯制备的三维结构时均能产生电能。通过对风能、雨能、石墨烯各自的发电技术及储能技术进行深入研究,现将它们进行结合,提出风雨储联合发电系统,该系统结构框架图如图1所示。该系统主要由雨水汇集、过滤净化及收集装置、微型水力发电机、蓄水池、风雨联动发电机、石墨烯、整流滤波电路、蓄电池、用电设备等组成。其中微型水力发电机进行水力发电后的雨水进入蓄水池,可满足城市非饮用水的需求,比如绿化、空气除尘、喷泉等。风雨联动发电机将风能和雨水的动能与势能转换为电能。利用石墨烯材料可进行两级发电。转换成的电能经处理,可用蓄电池进行蓄能,满足用电设备的需求,或进行升压并网,输送到需要电力的地方,为人类提供永久的电力。

2系统设计

2.1风力发电系统设计

一般而言,三级风到九级风适合风力发电。对应的风速范围为3.4m/s~24.5m/s。经实测,建筑高度为492m的上海环球金融中心,其顶部最大风速为21.77m/s[5]。可见城市楼宇的顶部有着丰富的风能资源。本系统是利用城市楼宇顶部的空间,在其上建立小型风力发电装置。根据风力机轴的安装形式,可分为水平轴风力发电机和垂直轴风力发电机。本系统使用的是目前技术最成熟、产量最大的水平轴风力发电机,其数量可达风力发电机数的98%以上。风力发电机装置的基本结构包括风力机、主轴、增速齿轮箱、调向机构、发电机、支架、电缆、控制系统及附属部件(机舱、机座、回转体、制动器)等组成。风力机又称为风轮,包括叶片和轮毂等,叶片安装在轮毂上。风力发电的原理是,风以一定的速度吹风力发电机风轮叶片,产生的力驱动风轮低速转动,将风能转换为机械能,通过传动系统、增速齿轮箱增速,将动力传递给发电机,发电机匀速运转,从而把机械能转换为电能。为捕获最大的风能,可通过调向机构使风轮对准风向。风轮叶片数是风轮最显著的外形特征,随着风轮叶片数的增加,最大风能利用系数增加,但增加率逐渐减少。此外,随着风轮叶片数的增加,最佳叶尖速比减小。叶片一般为1~4片,常用的为2~3片。叶片数为3时,其叶片成120°夹角,转子的动平衡比较简单。在现代水平轴风力机上,3个叶片时,风能转换率峰值为50%。基于风力发电的原理,为将风能和雨水下落的势能与动能同时利用,需对已有的风力发电装置进行改进。考虑到雨水的充分利用及发电装置的自重、结构稳定性、制造安装成本及维护费用,本发电装置采用3个叶片。在风力发电机风轮叶片的单面上布置若干雨水收集槽,使其分布满该面,另一面仍为光滑面,构成风雨联动发电机风轮叶片,使之可以单面收集冲刷的雨水,将雨水的势能与动能作用于风轮叶片,使风轮叶片转动,从而转换为风轮叶片的机械能。调整调向机构,使得风轮叶片在雨水作用时转动方向与风力单独作用时的转动方向一致。这样,风能和雨水的动能、势能一起转换为风轮叶片的机械能,进而转换为电能[6]。

2.2雨水发电系统设计

城市楼宇顶部有着面积巨大的平台,可以作为一个雨水汇集平台。以深圳华强北赛格广场为例,赛格广场总高度355.8m,实高291.6m,塔楼采用正八边形分布,总面积达1380.6m2。由2016年度深圳市水资源公报可知,2016年深圳市年累计雨量为2721.33mm,则能够汇集的雨水量为3757.068198m3,城市居民人均生活用水量为165.59L/日,则该装置汇集的雨水能够满足约62人的年用水量。可见城市楼宇顶部汇集的雨水不仅有着丰富的势能而且是一种丰富的水资源。本系统是利用城市楼宇顶部平台进行雨水汇集,再进行水力发电。水力发电的原理就是在水流的冲击作用下,水轮机开始旋转,将水的势能转换为机械能,与此同时,水轮机带动同轴相连的发电机旋转,进而水力发电机将发出电力,实现能量的转换。具体而言,雨水沿着城市楼宇顶部具有一定坡度的地面汇流到流通管道,流通管道中的雨水经过雨水过滤净化装置除去泥沙等杂质,进入含氧化石墨烯制备的三维结构,流出的雨水可被雨水收集装置收集。在雨水收集装置内安装浮球阀,以保证发电机正常工作时所需的水流状态。当雨水收集装置内的水位达到一定值时,阀门开启。雨水进入排水管道,在排水管道内分级布置灯泡贯流式发电机装置[7]。在贯流式水力发电机中,水轮机与发电机直接连接,水流沿轴向流进导叶和转轮,这样将排水管道中雨水的压力能与动能转换为电能。在城市楼宇底部设置蓄水池,存储经水力发电机之后的雨水,此部分雨水可用作城市非饮用水的来源,比如洗车、消防储备水等。此外,雨水经过滤净化处理可吸除雨水中的部分硫化合物,有助于绿色环保。

2.3石墨烯发电系统设计

雨水是混合物,分析其成分可知,其中的盐分能够进行电离,产生正离子(Na+、Ca2+、Al3+等)与负离子。经过一系列的理论和实验研究发现,水或其他极性液体通过一维结构(如碳纳米管)时,可以在液体流动方向产生一定的净势能差和相应的电流。而石墨烯富含可在二维平面上自由移动的电子,因此具有优异的导电性能,这些雨水中的正离子可吸附在石墨烯表面。在雨水和石墨烯之间的接触处,水中富含的正离子和石墨烯富含的电子形成具有法拉第准电容特性的双层结构,称为赝电容器,它能够像电容那样存储电能。由含氧化石墨烯制备的三维结构具有足够大的孔洞,可允许水分子自由通过。当水从这种结构的顶部流淌到底部的时候,水分子将和氧化石墨烯中的含氧基团发生反应,分离形成氢离子,剩下的氧基团则非均一的分布在结构中,这将产生足够多的离子,从而产生电能,这种能量转换方式的效率高达62%[8-10]。本系统是利用石墨烯材料与雨水进行两级发电。第一级发电中,在风雨联动发电机风轮叶片光滑面镀上石墨烯薄膜,以形成赝电容器,存储电能。第二级发电中,雨水经过滤净化装置流至含氧化石墨烯薄片的圆形三明治层状结构.此圆形三明治层状结构由两片多孔铝电极组成上下两极板。氧化石墨烯薄片夹在两极板中间,石墨烯薄片边缘用绝缘胶绝缘。这样,此结构可满足水分子正常通过,并利用氧化石墨烯产生电能。

