第一篇:金属导热系数测量实验报告
南昌大学物理实验报告 课程名称:
大学物理实验 实验名称:
金属导热系数的测量 学院:
信息工程学院 专业班级:
自动化 153 班 学生姓名:
廖俊智 学号:
6101215073 实验地点:
基础实验大楼 座位号:号 实验时间:
第七周星期四上午九点四十五开始、实验目的: 用稳态法测定金属良导热体的导热系数,并与理论值进行比较。、实验原理:、傅里叶热传导方程 导热系数(热导率)是反映材料导热性能的物理量。
温度为 T 2,T i T 2,热量从上端流向下端。若加热一段时间后,内部各个截面处的温度达到恒定,此时 虽然各个截面的温度不等,但相同的时间内流过各截面的热量必然相等(设侧面无热量散失),这时热 传递达到动态平衡,整个导体呈热稳定状态。法国数学家,物理学家傅里叶给出了此状态下的热传递方
如图二所示,将待测样品夹在加热盘与散热盘之间,且设热传导已达到稳态。由(1)式可知,加 测定材料的导热系数在设计和制造加热器、散热器、传 热管道、冰箱、节能房屋等工程技术及很多科学实验中 // 都有非常重要的应用。
图(一)
如图(一)所示。设一粗细均匀的圆柱体横截面积为 S,高为 h。经加热后,上端温度为 T 1,下端 Q 是 t 时间内流过导体截面的热量, S T 1 T 2 h(1)学叫传热速率。比例系数 就是材料的导热系数(热导率),)。在此式中,S、h 和 T 1、T 2 容易测得,关键 是如何测得传热速率Q。、用稳态法间接测量传热速率 T i T 2 热盘的传热速率为Q S
h 2 T 1 T 2 d 2(T 1 T 2)4h 单位是
如图三所示,把两种不同的金属丝彼此熔接,组成一个闭合回路。若两接点保持在不同的温度 下,则会产生温差电动势,回路中有电流。如果将回路断开(不在接点处),虽无电流,但在断开处有 电动势。这种金属导线组合体称为温差电偶或热电偶。在温度范围变化不大时热电偶产生的温差电动势 与两接点间的温度差成正比,(T T。),T o 为冷端温度,T 为热端温度,叫温差电系数。
在本实验中,使用两对相同的铜一康铜热电偶,相同,它们的冷端均放在浸入冰水混合物的细玻 璃管中,T o 也相同。当两个热端分别接触加热盘和散热盘时,可得样品上下表面的温度分别为:
T i 1
T o,T 2 2
T o,所以
(6)式就是本实验所依据的公式。
d 和 h 分别为样品的直径和厚度,C 和 m 分别为散热铜盘的比热 和质量,i 和 2 分别为加热至稳态时通过热电偶测出的两个温差电动势
这样,式(5)可以写为 0.555 4Cmh d 2(1 2)g
t|(6)(由数字电压表读出)
为散热盘在 2 时的冷却速率
三、实验仪器:
导热系数测定仪(TC — 3)、杜瓦瓶 四、实验内谷和步骤:
(1)先将两块树脂圆环套在金属圆筒两端(见下图),并在金属圆筒两端涂上导热硅胶, 然后置于加热盘 A 和散热盘 P 之间,调节散热盘 P 下方的三颗螺丝,使金属圆筒与加热 盘 A 及散热盘 P紧密接触。
(2)
在杜瓦瓶中放入冰水混合物,将热电偶的冷端插入杜瓦瓶中,热端分别插入金属圆 筒侧面上、下的小孔中,并分别将热电偶的的接线连接到导热系数测定仪的传感器 I、II 上。
(3)
接通电源,将加热开关置于高档,当传感器 I 的温度 T i 约为 3.5mV 时,再将加热开 关置于低挡,约 40min。
(4)
待达到稳态时(T i 与 T 2 的数值在 10min 内的变化小于 0.03mV),每隔 2min 记录 T i 和 T 2的值。0 0 Ji“ i J 测 1 表 o Q1 J O G 2 导蟻嚴数丹測 1
孟 g JI-■■
(5)
