LabVIEW声卡数据采集信号分析音频信号虚拟仪器

时间:2019-05-12 20:46:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《LabVIEW声卡数据采集信号分析音频信号虚拟仪器》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《LabVIEW声卡数据采集信号分析音频信号虚拟仪器》。

第一篇:LabVIEW声卡数据采集信号分析音频信号虚拟仪器

LabVIEW声卡数据采集信号分析音频信号虚拟仪器

摘要:虚拟仪器是20世纪80年代兴起的一项新技术,是现代仪器仪表发展的重要方向,在建模仿真、设计规划和教育训练等方面都有应用目前NI公司所提供数据采集设备性能好,但是价格昂贵,构建信号分析系统成本偏高计算机声卡具备数据传输和AD转换功能,作为数据采集卡具有价格低廉、开发容易和系统灵活等优点 基于上述分析,本文用计算机声卡代替普通采集卡作为硬件,在LabVIEw平台上设计了一个信号分析系统,并在信号分析实验中进行了应用主要贡献为下述几点 1提出了采用声卡作为数据采集设备构建虚拟音频信号分析系统并应用于实验教学的设想通过高校实验室现状的调研和对声卡性能的分析,分析了由声卡组建可以用于实验教学的信号分析系统的必要性和可行性 2构建了基于LabVIEw的音频信号采集分析系统,具有信号采集、分析、波形显示、存储以及数据文件再调用分析等功能分析、解决了设计及实现过程中出现的问题 3对提出的设计方法进行了大量的仿真实验,通过实验结果证明了系统设计的合理性和可行性 所生成的采集软件交互性好、操作方便,并且可以根据用户的需求进行功能扩充,为低成本下构建数据采集系统提供了一种思路,可以应用到语音识别、环境噪声监测和实验室测量等多种领域,应用前景广阔

标题:LabVIEW声卡数据采集信号分析音频信号虚拟仪器

第二篇:DSP音频信号发生器

大学课程设计报告

音频信号发生器

设 计 人: 专

业: 班

级: 学

号: 指导教师:

二零一四年

付路 电子信息工程 电子111501 201115020104 宁爱平

目录

一. 引言-------------第2页 二.系统结构及原理----第2页 三. 硬件设计---------第3页

3.1 MMC/SD卡接口电路-----------------------------第3页 3.2 上位机和单片机通信---------------------------第4页 3.3 信号调理电路--第5页 四. 软件设计---------第7页

4.1 系统初始化---第7页 4.2 MMC/SD卡初始化------------------------------第7页 4.3 MMC/SD卡单块写数据--------------------------第8页 五. 结束语----------第11页

一. 引言

目前,单片机系统以价格低廉、开发环境完备、开发工具齐全、应用资料众多、功能强大且程序易于移植等优点而得到广泛应用。同时,随着信息化进程、计算机科学与技术以及信号处理理论与方法的迅速发展,需要的数据量越来越大,对数据存储也提出了更高要求。MMC/SD卡以其价格、体积、读取速度等特点成为现今大多数便携式嵌入式设备的首选。

二.系统结构及原理

音频信号发生器的系统结构如图1所示,它主要由8051F330单片机、MMC/SD卡存储器、RS232串行通信接口、上位机、液晶显示、键盘以及信号调理电路等部分组成。将写入MMC/SD卡中的音频数据存储在上位机,单片机通过RS232串行通信接口写入MMC/SD卡,以中断方式读取键盘接口命令,并根据命令控制选择相应的音频信号数据,再由信号调理电路输出不同频率和强度的音频信号,系统通过液晶显示模块显示信号频率、信号强度及信号类型。该系统突出的特点是上位机采用Lab Windows/CVI软件,通过RS232串行通信接口与单片机通讯;以文本格式存储在上位机的音频信息则通过RS232串行通信接口下载到MMC/SD卡。系统控制核心选用美国Cygnal公司的8051F330单片机,C8051F330微控制器采用独特的CIP-8051架构,对指令运行实行流水作业,大大提高了指令的运行速度;采用多功能存储卡-MMC/SD卡作为存储介质。MMC/SD卡内置控制电路,可应用于手机、数码相机、MP3等多种数字设备,反复记录30万次,具有较高的性价比;液晶显示屏采用OCM12864点阵液晶显示模块,由单片机时序控制,具有8位数据线、6条控制线和电源线。