2.4储能装置设计

受限于环境的影响,风力发电系统、雨水发电系统、石墨烯发电系统产生的电能不稳定,波动较大,因此需要设计电路,将零散的电能用蓄电池存储起来。考虑成本、安装、寿命、维护等综合因素,选择铅酸蓄电池。利用逆变电路将电池中存储的电转换为市电,满足普通用电设备的要求。富余的电力可进行升压,并入电网,输送到有需要的地方,创造社会价值。

3结束语

(1)基于风电、水电、石墨烯、储能的工作原理,设计了适用于城市楼宇的风雨储联合发电系统,在原理上可行。(2)通过对风力发电机风轮叶片的研究,设计了风雨联动发电机风轮叶片,可满足对风能与雨能的同时利用。(3)通过对水力发电的研究,在城市楼宇的雨水排水管道中布置贯流式水力发电机,设计了雨水在排水管道内流通时的多级利用发电系统。(4)利用石墨烯的特点,设计了含氧化石墨烯薄片的圆形三明治层状结构。设计了雨水从下落到进入雨水收集装置过程中的两级利用发电系统。(5)该联合发电系统充分利用了雨水,从绿色节能的角度来看有着重大意义。随着城镇化的加剧,用户用电要求的提高及生态环保、资源短缺压力的增大,本系统具有一定的市场推广价值,有广阔的应用前景。

参考文献:

[1]巴合提瓦尔马苏尔.雨水能的开发潜力[J].科技创新导报,2011,26:136.[2]谢瑛珂,龚恒翔,廖飞,等.光伏新能源驱动雨水收集再利用及其在小农场中的应用[J].重庆理工大学学报:自然科学版,2015,29(7):65-68.[3]徐娟,孙大伟.智能电网———大规模风、光电并网瓶颈问题的解决方案[J].宁夏电力,2012,01:11-14+26.[4]林康,赵云,郑卫刚.雨水发电技术的应用研究[J].环境研究与监测,2012,03:66-68.[5]顾明,匡军,韦晓,等.上海环球金融中心大楼顶部良态风风速实测[J].同济大学学报(自然科学版),2011,39(11):1592-1597.[6]许婷婷,张杰恒,龚军.风雨双动能发电机风叶设计及功率计算[J].电子制作,2013,19:34-35.[7]徐东伟,宁厚飞,张永斌,等.基于贯流式发电理念的高楼雨水发电新工艺[J].山西建筑,2014,31:216-217+237.[8]TangQ,WangX,YangP,etal.Asolarcellthatistrig-geredbysunandrain[J].AngewandteChemieInternationalEdi-tion,2016,55(17):5243-5246.[9]TangQ,YangP.Theeraofwater-enabledelectricitygenera-tionfromgraphene[J].JournalofMaterialsChemistryA,2016,4(25):9730-9738.[10]ZhaoF,LiangY,ChengH,etal.Highlyefficientmois-ture-enabledelectricitygenerationfromgrapheneoxideframe-works[J].Energy&EnvironmentalScience,2016,9(3):912-916.

第二篇:光伏发电系统的能量转换及储能方式研究

随着环境保护的根本要求及化石能源枯竭带来的能源危机,使得以光伏发电为代表的可再生新能源发电越来越受到重视,但是光伏发电的间歇性及与用电峰谷的非同步性,使得新能源发电的储存及再利用技术受到额外关注,本课题研究除了传统的光伏发电电池储能以外,研究未来可能的能量转化及储能方式,如光伏发电制氢、制气等形式,然后和燃料电池及燃气轮机相结合的可行性及发展趋势。

第三篇:储能技术在风力发电系统中的应用(写写帮推荐)

储能技术在风力发电系统中的应用.txt和英俊的男人握握手,和深刻的男人谈谈心,和成功的男人多交流,和普通的男人过日子。本文由liuxycn贡献

doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。储能技术在风力发电系统中的应用

摘要: 阐述了储能技术的原理和特点,具体介绍了飞轮储能、超导储能、蓄电池储能和超级电容器储能在 风力发电系统中的应用;分析了各种储能技术的优缺点和应用前景;指出了混合式储能技术是最可行的方 案;介绍了功率转化系统的结构特点和最优化控制技术的进展。关键词: 风力发电系统;储能技术;功率转化系统 中图分类号: TM614; TK82 文献标志码: A 文章编号: 1671-5292(2009)06-0010-06 0 引言 根据新能源振兴规划,预计到 2020 年我国风力装机容量将达到 1.5 亿 kW,将超过电力总装机容量的 10%。从电网运行的现实及大规模开发风电的长远利益考虑,提高风电场输出功率的可控性,是目前风力发电技 术的重要发展方向。把风力发电技术引入储能系统,能有效地抑制风电功率波动,平滑输出电压,提高电 能质量,是保证风力发电并网运行、促进风能利用的关键技术和主流方式。随着电力电子学、材料学等学科的发展,高效率飞轮储能、新型电池储能、超导储能和超级电容器储能等 中小规模储能技术取得了长足的进步,拓宽了储能技术的应用领域,特别是在风力发电中起到了重要作用。储能系统一般由两大部分组成: 由储能元件(部件)组成的储能装置和由电力电子器件组成的功率转换系 统(PCS)。储能装置主要实现能量的储存和释放;PCS 主要实现充放电控制、功率调节和控制等功能。1 储能技术的分类和特性 储能技术有物理储能、电磁储能、电化学储能和相变储能等 4 类。物理储能主要有飞轮储能、抽水蓄能和 压缩空气储能方式; 电磁储能主要有超导储能方式;电化学储能主要有蓄电池储能、超级电容器储能和燃 料电池储能; 相变储能主要有冰蓄冷储能等[1],[2]。1.1 飞轮储能系统 飞轮储能(FESS)是一种机械储能方式,其基本原理是将电能转换成飞轮运动的动能,并长期蓄存起来,需要时再将飞轮运动的动能转换成电能,供电力用户使用。高强度碳素纤维和玻璃纤维材料、大功率电力电子变流技术、电磁和超导磁悬浮轴承技术促进了储能飞轮 的发展。飞轮储能的功率密度大于 5 kW/kg,能量密度超过 20 kWh/kg,效率大于 90%,循环使用寿命长 达 20 a,工作温区为-40~50 ℃,无噪声,无污染,维护简单,可连续工作。若通过积木式组合后,飞轮 储能可以达到 MW 级,输出持续时间为数分钟乃至数小时。飞轮储能主要用于不间断电源(UPS)/应急电源(EPS)、电网调峰和频率控制,国外不少科研机构已将储能飞轮引入风力发电系统[3]。文献[4]利用飞轮储能电池取代传统的柴油发电机和蓄电池来充当孤岛型风力发电系统中的电能调节器和 储存器,建立了系统的电流前馈控制数学模型,实验结果表明,这一方法能有效地改善电能质量,解决 风力发电机的输出功率与负载吸收的功率相匹配的问题。美国的 Vista 公司将飞轮引入到风力发电系统,实现全程调峰,飞轮机组的发电功率为 300kW,大容量 储能飞轮的储能为 277 kWh,风力发电系统的电能输出性能及经济性能良好。中国科学院电工研究所已经研制出飞轮储能用高速电机; 华北电力大学研制出储能 2 MJ、最高发电功率 10 kW 的准磁悬浮飞轮储能装置。飞轮储能技术正在向大型机发展,其难点主要集中在转子强度设计、低功耗磁轴承、安全防护等方面。1.2 超导储能系统 超导储能系统(SMES)利用由超导线制成的线圈,将电网供电励磁产生的磁场能量储存起来,需要时再将 储存的能量送回电网。超导储能技术的优点: ①可以长期无损耗储存能量,能量返回效率很高; ②能量的释放速度快,功率输 送时无需能源形式的转换,响应速度快(ms 级),转换效率高(>96%),比容量(1~10kWh/kg)和比

