第一篇:虚拟声学信号采集系统设计论文
1虚拟声学信号采集分析系统设计研究
1.1系统前面板的设计
虚拟仪器的前面板设计是否合理对虚拟仪器的使用效果有着重要的影响,它直接面向使用者,使用者对其分布的合理程度也有着很高的要求。
1.2系统的程序框图设计
对各个的功能模块进行分割编写,采用模块式的编写方式逐个进行分割,然后将分割编写的模块整理集合以构成一个新的系统控制程序。程序模块主要包括三个模块,第一种是实时信号采集模块;第二种是信号处理分析模块;第三种是仿真信号模块。这三种模块对系统都有着很重要的影响,它们以不同的角色为系统提供服务,满足用户的需求,产生令用户满意的信号。另外,对这三种模块的编写整合构成新的程序框图。
1.2.1实时信号采集模块实时信号采集模式可以通过对信号的有效分析处理对所采集的数据进行系统的分析,并且实时信号采集模式可以根据用户所设置的声音格式从声卡中得到相关数据,然后对数据进行保存。这种模块在开始采集数据前要注意,参数的设置要根据实际的情况和参数设置好以后将信号选择的按钮调制实时信号档上。开始设置各个快捷按钮,如停止按钮、退出按钮、对信号的采集保存等按钮。
1.2.2信号处理分析模块设置完成应用信号处理分析模块一般是对数据进行时域分析以及频域分析。其中时域分析可分为对参数的测量、对谐波失真分析、最后是自相关分析。在对信号进行分析处理的过程中,如果单单只对信号进行频域分析,信号所具有的全部特征并不能完全的显示出来,也就是时域分析有时候不能完全满足对信号的分析,这就需要对信号进行频域分析,以更加全面完整的分析出信号所具有的全部性质。在LabVIEW中,如果要对信号进行频域分析,就要以FFT为分析的基础,才能进行具体分析。
1.2.3仿真信号模块的完成应用仿真信号模块的作用我们不可忽视,生活中并不是所有的信号都能用实际的仪器产生,当无法获得实际的信号时,可以用仿真信号作为任意频率的信号,也可以用仿真信号作为标准的信号源,对其产生的信号做信号的检测系统。这种仿真信号模块包含波形显示以及噪声的添加等功能。仿真信号可以产生一些日常生活中我们常见的信号,如正弦波、方波以及三角波等。并且用户可以很据自身的需要对信号的频率、幅值、以及采样频率进行调节,从而产生用户所需要的信号。
2研究应用
整流电路中应用虚拟声学采集分析系统研究采集系统的采集性能。在整流电路中应用虚拟采集分析系统时,应该注意采样的频率要保持20Hz~20kHz之间,如果想得到更加完整较好的波形,就可以将频率控制在100Hz~15kHz之间。在整流点路中要进行对正弦先好进行整流的过程中,可应用二极管半波整流电路对其进行整流。输出信号以后接入虚拟信号采集分析系统,可以得到一些波形。事实证明,虚拟仪器的信号采集分析系统的采集性能可以达到人们所需要的理想信号。实践证明,虚拟仪器信号采集分析系统已经被广泛的应用在噪声监测、信号分析以及实验教学当中。
3结语
当前,虚拟仪器已经被广泛的应用到对各种信号的采集分析,作用不容小视。虚拟仪器与传统仪器相比,优点远远比传统仪器多的多。例如,与传统仪器相比,虚拟仪器的智能化程度远比传统仪器的高,处理能力比传统仪器的处理能力强;虚拟仪器的系统费用要比传统仪器的系统费用低,并且虚拟仪器的复用性较强;从可操作性能上看,虚拟仪器的可操作性比传统仪器的可操作性强。文中还对虚拟声学信号采集系统做了研究,主要研究了系统前面板的设计和程序框图设计,程序框图设计中,对三种模块进行编写,最后组合成一个完整的新的程序框图。随着科技的不断发展进步,虚拟仪器在各个领域会有更大的影响。
第二篇:信息采集系统设计说明书
信息采集系统概要设计
整体网络拓扑
信息采集系统的总体网络拓扑如下图所示:
工程师站服务器公网采集站1采集站2...网络结构说明
设备与采集站属于厂区内的同一个私有网络。
采集站/工程师站与公网直连,或者通过路由器间接地与公网连接。
终端状态管理
工程师站可以看到采集站的在线状态。选择采集站后,可以看到采集站下各个终端的在线状态。如果网络连接正常,所有采集站和终端都应该是在线的状态。采集站和终端注册