三. 硬件设计

3.1 MMC/SD卡接口电路

MMC/SD卡在音频信号发生器系统中是以数字量形式存储音频信息。MMC/SD卡有两种工作模式,即MMC/SD模式和SPI模式。从实际应用角度出发,SPI模式设计简单,操作方便,但数据传输速率不如MMC/SD模式,本系统采用SPI模式。MMC/SD卡工作在SPI模式下,其各个引脚功能的定义,如表1所示。CS是MMC/SD卡的片选线,在SPI模式下,CS必须保持低电平有效;DI不但传输数据,还发送命令,传输方向是由单片机到MMC/SD卡;同样DO除了发送数据外还传送应答信号,传输方向是由MMC/SD卡到;SCLK是操作MMC/SD卡的时钟线。将C8051F330的相应交叉开关配置为SPI模式,与MMC/SD卡对应的引脚连接。针对SPI总线线路上增加了上拉电阻。MMC/SD卡与单片机接口电路。如图2所示。

单片机

3.2 上位机和单片机通信

上位机采用Lab Windows/CVI软件通过串口向单片机发送音频信息。单片机将接收到的信息数据写入MMC/SD卡。Lab Windows/CVI软件的音频信息是由WinHex软件将原始文件转换成16进制的数字量,该软件可对多种语音信号进行转换。上位机与单片机的通信是通过RS232串口通讯器件完成的。当上位机与音频信号发生器相距较远.不能直接用RS232器件将其连接时,可将RS232转换为CAN,通过CAN总线实现串口设备的网络互联。RS232标准电平采用负逻辑,规定+3 V~+15 V的任意电平为逻辑“0”电平,-3 V~-15 V的任意电平为逻辑“1”电平。而CAN信号则使用差分电压传输,2条信号线称为“CAN_H”和“CAN_L”,静态时均为2.5 V,此时状态表示为逻辑“1”,也可称为“隐性”;CAN_H比CAN_L高时表示逻辑“0”,称为“显性”。显性时,通常为:CAN_H=3.5 V,CAN_L=1.5 V。

RS232串口的帧格式:1位起始位,8位数据位,1位可编程的第9位(此位为发送和接收的地址/数据位),1位停止位。而CAN的数据帧格式:帧信息+ID+数据(分为标准帧和扩展帧两种格式)。

3.3 信号调理电路

存储在MMC/SD卡中的数据是音频信号发生器的源代码。单片机将这些数据从MMC/SD卡中读出,经过单片机内部数模转换,以模拟量的形式从P01输出。该模拟信号经信号调理电路可外接耳机或音响播放十几种音律。信号调理电路如图3所示。由P01输出的信号经LM324放大后,由多个LM324并联实现信号跟随和功率驱动。图中只画出了2个跟随器,实际应用中根据需要可以并联10多个信号跟随器。

四. 软件设计

4.1 系统初始化

系统初始化可完成C8051F330的I/O口、晶体振荡器、SPI总线和C8051F330片上串口的初始化设置。用C语言编写的程序代码如上:

4.2 MMC/SD卡初始化

MMC/SD卡上电后默认为MMC/SD模式,要使MMC/SD卡工作在SPI模式下,在MMC/SD卡初始化时,当片选线(CS)被拉低时发送复位命令CMD0,如收到应答信号01H,表示已将卡置为闲置状态;如收到应答信号不是01H,则表示出错。然后向MMC/SD卡发送命令CMD1,收到正确的应答信号00H之后,才会使MMC/SD卡进入SPI模式。MMC/SD卡初始化流程如图4所示。

MMC/SD卡协议是一种问答式协议。首先单片机发送CMD。接着由MMC/SD卡发送回应RES。MMC/SD卡的命令长度都是6字节,命令总是以左边的起始位开始,右边的结束位结束。其具体的命令格式如表2所示,MMC/SD卡的应答格式分为4种,分别是R1、R1b、R2和R3应答。