功率(104~105 kW/kg)大; ③采用 SMES 可调节电网电压、频率、有功和无功功率,可实现与电力系统 的实时大容量能量交换和功率补偿。20 世纪 90 年代,在 超导储能技术已被应用于风力发电系统[5],[6],[7]。中国科学院电工研究所已研制出 1 MJ/0.5MW的高温超导储能装置。清华大学、华中科技大学、华北电力 大学等都在开展超导储能装置的研究。文献[5]采用电压偏差作为 SMES 有功控制信号,在改善风电场稳定性方面具有优良的性能。SMES 的发展重点:基于高温超导涂层导体,研发适于液氮温区运行的 MJ 级系统; 解决高场磁体绕组力 学支撑问题;与柔性输电技术相结合,进一步降低投资和运行成本; 结合实际系统探讨分布式 SMES 及其 有效控制和保护策略。

1.3 蓄电池储能技术 蓄电池储能系统(Battery Energy Storage System,BESS)主要是利用电池正负极的氧化还原反应进行充 放电,一般由电池、直—交逆变器、控制装置和辅助设备(安全、环境保护设备)等组成。目前,蓄电池 储能系统在小型分布式发电中应用最为广泛。根据所使用化学物质的不同,蓄电池可以分为铅酸电池、镍 镉电池、镍氢电池、锂离子电池、钠硫(NaS)电池、液流电池等[8],[9]。(1)铅酸电池 铅酸电池应用在储能方面的历史较早,技术较为成熟,并逐渐以密封型免维护产品为主,目前储能容量已 达 20 MW。铅酸电池的能量密度适中,价格便宜,构造成本低,可靠性好,技术成熟,已广泛应用于电力 系统。基于密封阀控型的铅酸电池具有较高的运行可靠性,在环境影响上的劣势已不甚明显,但运行数 年之后的报废电池的无害化处理和不能深度放电的问题,使其应用受到一定限制。(2)镍氢电池 与铅酸电池相比,作为碱性电池的镍氢电池具有容量大、结构坚固、充放循环次数多的特点,但价格较高。镍氢电池是密封免维护电池,不含铅、铬、汞等有毒物质,正常使用过程中不会产生任何有害物质。北京 2008 年奥运会使用的混合电动车大都采用镍氢蓄电池作为电源。镍氢电池的自放电速度明显大于镍镉电 池,需要定期对它进行全充电。须注意的是,镍氢电池只有在小电流放电时才具有 80~90 kWh/kg 的高比 能量输出,在大电流放电高功率输出时,其能量密度会降至 40kWh/kg 或更低。(3)锂离子电池 锂离子电池比能量/比功率高、自放电小、环境友好,但由于工艺和环境温度差异等因素的影响,系统指 标往往达不到单体水平,使用寿命仅是单体电池的几分之一,甚至十几分之一。大容量集成的技术难度和 生产维护成本使这种电池在短期内很难在电力系统中规模化应用。磷酸亚铁锂电池是最有前途的锂电池。磷酸亚铁锂材料的单位价格不高,其成本在几种电池材料中是最低的,而且对环境无污染。磷酸亚铁锂比 其他材料的体积要大,成本低,适合大型储能系统。

(4)钠硫电池 钠硫和液流电池被视为新兴、高效、具广阔发展前景的大容量电力储能电池。目前钠硫和液流电池均已实 现商业化运作,MW 级钠硫和 100kW 级液流电池储能系统己步入试验示范阶段[10],[11]。钠硫储能电池是在温度 300 ℃左右充放电的高温型储能电池,负极活性物质为金属钠,正极活性物质为液 态硫。迄今为止,只有日本京瓷公司成功开发出钠硫储能电池系统。钠硫电池系统在电力系统和负荷侧成功应用 100 余套,总容量超过 100 MW,其中近2/3 用于平滑负荷。日本 NEDO 支持的八仗岛风力发电机组采用钠硫电池储能来平滑和稳定输出功率。目前,钠硫电池已被日 本列为政府资助的风力发电储能电源,并有具体的推进计划。上海电力公司正进行不同容量等级(10~1 000 kW)的钠硫电池系统的研制,用于 UPS/EPS,力图掌握核 心部件制备技术,建立标准和规范,并实现模块化、规模化生产。(5)全钒液流电池 液流电池分多种体系,其中全钒电池是技术发展主流。全钒液流储能电池(Vanadium RedoxFlow Battery,VRB)是将具有不同价态的钒离子溶液分别作为正极和负极的活性物质,分别储存在各自的电解液储罐中。在对电池进行充、放电实验时,电解液通过泵的作用,由外部贮液罐循环分别流经电池的正极室和负极室,并在电极表面发生氧化和还原反应,实现对电池的充放电[12],[13]。液流电池的储能容量取决于电解液容量和密度,配置上相当灵活,只需增大电解液容积和浓度即可增大储 能容量,并且可以进行深度充放电。日本住友电气、加拿大 VRB 等公司进行全钒液流电池储能系统的商业化开发。在日本共有 15 套全钒液流 储能电池系统进行示范运行,其中北海道的一套功率为 6 MW 的全钒液流储能电池用于对 30 MW 风电场的 调频和调峰。“十五”期间,中国科学院大连化学物理研究所开发出 10 kW 全钒液流储能电池系统。2008 年,中国电 力科学研究院研发用于风电场的 100kW 级储能系统,并考核其运行的可靠性和耐久性。表 1 列出了几种 主要蓄电池的基本特性。1.4 超级电容器储能技术 超级电容器(Supercapacitor)是根据电化学双电层理论研制而成,可提供强大的脉冲功率,充电时处于 理想极化状态的电极表面,电荷将吸引周围电解质溶液中的异性离子,使其附于电极表面,形成双电荷层,构成双电层电容。超级电容器储能系统(SCES)历经 3 代及数 10 年的发展,已形成电容量 0.5~1 000 F、工作电压 12~400 V、最大放电电流 400~2 000 A 的系列产品,储能系统的最大储能量达到了 30 MJ。在电力系统中多用于短时 间、大功率的负载平滑和电能质量高峰值功率场合,在电压跌落和瞬态干扰期间提高供电水平[14],[15]。日本松下、EPCOS、NEC,美国 Maxwell、Powerstor、Evans,法国 SAFT,澳大利亚 Cap-xx 和韩国 NESS 等 公司的产品,几乎占据了整个超级电容器市场。2005 年,美国加利福尼亚州建造了 1 台 450kW 的超级电容器储能装置,用以减轻 950 kW 风力发电机组 向电网输送功率的波动。2005 年,由中国科学院电工所承担的“863”项目,完成了用于光伏发电系统的 300 Wh/1 kW 超级电容 器储能系统的研究开发工作。文献[16]提出了一种将串、并联型超级电容器储能系统应用于基于异步发电机的风力发电系统的新思路,该储能系统可同时双向、大范围、快速调节有功功率和无功功率,很好地改善了风电的电能质量和稳定性。