为了显示采集站和终端的在线状态,用户需要在工程师站上注册所有的采集站以及采集站下的终端信息。
用户在注册采集站时,需要填写采集站的标识符,该标识符不可重复,目的是让用户区分不同的采集站,且该标识符需要在采集站和工程师站上保持一致。
用户注册完采集站后,就可以在该采集站下添加终端信息。添加终端时需要填写终端的标识符和描述信息。其中,唯一标识符应当是终端内部可以取到的,可以区分同一个采集站下的不同终端;描述信息的目的是帮助用户区分不同的终端。
采集站和终端信息注册完成后,需要上传到服务器。当其他工程师站连接上服务器时,可以读取到这些信息,无需重复注册。
数据采集过程
本系统采集的数据有三种类型,分别是组态数据,运行数据和故障报警。其中,故障报警又分为实时故障和历史故障。下面分别阐述这三种类型数据的采集过程。
组态数据
每个终端都有一份组态数据,用户可以在终端上直接修改该组态。工程师站可以实时查看终端的最新组态信息,也可以修改并下发该组态信息。
查看终端组态
工程师站可以查询某个终端的最新组态。查询的详细过程如下:
1.2.3.4.5.6.工程师站发送查询命令给服务器
服务器从查询命令中解析出目的采集站,并将查询命令发送给采集站 采集站收到查询命令后向指定终端查询最新组态数据 终端回复最新组态数据
采集站将得到的组态数据回复给服务器
服务器将组态数据回复给发起查询的工程师站
数据流如下所示:
1.工程师站发送组态查询命令6.返回最新组态服务器工程师站2.服务器转发组态查询5.采集站返回最新组态采集站4.终端返回最新组态3.采集站向终端查询最新组态终端
修改终端组态
工程查询到终端的最新组态后,可以修改某些参数,然后将修改好的组态下发到终端设备。查询的详细过程如下:
1.工程师站发送写组态的消息给服务器,消息中需要包含组态和终端标识,可以有多个终端,这些终端的组态将更新为同一份组态。注意,多个终端必须属于同一个厂区,即由同一个采集站管理。
2.服务器从写组态消息中解析出目的采集站,并将写组态消息转发给采集站。3.采集站收到写组态的消息后,将组态下发给指定终端。4.终端回复组态更新结果给采集站。5.采集站将更新结果回复给服务器
6.服务器将组态更新结果转发给工程师站 数据流如下所示:
1.发送写组态消息6.返回组态更新结果服务器工程师站2.服务器转发写组态消息5.采集站返回写组态结果采集站3.采集站向终端写组态4.终端返回组态更新结果终端
运行数据
工程师站可以查询指定终端的当前运行数据,以了解终端的运行状态。查询过程与组态查询过程类似,此处不再赘述。
故障数据
终端运行过程中,如果发生故障,则需要将故障信息发送给采集站。采集站收到故障数据后,需要将此数据保存到本地数据库中。如果采集站此时能连接上服务器,则需要将故障信息发送给服务器。服务器接收到此故障报警后,需要将此故障报警推送给当前在线的工程师站。如果没有工程师站在线,则丢弃此条报警。
从上面的描述可知,工程师站被动接收到的故障报警都是实时故障报警。工程师站也可以通过历史报警功能查询历史报警信息。
实时故障
实时故障由终端主动上报给在线的工程师站,故障上报流程如下: 1.终端检测到故障,上报故障给采集站
2.采集站收到故障后,将故障信息发送给服务器
3.服务器查看是否有在线的工程师站,如果有,则将故障信息推送给工程师站,如果没有在线的工程师站,则丢弃该条故障报警。数据流如下图所示:
3.服务器推送故障报警服务器工程师站2.采集站上报该条故障报警采集站1.上报故障信息给采集站终端
历史故障
用户可以通过工程师站查询终端的历史故障信息,以了解终端的历史运行状态。历史故障查询时需要指定采集站和查询的时间范围,查询得到的结果为指定采集站下所有终端的某一时间段内的历史报警。
历史故障查询的详细过程如下:
1.工程师站向服务器发起历史故障查询,查询消息中包含了待查询的采集站和查询时间段。
2.服务器将查询消息转发到指定的采集站。
3.采集站根据查询消息中的时间范围查询本地数据库,采集站将查询到的结果返回给服务器
4.服务器将查询到的历史故障转发给发起查询的工程师站 数据流如下图所示:
2.将查询命令转发给采集站1.发起历史故障查询工程师站服务器3.服务器转发查询结果3.采集站返回查询结果采集站 各组件功能设计
工程师站
操作界面
需要展示的信息有:
1.已注册的采集站和终端的在线状态 2.终端的组态数据、运行数据和故障数据 需要编辑的数据有:
1.采集站和终端的注册信息 2.终端的组态数据
历史故障查询时需要指定时间范围,时间范围太长有可能会导致网络响应缓慢。
信息读写和接收
用户可以通过工程师站主动查询指定设备的各类数据,包括组态数据、运行数据和历史故障。可主动查询的信息有:
1.2.3.4.5.各采集站的在线状态
采集站下的终端的在线状态 指定终端的组态数据 指定终端的运行数据 指定采集站下的历史故障
实时故障由于对实时性要求比较高,需要由服务器主动推送给工程师站,工程师站接收到实时故障后,需要给用户提示,用户可以查看工程师站接收到的实时故障的详细信息。终端信息注册和组态修改
用户编辑好后终端和采集站的信息后,通过网络模块将组态保存到服务器上。组态修改完成后,通过网络模块将组态下发到各个终端上。
采集站
采集站标识符
采集站的功能生效之前,需要在界面上输入该采集站的标识符。该标识符需要与工程师站注册采集站时所用的标识符保持一致,这样工程师站才能将该采集站的信息正确的显示出来。
终端状态管理
采集站在启动后,需要根据采集站标识符从服务器上下载该采集站下面所有的终端信息。采集站监测各终端的在线状态,当状态发生变化时,需要将此状态更新到服务器,以便工程师站上可以实时反应出各终端的在线状态。
故障报警
采集站收到终端的故障报警时,需要将此条故障报警保存在本地数据库中,以备后续的历史故障查询。
组态模板
当工程师站向采集站下的某个终端发起过组态查询时,采集站需要将此终端的组态保存到本地数据库中,后续可能需要导出此组态信息,用于其他厂区的组态模板信息。
查询响应
采集站需要响应服务器的查询和下发命令。查询的信息类型有:组态数据、运行数据和历史故障。如果是组态数据和运行数据,采集站需要从终端中取得最新的结果,然后返回。历史故障数据从数据库中根据一定的条件返回。采集站还需要下发组态给终端。采集站与终端之间的交互接口
服务器
查询中转
工程师站查询终端信息时,需要服务器将这些查询指令转发给对应的采集站;采集站将结果返回给服务器时,服务器需要再将结果转发给工程师站。
报警推送
服务器接收到采集站的故障报警时,需要检查当前是否有在线的工程师站,如果有,则需要推送故障报警到工程师站。如果没有,则丢弃此条故障报警。
采集站注册信息管理
工程师站上注册好采集站和终端的信息后,需要保存到服务器中。当其他工程师站开启时,需要从服务器上获取到最新的采集站和终端注册信息。
采集站状态管理
每个厂区的采集站在上线时都要向中转服务器汇报在线状态,并开启保活机制,一段时间后,如果保活失败,则判定采集站的状态为离线。
采集站下的终端在线信息发生变化时,需要将此信息发送给服务器。
网络组件的接口
与工程师站之间的接口
工程师站的UI层通过网络组件来实现数据采集和下发。网络组件主要提供的功能包括终端在线状态管理、组态读写、运行数据查询、历史故障查询和实时故障接收这几个方面,下面是这几类功能的主要接口:
终端在线状态管理
1.增删采集站及终端信息 2.获取所有采集站的在线状态
3.获取指定采集站中所有终端的在线状态
组态读写
1.获取指定终端的组态
2.写入组态,可以指定采集站下的一个或者多个终端
运行数据查询
1.获取指定终端的运行数据
历史故障查询
1.获取指定采集站下的历史故障,查询条件是时间范围
实时故障接收
1.设置故障接收的回调对象(该回调对象有可能被频繁调用,需要确认终端的故障推送间隔时间)
与终端之间的接口
采集站与终端之间的通信有下面四种:
1.2.3.4.采集站向终端读取组态数据 采集站向终端写入组态数据 采集站向终端读取运行数据 终端推送故障报警给采集站
具体的通信协议待定。
第三篇:变电站信号采集与分类
一、信息分类原则 1.事故信号 2.异常信号 3.变位信号
4.遥测越限信号 5.告知信号
二、COS信号和SOE信号的区别?