测量散热盘 P 在稳态值 T2 附近的散热速率,移开加热盘 A ,先将两测温热端取下,再将 T2 的测温热端插入散热盘 P 的侧面小孔,取下金属圆筒,并使加热盘 A 与散热盘 P 直接接触,当散热盘 P 的温度上升到高于稳态 T 2 的值约 0.2mV 左右时,再将加热盘 A 移 开,让散热盘 P 自然冷却,每隔 30s 记录此时的 T 2 值。
(6)记录金属圆筒的直径和厚度、散热盘 P 的直径、厚度、质量。
五、实验数据与处理:
C 铜 =0.09197cal cm 1
s-1
C)1cal=418.68W/mK 散热盘 p :
m=810g R p =6.385cm h p
=0.71cm 金属铝圆筒:R B =1.95/cm h B
=9.0/cm 表 1 稳态时 T 1 T 2 的数据:
序次 1 2 3 4 5平均 T 1 /mV 1 2.73 2.73 2.73 2.71 2.71 2.722 T 2 /mV 2.52 2.53 2.54 2.53 2.54 2.532 稳态时 T 3 对应的热电势数据 U 3 2.46mV 表 2 散热速率:
=0.0729 mV/s
时间 /s 30 60 90 120 150 180 210 240 T 2 /mV 2.67 P 2.58 P 2.51 「 2.43 2.35 2.28 2.22 : 2.16 mc T(RPh B)h B ? 1 2 t(2 R Ph P)(「 T 2)
R B 810 0.09197 0.0729
--------------(6.385 2
9.°)9.0------------------
--------1 _2
0.316cal cm 1
s 1
C 1
(2 6.385 2 0.71)(2.722-2.532)〔 95 132.30W/mK 铝的热导率的理论值为 2.0 x 10 2
(J • s-1
• m 1
• K 1)六、误差分析:、实验中铝并不是纯铝,存在杂质,而纯度及杂质未知。、树脂圆环与加热盘和散热盘不能紧密接触。、在实验过程中发现,热电偶的两端在插入时深浅对实验有一定的影响,过程中无法保持在同一深度,故测量的数据可能存在偏差。、试验过程中,杜瓦瓶中不是冰水混合物对实验有一定的影响 七、思考题:
1.在测量散热盘 P 的散热速率 T 时,为什么要测在稳态值 T3 附近的T
? t t 答:在稳态时,散热速率铝棒和铜盘的相等,测得铜盘的即可得出铝棒的散热速率。
八、附上原始数据
第二篇:教案 测量不良导体的导热系数
教案 测量不良导体的导热系数
林一仙 一 实验目的
1、用稳态平板法测量不良导体的导热系数
2、用物体的散热速率求传热速率
3、掌握热电偶测量温度的方法 二 实验仪器
导热系数仪、杜瓦瓶,热电偶、FPZ-1型多量程直流数字电压表、游标卡尺、停表 三 实验原理
(一)稳态平板法
QtQt12h
为热流量,λ为该物质的导热系数,也称热导率,h-样品厚度,A-样品面积。所谓稳态指的是高温物体传热的速率等于低温物体散热的速率时,系统便处于一个稳定的热平衡状态。
(二)实验装置及方法
Qt14h2d
2A-加热铜盘,P-散热铜盘;d-样品盘的直径,h-样品盘的厚度; θ1-加热铜盘的温度,θ2-散热铜盘的温度。
(三)冷却法测量散热铜盘的散热速率
∵ Qt散mcPdPdt ;
ddt 是曲线在θ2点的斜率,如下图 ∴ 4hmPcPddt
d212
四 教学内容与步骤
1、测量样品盘的厚度h和直径d,并记录散热铜盘的质量。
2、系统的调整,三个盘的顺序,固定的顺序,先固定加热盘,再用三个螺丝固定三个盘。用220V加热15分钟,同时将热电偶相应插入各个插孔。提问应该怎样判断热端冷端?应该怎样使用数字电压表?