1.5 其它储能形式 除了上述的几种储能方式外, 在电力系统中还应用较多的储能方式,有抽水蓄能、压缩空气储能和氢燃料 电池储能等。抽水蓄能装置(Pumped Hydro Storage)在现代电网中大多用来调峰,在集中式发电中应用较多。受地理 条件限制,绝大多数风电场不具备建抽水蓄能电站的条件。

压缩空气储能(CAES)是一种调峰用燃气轮机,对于同样的电力输出,它所消耗的燃气要比常规燃气轮机 少 40%。100 MW 级燃气轮机技术成熟,利用渠式超导热管技术可使系统的能量转换效率达到 90%。大容量 和复合化发电将进一步降低成本。随着分布式能量系统的发展以及减小储气库容积和提高储气压力至 10~14 MPa 的需要,8~12 MW 微型压缩空气储能系统(micro-CAES)已成为研究热点[17]。美国爱荷华州的 CAES 蓄能项目采用风能和低谷电组合来驱动压缩机组,将空气压缩至地下含水层,发电 装机容量为 200 MW,风能发电装机容量为 100 MW。氢燃料电池是将燃料的化学能直接转化为电能的装置。为了实现氢气作为能源载体的应用,必须解决氢的 廉价制取、安全高效储运以及大规模应用这 3 个问题。未来氢能的广泛应用很可能改变风电场的职能,风 电场可能成为大型的氢制造厂,为氢燃料电池电站及氢燃料电池汽车提供氢。目前,燃料电池价格还很昂 贵,距离大规模应用还有很长的路要走。2 各种储能技术在风力发电中的应用前景分析 在各种储能技术中,抽水蓄能和压缩空气储能比较适用于电网调峰; 电池储能和相变储能比较适用于中 小规模储能和用户需求侧管理; 超导电磁储能和飞轮储能比较适用于电网调频和电能质量保障; 超级电 容器储能比较适用于电动汽车储能和混合储能。图

1、图 2 是根据美国电力储能协会提供的资料给出的各 种储能技术的功率、能量和成本比较。

成本过高是限制储能技术在风力发电中大量推广应用的共同问题,提高能量转换效率和降低成本是今后储 能技术研究的重要方向。随着风力发电的不断发展和普及,各种储能技术的发展进步,储能技术将在风 力发电系统中得到更加广泛的应用。在风力发电中,储能方式的选择需考虑额定功率、桥接时间、技术成熟度、系统成本、环境条件等多种因 素。风电场的储能首先要实现电能质量管理功能,超级电容器、高速飞轮、超导、钠硫和液流电池储能系 统能使风电场的输出功率平滑,在外部电网故障时能够提供电压支撑,维护电网稳定;其次,铅酸电池、新型钠硫和液流电池储能系统具有调峰功能,比较适合风电的大规模储存。采用超级电容器和蓄电池、超导和蓄电池、超级电容器和飞轮组合等混合式储能系统,能够兼顾电能质量 管理和能量管理,提高储能系统的经济性,是比较可行的储能方案。

国内外已经开始这方面的研究[18],[19]。3 功率转换系统 功率转换系统(PCS),是实现储能单元与负载之间的双向能量传递,将储能系统接入电力系统的重要设 备。根据储能装置所处位置的不同,PCS 主要有以下的结构形式和拓扑结构(图 3)[20]。

3.1 单台风机直流侧并联 PCS 单台风机直流侧并联 PCS 的优点是可以利用风电机组现有的功率单元(图 3a)。对于直驱型的永磁同步发电机,交流电通过全功率变流后接入电网,储能单元通过 PCS 并联于直流母线侧,可以与发电机共用 DC/AC 逆变单元,实现与电网的联接。对于双馈风力发电机,PCS 也可以并联在转子 直流母线侧,这时需要加大网侧变流器(DC/AC)的功率,以便于储能单元的功率回馈到电网。

3.2 风电场交流侧并联 PCS PCS 的安装位置一般在风电场出口处的低压侧(图 3b)。每台风机所处位置的风速不同,而风电场自身具有一定的功率平滑功能,采用风电场交流侧并联 PCS 结 构,PCS 的总功率有所降低,需要双向 AC/DC 变流器;储能单元集中放置,便于维护和扩容。3.3 风电场 HVDC 输电直流侧并联 PCS 风电场通过电压源高压直流(VSC-HVDC)输电并网。由于 VSC-HVDC 系统具有立即导通和立即关断的控制阀,通过对控制阀的开和关,实现对交流侧电压幅值和相角的控制,从而达到独立控制有功功率和无功功率的 目的,且换流站不需要无功补偿、不存在换相失败等问题。这些特点使得 VSC-HVDC 技术在连接风电场并 网方面具有一定的优越性,特别适用于需要长距离传输的海上风电场的并网[21]。PCS 并联在 VSC-HVDC 系 统的直流母线上(图 3c),通过控制储能单元的充放电功率,使其补偿风能的波动,从而使风电通过直流 输电注入到电网的功率稳定。3.4 混合储能系统 PCS 拓扑结构 采用超级电容器和蓄电池混合储能系统的 PCS 主要有 2 种结构: 一种是两者都通过 DC/DC 并联于直流母 线侧; 另一种是通过蓄电池单元的适当串并联,蓄电池直接并联在直流母线上,节省了一组 DC/DC 变流 器(图 4)。