COS信号:遥信变位(不带时间标记)SOE信号:事件顺序记录(sequence of event)(分辨率不大于2ms),把事件(开关或保护动作)发生的时间按先后顺序逐个记录下来,这就是事件顺序记录。
三、为什么保护出口信号和开关位置信号要设置SOE 事件顺序记录主要用来提供时间标记,以利于对电力系统的事故分析。
四、为什么要设置事故总信号,没有可以吗? 防止开关偷跳
五.某110kV变电站主变高压侧开关发SF6二级告警,运维人员如何处理? 1.运维人员应立即汇报当班调度员;
2.运维人员按照调度指令加强对该开关的SF6气压监视,防止出现一级告警后闭锁分合闸;
3.通知检修人员到站检查处理; 4.做好相关安全措施,带电补气。
六.某110kV变电站运行主变发过负荷告警,监控人员如何处理? 1.监控人员应立即汇报调度;
2.监控人员应按照调度指令加强对过负荷主变油温及负荷监视; 3.如有备用主变,则操作备用主变送电; 4.如无备用主变,按调度指令压减负荷。
第四篇:函数信号发生器设计论文.
四川师范大学成都学院通信原理课程设计 目 录
前言.....................................................................1 1 函数信号发生器设计任务................................................1 1.1 设计提议...........................................................1 1.2 方案论证与研究.....................................................1 2 方案设计..............................................................2 2.1 项目指标...........................................................2 2.1.1 电源参数.......................................................2 2.1.2 工作频率.......................................................2 2.2 方案比较及选择.....................................................2 3 设计理论..............................................................3 3.1 函数发生器的结构组成...............................................3 3.2 方波信号...........................................................3 如图3.2-1由运算放大器和电容积分电路、Rf组成的,输出电压最终反馈到运
放反相输出端,因此积分电路有负反馈和延迟的作用。........................3 3.3 正弦波信号.........................................................4 3.4 三角波信号.........................................................6 4 RC振荡电路设计........................................................7 5 放大器功率及ICL8038介绍...............................................9 5.1 放大器功率.........................................................9 5.2 ICL8038原理介绍...................................................10 6 致谢..................................................................11 7 总结及体会............................................................12 附录1 系统原理图.......................................................13 附录2 系统元件清单.....................................................14 附录3 系统PCB图.......................................................15 I 四川师范大学成都学院通信原理课程设计 参考文献................................................................16 II 四川师范大学成都学院通信原理课程设计 函数信号发生器设计论文