4.3 MMC/SD卡单块写数据

MMC/SD卡单块写数据主要实现C8051F330对MMC/SD卡的单块写操作。MMC/SD卡块的默认大小为512字节。当MMC/SD卡接收到单块写命令CMD24后,MMC/SD卡向单片机发送应答命令,并且等着单片机发送数据块。当应答命令R1为0时,说明可以发送512个字节数据。MMC/SD卡对接收到的数据块都通过一个l字节长的命令确认,当其低5位二进制数据为00101时,数据块才确认数据块写入MMC/SD卡。在数据块发送中,共发送515个字节数据,其中,第一个字节为0xFE,随后是512字节的用户数据块,最后是2个字节的CRC。单块数据写入MMC/SD卡的流程图如图5所示。

采用C语言编写的程序代码如下:

#include “scancode.h” #define TIM *(int *)0x24 #define PRD *(int *)0x25 #define TCR #define IMR #define IFR #define PMST *(int *)0x26 *(int *)0x0 *(int *)0x1 *(int *)0x1d

#define SPSA0 *(unsigned int *)0x38 #define SPSD0 *(unsigned int *)0x39 #define SPSA1 *(unsigned int *)0x48 #define SPSD1 *(unsigned int *)0x49 #define nMusicNumber 40

#define REGISTERCLKMD(*(unsigned int *)0x58)#define WAITSTATUS(*(unsigned int *)0x28)

ioport unsigned char port8000;ioport unsigned char port8001;ioport unsigned char port8002;ioport unsigned char port8007;#define CTRGR port8000 #define CTRKEY port8001 #define CTRCLKEY port8002 #define CTRLR port8007

void Delay(unsigned int nTime);void interrupt time(void);// 音符数据

unsigned int music[nMusicNumber][2]= { {182,480},{151,480},{135,480},{121,480},{135,480},{151,480},{182,480},{0,480}, {182,480},{151,480},{135,480},{121,480},{135,480},{151,480},{182,480},{0,480}, {182,240},{151,240},{135,240},{121,240},{135,240},{151,240},{182,240},{0,240}, {182,240},{151,240},{135,240},{121,240},{135,240},{151,240},{182,240},{0,240}, {182,1920},{151,1920},{135,1920},{121,1920},{135,1920},{151,1920},{182,1920},{0,1920} };unsigned int uWork;main(){

unsigned int uWork1;int j,nCount,nCount1,nScanCode;nCount=nCount1=0;REGISTERCLKMD=0;CTRGR=0;CTRGR=0x80;

CTRGR=8;CTRLR=0;

// 关闭东西方向的交通灯

CTRLR=0x40;// 关闭南北方向的交通灯 uWork1=CTRCLKEY;

// 清除键盘缓冲区

for(j=0;j

PMST = uWork1&0xff;IMR = 0x8;TCR = 0x412;TIM = 0;PRD = music[nCount][0];TCR = 0x422;IFR = 0x100;asm(“ rsbx j=0;while(j<1){

nCount1=0;nScanCode=CTRKEY;// 读扫描码 nScanCode&=0x0ff;// 低8位 uWork1=CTRCLKEY;

// 清除键盘缓冲区

INTM”);

// 频率设置

if(nScanCode!=0)

{ } nCount1++;Delay(music[nCount][1]/3*12);// 音长 nCount++;if(nCount>=nMusicNumber){ } if(music[nCount][0]==0)TCR=0x412;

// 静音 nCount=0;j++;if(nScanCode==SCANCODE_Enter)

break;else { PRD = music[nCount][0];// 切换音符 TCR = 0x422;} } }

void Delay(unsigned int nDelay){

}

void interrupt time(void){ SPSA0=1;

// set McBSP0's SPCR2 int i,j,k=0;for(i=0;i

}

uWork&=0xfffe;// set XRST=0 SPSD0=uWork;SPSA0=0x0e;// set McBSP0's PCR uWork=SPSD0;uWork|=0x2000;// set XIOEN=1, Enable IO,DX for output uWork^=0x20;SPSD0=uWork;

// DX=^DX 五. 结束语

根据MMC/SD卡的SPI协议,采用单片机实现与MMC/SD卡的接口,解决了嵌入式系统大容量数据存储问题,利用上位机可以方便的读取写入数据。本系统的存储速度可达20 Mb/s,完全满足信号发生器所需的下载速度和音频播放速度。所编写的MMC/SD卡驱动程序已经应用到嵌入式信号发生器系统中,实现了数据的安全、稳定的存储。相对于MMC/SD卡无论是读写速度还是存储容量都得到了极大提高。在SPI模式下,SD卡与MMC卡相兼容,即就是说SD卡程序也适用于MMC卡。