3、提问:接下来应该做的实验内容是什么?稳态的测量,散热曲线的观测,各个详细的步骤可以看书。特别注意稳态的判断以及散热范围,风扇的开与关。五 注意事项
1、数字电压表调零要用调零旋钮和调零开关
2、量程选择20mv
3、散热铜盘上的洞要与杜瓦瓶同侧 六 考核内容
1、预习报告内容是否完整,原理图、公式、表格等是否无误。
2、检查三个盘是否装好,热电偶是否接对,毫伏计是否调零。
3、检查实验数据是否有误。
第三篇:物理实验报告-稳态法导热系数测定实验
稳态法导热系数测定实验
一、实验目的
1、通过实验使学生加深对傅立叶导热定律的认识。
2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。
3、确定材料的导热系数与温度之间的依变关系。
4、学习用温差热电偶测量温度的方法。
5、学习热工仪表的使用方法
二、实验原理
平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。
三、实验设备
实验设备如图2所示。
图2平板式稳态法导热仪的总体结构图
1.调压器2.铜板3.主加热板 4.上均热片 5.中均热片
6.下均热片7.热电偶 8.副加热板 9.数据采控系统 10.温度仪表 11.试样装置 12.循环水箱电位器 13.保温材料 14.电位器
键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。
数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。“RST”复位键:复位数据,重新选择。
控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。
四、实验内容
1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。
2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。
3、对实验结果进行分析与讨论。
4、分析影响制导热仪测量精度的主要因素。
5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。
五、实验步骤
1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。
2、测量加热板的内部电阻。
3、校准热工温度仪表。
4、向水箱内注入冷却水。
5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。
6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。
7、通过数据键输入试样面积、厚度等相关参数,由试样面积、厚度、主加热板的电阻、电压、上表面温度及上均热片的上表面温度获得试样的导热系数。
8、改变电位器改变提供给主加热板和副加热板的加热功率件,重复步骤(5至7)测量并记录多个温度下的材料导热系数。
9、关掉电源。
六、实验要求
1、采用精度不低于0.05 mm的厚度测量工具(游标卡尺),沿试样四周测量四处的厚度,取其算术平均值,作为实验前试样厚度。
2、用酒精将试件及均热片擦洗干净并晾干,晾干后在其上均匀涂抹导热油。
3、用调压器将电压调至一定值,保持不变,经一段时间后,待跟试件上下表面接触的铜片各点温度为一定值时,即导热过程达到稳定后记录各点温度及电热器的电压。
4、改变电加热器的电压(调节调压器),即改变电热器热量使之维持在另一个数值上,跟试件上下表面接触的铜片各点温度达到新的稳定状态后,重复第3项的测量。
5、用最小二乘法计算不同橡胶材料的导热系数随温度变化的关系式。
五、实验报告要求
1、材料温度可取材料上下表面温度的平均值,即,其中:Tw1为试样材料下表面温度,Tw2为试样上表面温度。
2、实验报告需用专用的实验报告用纸进行书写;
3、实验报告中必须包含实验目的和实验步骤;
4、实验报告中必须包括实验数据的记录;
5、实验报告中必须包括实验数据处理的具体步骤,并有材料的导热系数随温度变化的关系式及关系曲线图;
6、实验报告中必须有对实验数据结果的分析。
第四篇:稳态法导热系数测定实验
稳态法导热系数测定实验
一、实验目的
1、通过实验使学生加深对傅立叶导热定律的认识。
2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。
3、确定材料的导热系数与温度之间的依变关系。
4、学习用温差热电偶测量温度的方法。
5、学习热工仪表的使用方法
二、实验原理
平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。图1是无限大平板导热示意图。
根据傅立叶(Fourier)定律:
Tw2 y x T Q Tw1 cTTTT()()()xxyyyy(1)
在一维无限大平板稳态传热时,方程(1)可简化为:
2T02x
δ图1 无限大平板的稳态导热示意图
(2)
其边界条件为
x=0时,T=Tw1 x=δ时,T=Tw2
可解得下列方程
QA(Tw1Tw2)
(3)
由式(3)可得
QA(Tw1Tw2)
(4)
式中
λ——导热系数,W/m ·℃; δ——试件厚度,m;
Q——热流量,w; A——试件面积,m2;
Tw1 ——试件下表面温度,℃; Tw2 ——试件上表面温度,℃。
一般情况下,选择平板试件的尺寸要注意满足下列条件:
17D~110D
式中
D ——方板的短边长度,m。
热流量Q也可以由输入电压和电阻表示为:
QU2R 式中 U——施加在加热板上的电压,V;
R——加热板上内部加热电阻丝的电阻,Ω。将式(5)带入式(4)得
U2RA(Tw1Tw2)
对应此λ的材料温度为
TTw1Tw2 2
(5)
(6)
(7)
根据式(7)只要知道试件面积A、电压U、电阻R、厚度δ以及在厚度δ方向上的温度差,便可求出导热系数。