前言
函数信号发生器的制作是以集成块ICL8038为核心器件,制作的成本也相对较低。是适合学生学习、使用电子技术测量。ICL8038可以输出具有多种波形的精
密振荡集成电路,要想产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号只需要个别外部元件。输出波形的占空比和频率还可以由电阻或电流控制。其次由于此芯片具有调制信号的输入端,所以可以用作频率调制,针对于低频信号。
函数信号发生器有着不同的用途,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。1 函数信号发生器设计任务 1.1 设计提议
产品开发、工业生产、科学研究等领域都的使用函数信号发生器,它常用的基本测试信号有锯齿波和正弦波、矩形波、三角波。常作为时基电路的锯齿波信号在示波器等仪器中利用荧光屏显示图像。例如,想要通过示波器荧光屏上观察到被测不失真地信号波形,通过产生锯齿波电压使的电子束在水平方向匀速搜出荧光屏。方波,三角波都有着不同的重要作用,而函数信号发生器是指一种能自发的产生方波、正弦波、三角波和锯齿波阶梯波等电压波形的仪器或电路。因此,提议设计一种能产生三角波、正弦波、方波的函数信号发生器。1.2 方案论证与研究
函数信号发生器用途较多,其电路中使用的器件是分离器件的可以产生三种或多种波形的函数发生器;而产生正弦波、方波、三角波也有多种方案,是集成器件电路,如先产生正弦波,根据其周期性内部某种确定的函数关系,再将正弦波通过整形电路转化 四川师范大学成都学院通信原理课程设计 为方波,最后三角波通过积分电路形成。也可以先产生方波或三角波,再将方波或三角波转化成正弦波。随着电子技术日益发展,新器材、新材料越发渐好,随着期间可选性的增加,函数信号发生器开发出更多的新款式,比如在技术上很可靠的产生正弦波、三角波、方波的主芯片ICL8038。所以,可以选择多种多样的方案,原则上是可行的。2 方案设计
2.1 项目指标 2.1.1 电源参数
● 输入:双电源 +12V、-12v
● 输出:方波电压约等于12v,三角波电压与约等于5v,正弦波电压大于1v,幅 度可连续调,线性失真就会较小。2.1.2 工作频率
频率范围:10HZ~100HZ,100HZ~1000HZ 2.2 方案比较及选择
方案一:正弦振荡是由文氏电桥产生,然后得到方波,三角波是方波积分得到的。此方案结构简单,是一开环电路,产生的失真较小的正弦波和方波波形①。但于产生三角波则比较有麻烦,因为频率覆盖系数要求有1000倍,因此对于1000倍的频率变化会有积分时间从而使输出电压振幅的1000倍变化。而这是不满足电路要求的。幅度的稳定性几乎难以达到要求。并且通过仿真实验会发现积分器极易产生线性失真。
方案二:通过芯片ICL8038产生8083集成函数发生器。
该集成函数发生器是一种用途较多的波形发生器,可以产生方波、正弦波、三角波和锯齿波,通过外加的直流电压进行振荡器调节,所以是电压控制集成信号产生器。由于两个电流源控制外接电容C的充、放电电流,所以电容C两端电压大小变化与时间成线形关系,从而可以输出理想的三角波波形。8038电路中含正弦波变换器,因此可以将三角波转化成正弦波输出。另外还可以将三角波转换成方波输出通过触发器。此方案的特点有: ◆ 稳定性好而且线性良好;
◆ 易调频率,频带在几个数量级范围内,可以方便地、连续地改变频率大小,而且 四川师范大学成都学院通信原理课程设计 ◆ 变频率的同时,幅度是不会发生变的;
◆ 不会出现过渡过程,只要接通电源后就会立即产生稳定的波形图; ◆ 方波和三角波在半周期内的时间是线性函数,容易转换为别的波形。故由此,本次信号设计采用的是第二种方案。3 设计理论
3.1 函数发生器的结构组成
函数发生器是指能够自动产生方波、正弦波、三角波的电压波形的仪器或电路。可以采用由运放、分离元件及单片集成函数发生器构成电路形式。根据不同的用途,可以产生三种或多种不同波形的函数发生器,本次介绍的事不同函数信号发生器的方法。
函数信号发生器是由正弦波形发生电路和基础的非正弦信号发生电路组合成的。下面我们将分别对方波、正弦波、三角波的发生进行分析,从而使在合成电路时电路更加的合理。3.2 方波信号
如图3.2-1由运算放大器和电容积分电路、Rf组成的,输出电压最终反馈到运放反相输出端,因此积分电路有负反馈和延迟的作用。
图3.2-1 运算放大电路
电路如图3.2-2所示,在接通电源时,电容两端的电压为零,且输出电压等于UZ,所以运放同相输出端的电压uP=UzR2=UZF。R1+R2 3 四川师范大学成都学院通信原理课程设计 此时uO=UZ向C充电,使运放反相端输入电压uN不断上升。在uN小于uP以前,uO=UZ不变。在t=t1时,uN逐渐上升到略高于uP,使uO从高电平跳到低电平,变为-UZ。