第三篇:虚拟仪器数据采集应用论文

虚拟仪器是以一种全新的理念来设计和发展的仪器,他是90年代发展起来的一项新技术,主要用于自动测试、过程控制、仪器设计和数据分析等领域,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,他是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能。

虚拟仪器的特点和构成 1.1 虚拟仪器的特点

与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性 好等明显优点,具体表现为:

智能化程度高,处理能力强 虚拟仪器的处理能力和智能化程度主要取决于仪器软件水平。用户完全可以根据实际应用需求,将先进的信号处理算法、人工智能技术和专家系统应用于仪器设计与集成,从而将智能仪器水平提高到一个新的层次。

复用性强,系统费用低 应用虚拟仪器思想,用相同的基本硬件可构造多种不同功能的测试分析仪器,如同一个高 速数字采样器,可设计出数字示波器、逻辑分析仪、计数器等多种仪器。这样形成的测试仪 器系统功能更灵活、更高效、更开放、系统费用更低。通过与计算机网络连接,还可实现虚 拟仪器的分布式共享,更好地发挥仪器的使用价值。

可操作性强,易用灵活 虚拟仪器面板可由用户定义,针对不同应用可以设计不同的操作显示界面。使用计算机的 多媒体处理能力可以使仪器操作变得更加直观、简便、易于理解,测量结果可以直接进入数 据库系统或通过网络发送。测量完后还可打印、显示所需的报表或曲线,这些都使得仪器的 可操作性大大提高而且易用、灵活。

1.2 虚拟仪器的构成 虚拟仪器的构建主要从硬件电路的设计、软件开发与设计2个方面考虑。

硬件电路的设计主要根据用户所面对的任务决定,其中接口设计可选用的接口总线标准包 括Gp IB总线、VXI总线等。推荐选用VXI总线。因为他具有通用性强、可扩充性好、传输速 率高、抗干扰能力强以及良好的开放性能等优点,因此自1987被首次推出后迅速得到各大仪 器生产厂家的认可,目前VXI模块化仪器被认为是虚拟仪器的最理想平台,是仪器硬件的发 展方向。由于VXI虚拟仪器的硬件平台的基本组成是一些通用模块和专用接口。因此硬件电 路的设计一般可以选择用现有的各种不同的功能模块来搭建。通用模块包括:信号调 理和高速数据采集;信号输出与控制;数据实时处理。这3部分概括了数字化仪 器的基本组成。将具有一种或多种功能的通用模块组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集模块和高速实时数据处理模块就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用信号输出与控制模块和实时数据处理模块就能构成1台函数发生器、1台信号源或1台控制器。专用接口是针对特定用途仪器需要的设计,也包括一些现场总线 接口和各类传感器接口。系统的主要硬件包括控制器、主机箱和仪器模块。常用的控制方案 有GpIB总线控制方式的硬件方案、MXI总线控制方式的硬件方案、嵌入式计算机控制方式的 硬件方案3种。VXI仪器模块又称为器件(devices)。VXI有4种器件:寄存器基器件、消 息基器件、存储器器件和扩展器件。存储器器件不过是专用寄存器基器件,用来保存和传输 大量数据。扩展器目前是备用件,为今后新型器件提供发展通道。将VXI仪器制作成寄存器 基器件,还是消息基器件是首先要做出的决策。寄存器基器件的通信情况极像VME总线器件,是在低层用二进制信息编制程序。他的明显优点在于速度寄存器基器件完全是在 直接 硬件控制这一层次上进行通信的。这种高速通信可以使测试系统吞吐量大大提高。因此,寄 存器基器件适用于虚拟仪器中信号/输出部分的模块(如开关、多路复用器、数/模转换输出 卡、模/

数转换输入卡、信号调理等)。消息基器件与寄存器基器件不同,他在高层次上用A SCII字符进行通信,与这种器件十分相似是独立HpIB仪器。消息基器件用一组意义 明确的 “字串行协议”相互进行通信,这种异步协议定义了在器件之间传送命令和数据所需的挂钩 要求。消息基器件必须有CpU(或DSp)进行管理与控制。因此,消息基器件适用于虚拟仪器 中数字信号处理部分的模块。