文献[19]把超级电容器和全钒液流电池用于 PMSG 直流侧储能,超级电容器用来处理瞬时大功率问题,从 而降低全钒液流电池容量 55%,减少全钒液流电池深度放电次数 8%,延长了电池寿命,减低电池损耗 15%,提高了系统效率。在超级电容和蓄电池的容量匹配和控制策略上,还需要进一步的研究。4 结束语 研发高效储能装置及其配套设备,使之与风电/光伏发电机组容量相匹配,支持充放电状态的迅速切换,确保并网系统的安全稳定,已成为可再生能源充分利用的关键。随着风力发电系统的不断发展,各种储能 技术的发展进步,第二代高温超导储能、高速飞轮储能、全钒液流和钠硫储能、超级电容储能等技术将得 到更加广泛的应用。

目前,电力储能系统推广应用的最大障碍在于国外少数企业的技术垄断,由此造成其价格高企。要推动 电力储能系统在电网中的规模化应用,一靠掌握自主知识产权,使其价格大幅下降;二靠政府的政策鼓励 和资金推动。如果能实现电力储能系统国产化,使其成本达到或接近应用水平,那么风电场对电力储能系 统的需求将迅速加大。混合式储能技术将在风力发电系统中得到广泛应用,同时,先进的电力电子技术和控制技术也将得到发展 与应用。参考文献: [1] 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.[2] 张宇,俞国勤,施明融,等.电力储能技术应用前景分析[J].华东电力,2008,36(4):91-93.[3] 阮军鹏,张建成,汪娟华.飞轮储能系统改善并网风电场稳定性的研究[J].电力科学与工程,2008,24(3):5-8.[4] R CARDENAS, R PENA, J CLRE.Control strategy forpower smoothing vector controlled induction machineand flywheel [J].Electronics Letters,2000,36(8):765-766.[5] 吴俊玲,吴畏,周双喜.超导储能改善并网风电场稳定性的研究[J].电工电能新技术,2004,23(3): 59-63.[6] 石晶,唐跃进,陈磊,等.基于超导磁储能的变速恒频风力发电机励磁系统[J].科技导报,2007,26(1):43-46.[7] 刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.[8] 桂长清.风能和太阳能发电系统中的储能电

池[J].电池工业,2008,13(1):50-54.[9] 张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技 术,2006,30(15):54-58 [10] 温兆银.钠硫电池及其储能应用[J].上海节能,2007(2):7-10.[11] ROBERTS B P.Sodium-Sulfur(NaS)batteries for utilityenergy storage applications [A].IEEE power andenergy society general meeting-conversion anddelivery of electrical energy in the 21st century [C].IEEE,2008.[12] 杨根生.液流电池储能技术的应用与发展[J].湖南电力,2008,28(3):59-62.[13] BAROTE L,WEISSBACH R.,TEODORESCU R,et al.Stand-alone wind system with vanadium redox batteryenergy storage [A].11th international conference onoptimization of electrical and electronic equipment2008[C].OPTIM 2008.407-412.[14] CHAD ABBEY, GEZA JOOS.Supercapacitor energystorage for wind energy applications [J].IEEE Transactionson Industry Applications,2007,43(3):769-776.[15] KINJO T,SENJYU T,URASAKI N, et al.Output levelingof renewable energy by electric double-layer capacitorapplied for energy storage system [J].IEEE Transactionon Energy Conversion,2006,21(1):221-227.[16] 张步涵,曾杰,毛承雄,等.串并联型超级电容器储能系统在风力发电中的应用[J].电力自动化设备,2008,28(4):1-4.[17] DERK J S.Compressed air energy storage in an electricitysystem with significant wind power generation[J].IEEE Transaction on Energy Conversion,2007, 22(1):95-102.[18] 王斌,施正荣,朱拓,等.超级电容器-蓄电池应用于独立光伏系统的储能设计[J].能源工程,2007(5):37-41.[19] WEI LI,GEZA JOOS.A power electronic interface for abattery supercapacitor hybrid energy storage system forwind applications [A].Power electronics specialistsconference 2008[C].PESC,IEEE,2008.1762-1768.[20] WEI LI, GEZA JOOS.Performance comparison of aggregatedand distributed energy storage systems in awind farm for wind power fluctuation suppression [A].Power engineering society general meeting 2007[C].IEEE, 2007.1-6.[21] 李国杰,阮思烨.应用于并网风电场的有源型电压源直流输电系统控制策略

[J].电网技术,2009,33(1):52-55.

第四篇:电子系统级设计论文

电子系统级(ESL)设计

摘要:电子系统级设计(ESL,Electronic System Level)设计是能够让SOC 设计工程师以紧密耦合方式开发、优化和验证复杂系统架构和嵌入式软件的一套方法学,并提供下游寄存器传输级(RTL)实现的验证基础。ESL牵涉到比RTL级别更高层次的电路设计,其基本的关注点在于系统架构的优化、软硬件划分、系统架构原型建模、以及软硬件协同仿真验证。SystemC是一种很好的软硬件联合设计语言,它不仅可以帮助设计人员完成一个复杂的系统设计,还可以避免传统设计中的各种弊端,并提高设计效率。关键词:电子系统级设计;SOC;SystemC 1 引言

目前,高质量的电子系统设计变得越来越复杂和困难。功能更繁杂的设计需求,更短的上市时间,不断增加的成本压力使这种趋势看起来还在加速。从应用概念到硅片实现的过程已经不能仅仅靠工程师聪明的大脑来完成,而更需要依赖于严格完善的设计方法学。

随着片上系统(SoC,System on Chip)设计复杂度的不断提高,设计前期在系统级别进行软硬件划分对SoC各方面性能的影响日趋增加,迫切需要高效快速性能分析和验证方法学。传统的RTL仿真平台不能提供较快的仿真速度与较大的仿真规模,FPGA平台则不能提供详细的性能分析指标,而电子系统级设计(Electronic System Level,ESL)方法,不仅提供高速的仿真验证手段还提供详细的性能分析指标,已经成为当今SoC设计领域最前沿的设计方法,它是能够让SoC设计工程师以紧密耦合方式开发、优化和验证复杂系统架构和嵌入式软件的一套方法学。电子系统级设计(ESL,Electronic System Level)牵涉到比RTL级别更高层次的电路设计,其基本的关注点在于系统架构的优化、软硬件划分、系统架构原型建模、以及软硬件协同仿真验证。全新的ESL工具为电路系统级建模提供了虚拟原型的基本仿真平台。电子系统级设计正在从学术研究的课题变成业界广为接受的建模手段,它完成从理想应用优化到目标体系结构建立。而后依据预期产量规模的不同,用SoC 芯片或可编程平台实现。2.传统SOC设计方法的局限