三、实验设备
实验设备如图2所示。
图2平板式稳态法导热仪的总体结构图
1.调压器2.铜板3.主加热板 4.上均热片 5.中均热片
6.下均热片7.热电偶 8.副加热板 9.数据采控系统 10.温度仪表 11.试样装置 12.循环水箱电位器 13.保温材料 14.电位器
键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。
数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。
“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。
“RST”复位键:复位数据,重新选择。
控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。
四、实验内容
1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。
2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。
3、对实验结果进行分析与讨论。
4、分析影响制导热仪测量精度的主要因素。
5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。
五、实验步骤
1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。
2、测量加热板的内部电阻。
3、校准热工温度仪表。
4、向水箱内注入冷却水。
5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。
6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。
7、通过数据键输入试样面积、厚度等相关参数,由试样面积、厚度、主加热板的电阻、电压、上表面温度及上均热片的上表面温度获得试样的导热系数。
8、改变电位器改变提供给主加热板和副加热板的加热功率件,重复步骤(5至7)测量并记录多个温度下的材料导热系数。
9、关掉电源。
六、实验要求
1、采用精度不低于0.05 mm的厚度测量工具(游标卡尺),沿试样四周测量四处的厚度,取其算术平均值,作为实验前试样厚度。
2、用酒精将试件及均热片擦洗干净并晾干,晾干后在其上均匀涂抹导热油。
3、用调压器将电压调至一定值,保持不变,经一段时间后,待跟试件上下表面接触的铜片各点温度为一定值时,即导热过程达到稳定后记录各点温度及电热器的电压。
4、改变电加热器的电压(调节调压器),即改变电热器热量使之维持在另一个数值上,跟试件上下表面接触的铜片各点温度达到新的稳定状态后,重复第3项的测量。
5、用最小二乘法计算不同橡胶材料的导热系数随温度变化的关系式。
五、实验报告要求
1、材料温度可取材料上下表面温度的平均值,即T(Tw1Tw2)/2,其中:Tw1为试样材料下表面温度,Tw2为试样上表面温度。
2、实验报告需用专用的实验报告用纸进行书写;
3、实验报告中必须包含实验目的和实验步骤;
4、实验报告中必须包括实验数据的记录;
5、实验报告中必须包括实验数据处理的具体步骤,并有材料的导热系数随温度变化的关系式及关系曲线图;
6、实验报告中必须有对实验数据结果的分析。
第五篇:吸声系数测试实验报告
实验二 吸声系数的测试
一、实验目的
掌握材料吸声系数的测试原理及测试方法。
二、实验原理
采用北京声望电技术有限公司产的SW002驻波管、BSWA VS302USB双声学分析仪和BSWA-100型功率放大器。参照JJF 1223-2009驻波管标准规范(驻波比法)进行测量。如下图所示:测试样的直径为100mm,厚度30mm。选择线性网络,声压级为90dB粉红噪声源。数据处理采用Spectra LAB的声学软件。Sampling Rata 取“48000”,Decimation Ratio 取1,FFT size 取4096。
该试验的主要原理是:当扬声器发出声波在驻波管内传播时,驻波管内形成驻波 声场,沿管轴向方向会出现声压极大与极小的交替分布,利用可以移动的探
管传声器接收声压信号,然后根据声压极大值与极小值的比值可计算出材料的 吸声系数。这种测量方法的缺点是要求手动移动滑块确定探管的位置,步骤比较繁琐,实验耗时也较长。
三、实验材料
三种实验室无标记材料(多层非织造布合成材料),记为试样1、2、3。
四、实验步骤
1、开启设备预热半小时左右。
2、设置实验软件参数。
3、放入试样,移动小车,多次测试并记录数据。
4、处理并分析数据。
五、数据处理及分析
0.80.70.6 1dem 2o 3demodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemodemo吸声系数(α)0.50.40.30.20.1demodemodemodemodemo******0125016002000频率(Hz)
本实验参照测试标准和仪器使用说明,按照1/3倍频程,分别取125、160、200、250、315、400、500、630、800、1000、1250、1600、2000Hz十三个频带进行测试。由实验数据可知,在低中频区域内,符合实际情况,故测试具有代表性。根据多孔材料的吸声机理,在多孔材料内存在许多微细的小孔和间隙,当声波在多孔材料内部传播时,部分声能在传播的过程中转变成热能损耗掉,从而达到吸声的效果。低频声波的波长比较长,所以在材料传播时可以更容易穿过小孔,声能损失也就更少,则吸声系数小;而高频声波的波长比较短,材料内空气分子的振动速度加快,所以声波与孔壁的接触面积增加,摩擦更加剧烈,从而使更多的声能转化为热能损耗掉,则吸声系数大。由上图可知,试样1在400Hz,试样2、3在800Hz时吸声系数值分别出现一个陡峰,这可能是由于材料产生共振使振动加剧,声波与孔壁摩擦更加剧烈,从而转化成大量热能损耗掉,所以吸声系数增大。