此时通过Rf向C充电,使运放反相输入端的电压uNuP=-UZF,uO=-UZ时,逐渐增加。在uN大于uP以前,uO=-UZ大小保持不变。在t等于t2时,uN减小到稍低于uP,则uO从低电平跳到高电平,变为UZ,又回到最初状态。如此重复,循环,从而产生振荡,并输出方波。
根据上面的分析,从而可以画出如下图uO与uC的波形:
图3-2-2 uO与uC的波形
有图波形,并取适当的R1、R2值,F=R2(R1+R2),则T=2RfC,得到振荡频率为:
3.3 正弦波信号
即又被称为文氏电桥振荡器,如图3-3-1所示其中是由同相运放电路组成的A放大器,如图3.3-1,Av= VoR=(2+1)VdR1f0=11=T2CRf 4 四川师范大学成都学院通信原理课程设计
图3.3-1 文氏电桥振荡电路 图3.3-2 同相运放电路
由RC串并联组成网络F,因为运放的输入阻抗较大,所以输出阻抗Ro就很小,对网络F几乎没有影响影响,故忽略不计,根据图3.3-3得 R VfjωRC+1Fv==1RVo++RjωC1+jωRC =R 1(jωRC+1+R)+RjωC=R1j(ωR2C-)+3RωC 5 四川师范大学成都学院通信原理课程设计 根据自激振荡条件: AF =T=1故有AvFv=AvR=1 因此上式中分母12j(ωRC-)+3RωC 中的虚部必须等于零,即 R2Cw-1=0 ωC ⇒振荡频率ω0=1 CR
上式中实部为1,所以起振条件Av=3 图3.3-2是同相运放,Av=R2+1 须满足条件2R1=
R2 R1 图3.3-3 RC串并联
3.4 三角波信号
根据RC的积分电路输出和输入信号波形的关系可得,当输入信号是方波时,则输出的信号便是三角波,由此可知,三角波信号发生器是由RC积分电路和方波信号发生器组成。下图3-2-3便是三角波信号发生器的电路组成。图中的方波信号发生器是由A1运算放大器组成,RC积分电路是由A2组成。该电路的设计原理是:由方波信号发生器输出方波。反相积分电路由图中A1,A2和C、R4等组成。
分析可以画出uO1和uO的波形,如图3.4-1所示。6 四川师范大学成都学院通信原理课程设计
图3.4-1 uO1和uO的波形
电压uO的上升和下降幅度和时间变量相等,而且上升和下降的斜率的绝对值大小也相等。三角故波uO峰值为:
Uom= UZR2 R1 4R1R4C R2 则在调整三角波电路时,R1或R2应被先调整,使峰值达到所需要的值,最后再调整故振荡周期: T=2(t2-t1)=R4或C,使频率f0能满足要求。4 RC振荡电路设计
RC振荡器电路的设计,就是根据给出的指标要求,选择适合的电路结构形式,并确定和计算电路中各元件的参数,在所要求的频率范围内使它们满足振荡的条件,使电路产生正弦波形。RC振荡器的设计的步骤为:
● 根据已知的指标参数,选择适合的电路形式。● 计算并确定电路中的各元件参数。● 选择运算放大器
● 为满足电路指标要求可通过调试。四川师范大学成都学院通信原理课程设计
例如:设计一个振荡频为800Hz的RC正弦波振荡器。设计步骤如下: 计算并确定电路中的各元件参数。● RC的值可根据振荡器的频率计算。RC= ● 确定R和C的值 1=1.99⨯10-4(s)2πf0
为了使选频网络不受运算放大器输入和输出电阻的影响。按:Ri >> R >> R0的关系确定R的值。其中:运算放大器同相端的输入电阻Ri。为运算放大器的输出电阻R0。
当R=20kΩ时,则:
1.99⨯10-4-7C==0.995⨯10F 320⨯10 ● 确定R3和Rf 的值(Rf=R4+Rw+rd//R5)根据振荡的振幅条件,Rf应大于2R3,取Rf=2.01R3。从而减小波形失真。此外,为了满足R等于R3并联Rf的直流平衡条件,并减小运放输入失调的影响。
由Rf=2.01R3和R=R3//Rf可求出:
R3= 取整数值: R3=30k Ω
所以:Rf=2.01R3=2.01⨯30⨯103Ω=60.3kΩ.为了是效果更好, Rf与R3的值还可以通过实验调整后确定。● 确定其元件值及电路。
电路由R5和接法相反的二极管D1、D2并联而成。
二极管D1、D2 应选用其元件值硅管,因其温度稳定性较高。当然二极管D1、D2的特性必须保持一致,以确保输出波形的正负半轴对称。● R2与R5确定
由于二极管的非线性会导致波形失真,因此,可在二极管的两端并上一个阻值与rd相近的电阻R5。用来减小非线性失真,然后再经过调整,达到最好效果。便可确定R5,再计算出R2。为了是效果更加明显,电阻 R2可用50kΩ电阻和40 kΩ的电位器串联。● 运放型号的选择
运放选择,要求输入高阻、输出低阻,而且满足增益带宽积:Auo• BW 大于3fo 的 3.13.1⨯20⨯103=29.8⨯103Ω R =2.012.01 四川师范大学成都学院通信原理课程设计