目前的设计方法不能充分利用设计能力来快速构建满足市场需求的SoC。而只有快速适应消费电子市场的变化,商业系统设计公司才能在竞争中胜出。这使SoC设计方法的研究具有重要的现实意义。

目前在技术上,SoC设计面临的主要挑战是在系统建模和硬件设计之间的不连续性。通常系统是使用C语言或其他系统描述语言定义的。而系统的集成电路实现却使用硬件描述语言,因此导致转换和重写系统的负担。这样的流程使得设计过程中容易出错而且耗时。验证流程中需要仿真大规模系统,仿真速度难以需满足设计需求。HDL模型仿真效率低,需要提高抽象层次。SoC系统中的组件具有多样性异质性,包括各个专业的设计,模拟和数字设计等等,需要提供异质的仿真环境以及对系统级设计空间的探索复杂性的管理。千万门级的规模使得设计本身的管理成为问题深亚微米集成电路中,沿线延迟的增加使时序收敛问题显得更加突出,需要消除前端逻辑设计和后端物理设计的反复返工问题传统的设计重用方法需要适应规模的增长。系统设计需要具有竞争力,从基于芯片的设计方法,过渡到基于IP核的设计也是必然趋势。虽然可以使用标准接口,但是更理想的办法是分离出通讯部分,使用接口综合技术。因此需要设计工具重点面向模块间的通讯和互连,门级和寄存器传输级(RTL)仿真速度太慢,不适合系统设计。需要提高设计的抽象层次。SoC设计的趋势是向高层抽象移动,更强调芯片级的规划和验证。强调早期芯片级规划,以及软硬件系统验证。软硬件协同设计方法是SoC设计方法学研究的重要领域。主要目的是开发适应设计需求的设计方法和相应的电子设计自动化软件。在设计中通常一种技术是不能满足设计要求的,因此要结合研发成本和开发周期等等因素,综合考虑各种技术。3.ESL设计的基本概念

ESL设计指系统级的设计方法,从算法建模演变而来。ESL设计已经演变为嵌入式系统软硬件设计、验证、调试的一种补充方法学。在ESL设计中能够实现软硬件的交互和较高层次上的设计抽象。ESL设计能够让SoC设计工程师以紧密耦合方式开发、优化和验证复杂系统架构和嵌入式软件,并能够为下游的寄存器传输级(RTL)实现提供验证基础。

ESL设计以抽象方式来描述系统单芯片(SoC)设计。在ESL设计中,系统的描述和仿真的速度快,让设计工程师有充裕的时间分析设计内容。并且能提供足够精度的虚拟原型,以配合软件的设计。ESL设计不仅能应用在设计初期与系统架构规划阶段,亦能支持整个硬件与软件互动设计的流程。

ESL设计技术与IP模块能将流程融入现有的硬件与软件设计与工具流程,在SoC开发流程中扮演协调统合的角色。它们让工程师能开发含有数百万逻辑门与数十万行程序代码的设计,并提供一套理想平台,用来进行验证,满足客户持续成长的需求。

4.ESL设计的特点

ESL设计之所以会受欢迎,主要源于以下五方面功能:功能正确和时钟精确型的执行环境使提前开发软件成为可能,缩短了软硬件集成的时间。系统设计更早地和验证流程相结合,能确定工程开发产品的正确性。在抽象层设置的约束和参数可以被传递到各种用于设计实现的工具中。(1)更早地进行软件开发

有了虚拟的原型平台意味着可以更早地开始软件开发。对于目前基于SystemC语言的ESL设计方法学来说,ESL设计工程师可用SystemC生成一个用来仿真SoC行为的事务级模型。由于事务级模型的开发速度比RTL模型要快得多。在RTL实现以前,完成TLM建模后的系统就可以开始软件的开发。这样软件的开发可以和RTL实现同时展开,而不是传统上的在RTL实现完成以后才开始软件的开发。虽然部分和硬件实现细节有关的软件要在RTL完成以后才能开始,但还是可以节省大量的开发时间。(2)更高层次上的硬件设计

为了适应不断变化的市场要求,需要不断推出新产品或经过改进的产品。在SoC设计中可以通过改进一些模块的性能、增加功能模块或存储器、甚至在体系结构上做出重大的调整。因此设计工程师必须拥有可实现的快速硬件设计方法。为了实现快速的硬件设计,在ESL设计须建立在较高层次上的抽象如事务级建模(TLM)。事务级模型应用于函数调用和数据包传输层。传输级模型可以分为事件触发型和时钟精确型,这些模型能够提供比RTL级模型快好几个数量级的仿真速度。ESL工具的挑战就是既要保持足够精度的时序信息来帮助设计决策,又要提供足够的仿真速度以满足大型的系统软件(如OS启动)在可接受的时间内的完整运行。只要掌握了这种平衡,就可以在高级设计中验证时序和设置约束条件,再将这些优化的设计分割、分配到各个不同的软、硬件设计工作组去加以实现。RTL仿真通常只能提供10MIPS到数百MIPS左右的性能;然而,时钟精确型的ESL仿真却能达到100KMIPS到1MMIPS的仿真速度。(3)设计的可配置性和自动生成

越来越多的系统强调自己的可配置性,诸如:不同的处理器、不同的总线带宽、不同的存储器容量、无数的外设。配置和生成出来的设计必须和验证环境得到的结果完全一致,并延续到整个设计流程中。通过ESL模型,结构设计师能够找到最好的配置方案。但是,这样产生出来的结果需要和一套骨架的验证环境同步到设计实现中去。如ARM已经实现了从RealView SoC Designer ESL环境中自动导入SynopsysDesignWare coreAssembler SoC的集成和综合流程,并且可以从coreAssembler或Mentor Graphics公司的Platform Express中启动ARM PL300 AXI可配置互联生成器,来生成AXI总线系统。(4)方便的架构设计

ESL架构设计能完成功能到运算引擎的映射。这里的引擎指的是那些可编程的目标——如处理器、可配置的DSP协处理器,或者是特殊的硬件模块如UART外设、互连系统和存储器结构。这是系统设计的开始环节,从行为上划分系统,验证各种配置选择的可行性及优化程度。ESL工具对于开发可配置结构体系是非常关键的。它使系统结构从抽象的行为级很容易地映射到具体的硬件设计,从而方便决定哪些模块可以被复用,哪些新模块需要设计。还能提供必要信息指导最优化的通讯、调度和仲裁机制。(5)快速测试和验证