软件的开发与设计包括3部分:VXI总线接口软件、仪器驱动软件和应用软件(软面板)。软件结构如图1所示。

VXI总线接口软件由零槽控制器提供,包括资源管理器、资源编辑程序、交互式控制程序和 编程函数库等。该软件在编程语言和VXI总线之间建立连接,提供对VXI背板总线的控制和支 持,是实现VXI系统集成的基础。

仪器驱动程序是完成对某一特定仪器的控制与通信的软件程序,也即模块的驱动软件,他 的设计必须符合Vpp的2个规范,即Vpp3.1《仪器驱动程序结构和模型》和Vpp3.2《仪器 驱动程序设计规范》。

“软面板”设计就是设计具有可变性、多层性、自助性、人性化的面板,这个面板应不 仅同传统仪器面板一样具有显示器、LED、指针式表头、旋钮、滑动条、开关按钮、报警装 置等功能部件,而且应还具有多个连贯操作面板、在线帮助功能等。

虚拟仪器在数据采集中的应用

利用虚拟仪器制作数据采集器可以按照硬件设计、软件设计两个步骤来完成。

2.1 硬件设计

硬件设计要完成以下内容:

1)模/数转换及数据存储

设置具有通用性的数据自动采集系统,一般应满足能对多路信号尽可能同步地进行采集,为了使所采集到的数据不但能够在数据采集器上进行存储,而且还能及时地在采集过程中 将数据传送到上位机,选用存储量比较适中的先进先出存储器,这样既能满足少量数据存储 的需要,又能在需要实时传送数据时,在A/D转换的同时进行数据传送,不丢失任何数据。)VXI总线接口

VXI总线数据采集器通常可以利用两种VXI总线通用接口消息基接口和寄存器基接口。消 息基接口的作用是通过总线传送命令,从而控制仪器硬件的操作。通用寄存器基接口是由寄存器简单的读写来控制仪器硬件的操作。利用消息基接口进行设计,具体消息基接口的框图见图2。

3)采样通道控制

为了满足几种典型系统通道控制的要求,使通道的数量足够多,通道的选取比较灵活,可以利用寄存器电路、可预置计数器电路以及一些其他逻辑电路的配合,将采样通道设计成最多64路、最少2路可以任意选择,而且可以从任意一路开始采样,也可以到任意一路结束采样,只要截止通道号大于起始通道号就可以了。整个控制在虚拟仪器软面板上进行操作,通过消息基接口将命令写在这部分的控制寄存器中,从而设置计数器的初值以及采样的通道总数。

4)定时采样控制

由于不同的自动测试系统对采样时间间隔的要求不同,以及同一系统在不同的试验中 需要的采样时间间隔也不尽相同,故可以采用程控的方式将采样时间间隔设置在2 μs~13.0 ms之间任意选择,可以增加或减少的最小单位是2 μs。所有这些选择设置可以在虚拟仪器软面板上进行。

5)采样点数控制

根据不同测试系统的需求,将采样点数设计成可在一个比较大的范围中任意选择,该选择同样是在软面板上进行。

6)采样方式控制

总结各种自动测试系统的采样方式不外乎软件触发采样和硬件 触发采样。在硬件触发采样中又包括同步整周期采样和非同步整周期采样,这2种采样又可 以是定时进行的或等转速差进行的。所有这些采样方式,对于数据采集器来说都可以在软面 板上进行选择。

2.2 软件设计

软件是虚拟仪器的关键,为使VI系统结构清晰简洁,一般可采用组件化设计思想,将各部分彼此独立的软件单元分别制成标准的组件,然后按照系统的总体要求组成完整的应用系统,一个标准的组件化的虚拟仪器软件系统,如图3所示。

应用软件为用户提供了建立虚拟仪器和扩展其功能的必要工具,以及利用pC机、工作站的 强大功能。同时Vpp联盟提出了建立虚拟仪器标准结构库(VISA)的建议,为虚拟仪器的研 制与开发提供了标准。这也进一步使由通用的VXI数据采集模块、CpU/DSp模块来构成虚拟仪 器成为可能。

基于虚拟仪器的数据采集器的软件包括系统管理软件、应用程序、仪器驱动软件和I/O接 口 软件。以往这4部分需要用户自己组织或开发,往往很困难,但现在NI公司提供了所有这 四部分软件,使应用开发比以往容易得多。