条件。因为fo=800Hz,所以选择μA741集成运算放大器。5 放大器功率及ICL8038介绍 5.1 放大器功率
由多级放大器组成的便是电子电路。在工作过程中,电压放大是由小信号放大电路对输入信号进行的,再通过功率放大电路将功率放大,以便于控制或驱动负载电路工作。功率放大器就是以功率放大为目的的电路。低频功率放大器也称为功率放大器,是能使低频信号功率放大的放大器。
如图5.1-1 OTL 低频功率放大器所示。其中由晶体三极管T1组成前置放大级(也称推动级),T2、T3是一组参数对称的PNP和NPN型晶体三极管,它们组成OTL功放电路。射极输出器形式是由每一个管子接成的,因此输出电阻低,负载能力较强等优点,适合功率输出级。甲类状态由T1管工作,此集电极电流IC1是通过电位器RW1进行调节。IC1 的一部分流经二极管D及电位器RW2,给T2、T3提供电压。通过调节RW2,可以使T2、T3在甲、乙类状态得到合适的静态电流,以克服失的一端,因此可在电路中引入交、直流电压并联负反馈,一方面改善了非线性失真,同时也能够稳定放大器的静态工作点。R和C2构成用于提高输出电压正半周的幅度自举电路,从而得到较大的动态范围。C2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。主要性能指标是OTL 电路。
在输出功率P0m的最大不失真理想情况下,在实验中可测量RL 两端的电压有效值通过计算来得实际的
其中由晶体三极管T1组成前置放大级(也称推动级),T2、T3是一对参数对称的NPN和PNP型晶体三极管,互补推挽的OTL功放电路就由它们组成。由于射极输出器形式是每一个管子连接成的,因此具有输出低电 阻,负载能力较强等优点,适合作用于功率输出级。甲类状态T1管工作,通过调节电位器RW1来调节它的集电极电流IC1。IC1 的一部分流经二极管D及电位器RW2,给T2、T3提供偏电压。为甲、乙类状态在T2、T3得到合适的静态电流,可通过调节RW2来实现,从而又由于RW1的一端接在A点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。9 四川师范大学成都学院通信原理课程设计
图5.1-1 OTL 功率放大器实验电路 5.2 ICL8038原理介绍
芯片ICL8038是单片集成函数发生器,如图5-3s所示为其内部原理电路框图。ICL8038由恒流电流源I1、I2,触发器和电压比较器C1、C2等组成。电压比较器C1的门限电压为2VR/
3、的为VR(VR= VEE+VCC),可通过调节外接电阻确定电流源I1和I2的大小,并且I2必须大于I1。当触发器Q端输出电平低时,I2通过开关S的控制从而使电流源断开。而电流源I1向外接电容C充电,电压随时间变化线性下降,当其下降到小于VC时,比较器C2输出发生跳变,当VC上升到2VR/3时,比较器C1输出波形会发生跳变,从而使触发器输出端Q由低电平变为高电平,电流源I2接通通过控制开关S。当其上升和下降时间相等时,产生的波形输出到引脚3,而触发器输出的波形经缓冲器输出到引脚9。三角波由正弦波变换器变成正弦波后由引脚2输出。由此知ICL8038能输出三角波、方波和正弦波等三种及三种以上的不同波形。其中,外部接入振荡电容C,它是通过内部两个恒流电源来完成充电、放电的过程。恒流源2的工作状态是由恒流源1对电容器C持续充电,并增加电容电压,从而达到改变比较器的状态改变、输入电平以及带动触发器翻转来连续控制的。当触发器使恒流源2处于关闭状态,电容电压值是比较器1输入电压规定值的2/3倍时,比较器1的状态发生改变,使触发器的工作状态发生翻转,此时将模拟开关K由B接到A点。因为恒流源2的电流值为2I,比恒流源1大,所以电容器处于放电状态,在单位时间内电容器端电压将将发生改变,为线性下降,当电容电压值下降到比较器2的输入电压规定值的1/3倍时,比较器2状态发生改变,使触发器再次翻转到原来的状态,周而复始的完成此振荡过程。四川师范大学成都学院通信原理课程设计 根据以上分析,上述基本电路中很容易获得3种函数信号,倘若电容器在放电过程和在充电过程的时间常数相等,而且是在电容器充放电时,那么电容电压输出的就是三角波函数,从而三角波信号由此获得。因为触发器的工作状态也是由电容电压的充放电的过程决定的,因此,触发器的状态通过翻转,就能够产生方波函数信号,在芯片内部结构中,这两种信号经过缓冲器功率的放大,并从管脚3和管脚9输出可得。满足方波函数等信号在频率、占空比调节的全部范围可适当的选择外部电阻RA和RB和C。所以,对两个电流源在I和2I电流不等的情况下,可以从最小到最大范围中循 环调节,并任意选择调整,因此,只需要使电容器充放电时间不相等,便可获得锯齿波等函数信号。
图5.2-1 内部原理电路框图 6 致谢