由于ESL设计中的抽象级别明显高于RTL设计抽象级别,ESL设计中可以做到描述模块内的电路状态、精确到纳秒的转换以及精确到位的总线行为。相比使用RTL,使用周期精确的事务级模型将使硬件验证和硬件/软件协同验证速度快1000倍或者更多。这种方法不仅可产生用于验证系统行为,它还支持与较低抽象级别的RTL模型的协同仿真。如果ESL设计抽象级别被当作一个测试台的话,当下游的RTL实现模块可用时,它们便可在这个测试台上进行验证。

系统级的HW/SW协同验证要优于C/RTL实现级的HW/SW协同验证。因为在系统级的验证可以在较早的展开,而不必等到底层的实现完成后才开始。在底层实现没有开始前的协同验证可以及时修改体系结构或软硬件划分中的不合理因素。越高层次上的验证,可以越大程度上减少修改设计带来的损失。5.ESL设计方法

ESL作为一种先进的设计方法学,能够用于硬件的功能建模与体系结构的探察,给硬件架构设计人员提供准确可靠的设计依据,因此在本章的内容里将将详细介绍ESL设计的基本流程与ESL的核心方法—利用SystemC实现事务级建模的基本理念。

首先要指出的是在设计的哪个阶段使用ESL设计方法和ESL设计工具。每一个电子产品的设计过程以某一种形式的顶层定义开始。这个定义过程可以以文本的形式描述,也可以用图表、状态图、算法描述,或者利用工具如MATLAB等描述。ESL设计并不是定位在这个层次上的设计。而是通过描述系统怎样工作,并为进一步的实现提供一个解决方案。ESL设计成为系统和更加底层设计之间的桥梁。ESL设计包括功能设计和体系结构设计两大领域。

系统的行为由功能模块实现,功能模块设计必须关注系统的应用。功能设计不考虑硬件和软件,物理和工艺。功能设计包括实现功能模块结构、模块之间的通信和它们的基本行为。在ESL中一个硬件功能模块的设计包括定义正确的功能,确定输入和输出,划分子模块,确定子模块的结构、数据流和控制逻辑,还要为其模块建立测试环境。这个设计过程和RTL的设计流程相似,但他们在不同的抽象层次上,使用不同的设计语言,例如,在ESL的功能模块建模过程中使用SystemC或SystemVerilog,而RTL级建模则使用Verilog或者VHDL。

体系结构设计首先要建立平台的描述。接着将应用的功能部件影射到平台。验证体系结构模型,并根据成本和性能优化这个结构。在体系结构设计中需要考虑处理器的类型、处理器的数量、存储器的大小、Cache性能、总线互联和占用率、软件和硬件的功能划分和评估、功耗的评估和优化等。

首先ESL接受一个设计定义的输入,这个定义可以是文本、图表、算法或者是某种描述语言如UML,SLD,MATLAB等的描述。对于这个输入的定义,在ESL设计完成算法的开发,接口定义,用ESL语言或其他语言来描述来完成体系结构的设计。并在此基础上完成软硬件的划分。完成软硬件划分后,可以开始软件和硬件的设计。在硬件设计中,对于功能单元需要在较高层次上的建模,完成功能设计。比如说用SystemC进行事务级的建模。

用C/C++或其他高级语言完成应用软件的设计。在这个阶段开始软硬件的协同验证,根据协同验证的结果反馈给体系结构和软硬件划分。后者根据性能、成本等因素重新做出调整。软硬件的设计和验证,包括软硬件的协同验证是一个重复的过程,在整个设计过程中都要根据验证的结果对体统和设计做出调整。完成验证的硬件和软件设计就可以组成一个完整地系统级设计。传递给下一级 的设计作为输入。比如说是ESL设计为软件应用提供C或C++语言描述的程序。为定制电路提供Verilog或VHDL语言描述的硬件设计。为硬件平台提供PCB板的功能部件或抽象层IP,比如说基于SystemC的IP。在实现ESL设计流程的具体过程中,有不同的实现方法可以采用。下面介绍两种应用得比较多 的设计方法。

在完

成系统功能定义后,设计方法之一是从系统的定义开始,先进行算法级设计。通常用MatLab等工具进行算法的分析,接着用Simulink等工具进行数据流的分析。完成分析后进行体系结构的平台的设计。体系结构和平台设计要进行系统级的验证,以确定结构是否合理。在体系结构的设计中,首先从IP库中获取已有的硬件模块的事物级模型,如处理器和总线模型,或者重新设计IP库中没有的模块的事物级模型。硬件模块的事物级建模完成后,建立系统模型。接下来输入软件参考模型进行软硬件的协同验证。体系结构的系统级验证的目标是确定存储器的大小、DMA的定义、总线带宽和软硬件划分等。

与图2中的ESL设计方法一相比,图3中的设计方法是直接由软件参考代码开始,创建事物级模型的虚拟平台,在此基础上进行系统结构设计,验证和性能的分析。通常,软件参考代码已实现了基本功能,特别是保证了算法及数据流等的正确性。如,软件参考代码可以是某一标准协议的用C语言写的参考代码。在软件参考代码和事物级模型的基础上分别进行软件和硬件的设计。在软件设计中,会把建立完成的虚拟平台和构架作为集成开发环境的一部分。集成开发环境还包括编译器和调试工具的开发。在设计的过程通过软硬件的协同验证调整设计的内容。

6.SystemC的系统级芯片设计方法研究

在传统设计方法中,设计的系统级往往使用UML,SDL, C, C++等进行描述以实现各功能模块的算法,而在寄存器传输级使用硬件描述语言进行描述。最广泛使用的2种硬件描述语言是VHDL和Verilog HDL,传统的系统设计方法流程如图3所示。从图中不难看出,传统的设计方法会出现如下弊端:首先,设计人员需要使用C/C++语言来建立系统级模型,并验证模型的正确性,在设计细化阶段,原始的C和C++描述必须手工转换为使用VHDL或Verilog HDL。在这个转换过程中会花费大量的时间,并产生一些错误。

其次,当使用C语言描述的模块转换成HDL描述的模块之后,后者将会成为今后设计的焦点,而设计人员花费大量时间建立起来的C模型将再没有什么用处。再次,需要使用多个测试平台。因为在系统级建立起来的针对C语言描述的模块测试平台无法直接转换成针对HDL语言描述的模块所需要的测试平台。

无论采用什么样的设计方法学,人们都需要对SOC时代的复杂电子系统进行描述,以选择合适的系统架构进行软硬件划分、算法仿真等。描述的级别越低,细节问题就越突出,对实际系统的模仿就越精确,完成建模消耗的时间、仿真和验证时间就越长。相反,描述的抽象级别越高,完成建模需要的时间就越短,但对目标系统的描述也就越不精确。作为设计人员必须在速度和精确性之间做出选择。

人们对系统级描述语言的要求是:高仿真速度以及建模效率、时序和行为可以分开建模、支持基于接口的设计、支持软硬件混合建模、支持从系统级到门级的无缝过渡、支持系统级调试和系统性能分析等。人们迫切需要一种语言单一地完成全部设计。这种语言必须能够用于描述各种不同的抽象级别(如系统级、寄存器传输级等),能够胜任软硬件的协同设计和验证,并且仿真速度要快。这就是所谓的系统级描述语言SLDL,而传统的硬件描述语言如VHDL和Verilog HDL都不能满足这些要求。SystemC就是目前这方面研究的最新、最好的成果,他扩展传统的软件语言C和C++并使他们支持硬件描述,所以可以很好地实现软硬件的协同设计,是系统级芯片设计语言的发展趋势。7.ESL综合

“ESL综合”到底有没有一种明确的定义,能让我们确信ESL综合是一种可行的设计技术,或者用于评估某款所谓的ESL综合工具是否真的能够完成综合工作?凭借Synplicity营销高级副总裁AndrewHaines在电子设计自动化(EDA)方面的工作经验,关于ESL综合的定义,建议是:此定义应该突出ESL综合与其他ESL设计工作相比的独到之处。

首先,从本质来说,综合是从一种抽象层级转变为另一种抽象层级,同时保持功能不变。逻辑综合是从RTL到逻辑门的转变;而物理综合则是从RTL到逻辑门及布局的转变。因此,ESL综合是从ESL描述语言到RTL等抽象较低的实施方案的转变。就ESL综合的定义而言,选择哪种描述语言并不重要,因为通过在初始化阶段根据不同应用支持多种ESL语言的方式,用户群最终均能解决这一问题。重要的是,ESL综合应将设计转变为抽象较低但功能相当的实施方案。其次,某种技术被定义为综合技术,就必然与其他形式的转变存在根本区别。例如,原理图输入(schematic capture)很显然是一种涉及多种抽象层级的转变,而综合则不是。综合与原理图输入定义的独特区别在于香蕉曲线,也

就是说,综合的结果不是面积与时序关系图上的一个点,而是一条曲线,表示所有综合结果均保持相当的功能,但时序与面积不同。因此,根据面积与时序关系自动定义一系列功能相当的解决方案必须作为ESL综合定义的一部分。

我们已经认识到,真正的DSP综合需要从算法发展到优化的RTL,市场中已有能够满足上述要求的相关ESL综合技术。这确实是ESL综合技术的进步。不过,客户必须始终认识到,有的所谓“ESL综合”工具实际只能根

据算法描述创建参数化的RTL模型,这种产品不能实现自动化,也无法形成“香蕉曲线”,且对提高工作效率的作用也非常有限。定义本身不会改善ESL设计,即便如此,我们也应当在早期为其下一个明确的定义,以便设计小组了解ESL的真正进步与不足。参考文献:

[1]刘强.基于SystemC的系统级芯片设计方法研究,现代电子技术,2005(9)[2]陶耕.基于ESL设计方法学的雷达信号产生与处理技术[D].南京理工大学,2009 [3]Ron Wilson.电子系统级设计:从现象到本质.EDN电子设计技术,2008(11)

[4]Bassam Tabbara.电子系统级(ESL)设计:越早开始越好.中国集成电路,2005(12)[5]祝永新.基于ARM ESL平台的H.264与AVS双解码软硬件协同设计和研究[D].上海交通大学,2010 [6]刘昊.基于ESL的AVS帧内预测算法周期精确级建模.信息技术,2008

第五篇:机电一体化系统设计论文

机电一体化系统设计论文

班级:数控姓名:潘万顺学号:081841191

摘要:机电一体化是现代科学技术发展的必然结果,本文简述了机电一体化技术的基本概要和发展背景。综述了国内外机电一体化技术的现状,分析了机电一体化技术的发展趋势。作为机电系的一名学生,将来工作学习都会以机电为主,所以必须掌握好各种机电的专业知识。我会本着认真的态度对待专业课的学习,提高自己的专业素养.接下来我将介绍一下我对电动机的认识。

关键词:机电一体化;技术;应用

引言

现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。

下载风雨储的联合发电系统设计论文(共五篇)word格式文档
下载风雨储的联合发电系统设计论文(共五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    光伏发电生产运行管理系统设计原理

    光伏发电生产运行管理系统设计原理 随着光伏行业的发展,光伏发电技术已经趋于成熟和完善。发电企业愈来愈关心的问题就是如何减少发电量损失、提高发电效益、最大限度提升生......

    2011年中国整体煤气化联合循环发电系统(IGCC)市场深度评估研究

    2011-2015年中国整体煤气化联合循环发电系统(IGCC)市场深度评估研究 【报告前言】 IGCC(Integrated Gasification Combined Cycle)整体煤气化联合循环发电系统,是将煤气化技术和......

    物流管理信息化系统的设计论文(共五则)

    摘要:随着我国社会主义市场经济的高速发展,电子商务的规模也逐渐扩大,从而推动了物流行业。在竞争日趋激烈的市场环境下,加强对物流管理的科学性和系统性,是物流企业当面工作的重......

    公交查询系统设计与实现论文

    公交查询系统设计与实现论文 1引言 随着城市经济的发展、规模的扩大以及人口的增长,城市交通问题日益突出。降低出行时间将使所有的公交利用者产生效益,快速的交通、更好的信......

    校园综合布线系统设计论文

    内蒙古化工职业学院毕业设计(论文)用纸 校园网综合布线设计 摘 要 现代科技的进步使计算机及网络技术飞速发展,提供越来越强大的计算机处理能力和网络通信能力。综合布线系统就......

    输煤程控系统设计论文

    科 技 学 院 题 目:输煤程控系统设计 系 别: 专业班级: 学生姓名: 指导教师: 2010年11月 动力工程系 自动化07K3班 华北电力大学科技学院本科毕业设计(论文) 输煤程控系统设计 1. 前......

    嵌入式系统设计论文解读(五篇)

    嵌入式系统设计论文 专业:电子信息工程(信号处理)班级:姓名:指导教师: 评分: 年月 日 【摘要】 当今信息时代,嵌入式系统的应用无处不在,而ARM嵌入式系统应用市场份额约占75%。从嵌......

    电子商务系统规划与设计论文

    电 子 商 务 概 论电子商务系统规划与设计 摘要电子商务是利用现代信息网络进行商务活动的一种先进手段,作为创新的经济运行方式,其影响已经远远超过商业领域,为了跟上世界电子......