本课题在选题以及研究过程是在孙活老师的亲切关怀和悉心指导下完成的。老师们多次询问研究设计进程,并为我悉心指点迷津,帮助我开拓思路,耐心点拨、鼓励。老师们严谨细致、一丝不苟的工作作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且教我做人,虽历时三载,却给以终生受益无穷之道。对老师的感激之情是无法用言语表达的。感谢带过我的老师对我的教育培养。他们细心指导我的学习与研究,从课题的选择到项目的最终完成,老师们都始终给予我细心的指导和不懈的支持。在此,我要向诸位老师深深地鞠上一躬并致以诚挚的谢意和崇高的敬意。
在此,我还要感谢我的5位室友,正是有你们的帮助、理解和支持,我才能克服一个一个的困难,直至顺利的完成本文。当然也缺少不了一起愉快度过三年的大
学同学,他们给与我帮助,支持,我在此也由衷的表示感谢。最后我还要感谢含辛茹苦的把培养 四川师范大学成都学院通信原理课程设计 我长大的父母,谢谢您们!7 总结及体会
通过本次课程设计,加强了我们的思考、动手和解决问题的能力,经常会遇到不同的情况,心里总想着这样的接法或许可以行得通,但实际接上电路后才发现不对,实现不了预想的效果,因此耗在这上面的时间用的比较多。
我觉得做课程设计的同时也巩固和加强了课本知识,由于课本上的知识太多而且零散,平时课间的学习也并不能很好的理解并运用各个元件的功能,考试内容又比较有限,因此在这次课程设计过程中,我了解了很多元件的功能以及使用。平时看课本学习书本知识时,有时问题总是弄不懂,可做完设计,那些不是问题的问题就迎刃而解了。甚至还记住很多东西,受益匪浅。如一些芯片的功能及作用,平时看课本讲解,看一次忘一次,没从根本上理解。通过这次动手实践让我对各个元件印象深刻。所以认识、了解来源于实践,实践才是认识的动力和最终目的,实践出真理。所以这次的设计对我的学习和帮助作用都非常大的。
通过该次设计,在理论学习时,很少会有实践的机会,但我们学院可以,而且设计制作也是一个团队的任务!一起的学习工作中可以让我们团结一致,相互帮助,默契配合,多少欢乐在这里洒下。我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结合作的精神。这次实验设计必将成为我人生旅途上的一个非常美好的回忆!
通过对此课程设计是我认识到,电路设计需要我们耐心,需要缜密的整套思维逻辑,要求我们学会分析。懂得只有理论知识是远远不够的,只有将理论和实践结合起来才能顺利完成。我期盼在今后的学习过程中能让学生更加的接近器材,独立完成很多知识不能只看表面,要深究其真正作用才行,需要不断积累经验。所以说,坐而言不如立而行,对于这些电路还是得自己亲自动手才能印象深刻。这次的课程设计终于顺利完成了,在设计中也遇到了很多专业知识问题,最后通过老师的辛勤指导,终于迎刃而解了。经过老师的悉心指导,我们学也到了很多实用的知识,在次我表示深深感谢!同时,对给过我帮助和支持的所有同学及各位指导老师再次表示忠心的感谢!四川师范大学成都学院通信原理课程设计 附录1 系统原理图
图1 系统原理图 四川师范大学成都学院通信原理课程设计 附录2 系统元件清单 四川师范大学成都学院通信原理课程设计 附录3 系统PCB图
图2 信号发生器图 四川师范大学成都学院通信原理课程设计 参考文献
[1] 康华光、邹寿彬:电子技术基础数字部分(第四版),高等教育出版社,1999.3,P3-P7 [2] 刘光明:现代通信原理,人民邮电出版社,2007.6, P21-P30 [3] 任元、吴勇:《常用电子原件简明手册》,工业出版社,2005.2, P7-P10 [4] 童诗白:模拟电子技术,高等教育出版社,2003.8 , P52-P57 [5]杜肤生:数字集成电路应用,人民邮电出版社,2001.6, P31-P42 [6] 王兆义:电路分析,机械工业出版社,2007.7, P15-P27 [7] 周永金:《模拟电子技术及应用》,陕西锅饭学院电子教研室.2003.5, P135-P141 [8] 陈路、郑毅:PROTEL 99SE 电路板设计与制作,人民邮电出版社,2007年第2期,P21-P28 16
第五篇:信号与系统
问题4:单侧可导与单侧连续、单侧极限的关系?单侧极限存在 并且极限值=函数值 可以推出单侧连续可导必连续,连续未必可导那么 单侧可导是否可以推出单侧连续?请证明;反之,单侧极限是否可以推出单侧可导?请证明或举反例。谢谢老师!
解答:单侧可导可以推出单侧连续,单侧连续可以推出单侧极限存在。
证:设函数f(x)在x0点的右侧导数存在,即右导数存在,根据右导数存在的定义,limxx0f(x)f(x0)xx0存在,由于xx0时,分母xx0趋于0,所以f(x)f(x0)也要趋于0,否则这个极限是不存在的。所以limf(x)f(x0)0,即limf(x)f(x0),亦即f(x)在x0点右连续。xx0xx0
再证明单侧连续可以推出单侧极限存在。
设函数f(x)在x0点右连续,即limf(x)f(x0),这说明函数在x0点的右极限存在。xx0
由于连续未必可导,所以单侧连续也是推不出单侧可导的,具体例子见同济六版课本P85,例9