下面简单介绍以NI公司的Lab Windows/CVI为开发环境,来进行VXI虚拟仪器的驱动程序开 发的方法。

第一步:生成仪器模块的用户接口资源文件(UIR)。用户接口资源、文件是仪器模块 开 发者利用Lab Windows/CVI的用户界面编辑器为仪器模块设计的一个图形用户界面(GUI)。一个Lab Windows/CVI的GUI由面板、命令按钮、图标、下拉菜单、曲线、旋钮、指示表以及 许多其他控制项和说明项构成。

第二步:Lab Windows/CVI事件驱动编程。应用程序开发环境Lab Windows/CVI中设计一个 用户接口,实际上是在用户计算机屏幕上定义一个面板,他由各种控制项(如命令按钮、菜 单、曲线等)构成。用户选中这些控制项就可以产生一系列用户接口事件(events)。例如,当用户单击一个命令按钮,这个按钮产生一个用户接口事件,并传递给开发者编写的C语 言驱动程序。这是运用了Windows编程的事件驱动机制。Lab Windows/CVI中使用不同类型的 控制项,在界面编辑器中将显示不同类型的信息,并产生不同操作的接口事件。在Lab Wind ows/CVI的开发平台中,对事件驱动进行C程序编程时可采用2种基本的方法:回调函数法和 事件循环处理法。

回调函数法是开发者为每一个用户界面的控制项写一个独立的用户界面的控制函数,当选中某个控制项,就调用相应的函数进行事件处理。在循环处理法中,只处理GUI控制 项所产生的COMMIT事件。通过Get User Event函数过滤,将所有的COMMIT事件区分开,识别 出是由哪个控制项所产生的事件,并执行相应的处理。

第三步:应用函数/VI集与应用程序软件包编写。应用函数/VI集需针对具体仪器模块 功能进行编程,应用程序软件包只是一些功能强大、需要完善的数据处理能力的模块才需要 提供,如波形分析仪模块、DSp模块等。结语

本文探讨了虚拟仪器的基本组成,以及实际的虚拟仪器软硬件设计的一般方法,这些方法经过实际设计工作运用证明是可靠的,可供系统工程技术人员在组建具体的基于VXI总线的虚拟仪器数据采集、测试时参考使用。

参考文献

1]赵勇.虚拟仪器软件平台和发展趋势[J].国外电子测量技术,2002,(1)

2]陈光禹.VXI总线测试平台[M].北京:电子科技大学出版社,1996

3]孙昕,张忠亭,薛长斌.集成VXI总线自动测试系统的方法[J].测控技术,1996,15(4)

4]张毅刚,彭喜元,姜宁达,等.自动测试系统[M].哈尔滨:哈尔滨工业大学出版社,2001

5]汪红.基于组件的虚拟仪器软件系统[J].微型计算机信息,2001,(1):76-77

第四篇:变电站信号采集与分类

一、信息分类原则 1.事故信号 2.异常信号 3.变位信号

4.遥测越限信号 5.告知信号

二、COS信号和SOE信号的区别?

COS信号:遥信变位(不带时间标记)SOE信号:事件顺序记录(sequence of event)(分辨率不大于2ms),把事件(开关或保护动作)发生的时间按先后顺序逐个记录下来,这就是事件顺序记录。

三、为什么保护出口信号和开关位置信号要设置SOE 事件顺序记录主要用来提供时间标记,以利于对电力系统的事故分析。

四、为什么要设置事故总信号,没有可以吗? 防止开关偷跳

五.某110kV变电站主变高压侧开关发SF6二级告警,运维人员如何处理? 1.运维人员应立即汇报当班调度员;

2.运维人员按照调度指令加强对该开关的SF6气压监视,防止出现一级告警后闭锁分合闸;

3.通知检修人员到站检查处理; 4.做好相关安全措施,带电补气。

六.某110kV变电站运行主变发过负荷告警,监控人员如何处理? 1.监控人员应立即汇报调度;

2.监控人员应按照调度指令加强对过负荷主变油温及负荷监视; 3.如有备用主变,则操作备用主变送电; 4.如无备用主变,按调度指令压减负荷。

第五篇:生物医学信号采集实习教案

生物医学信号采集实习

课程设计报告

心电信号采集

指导老师:

学号: 姓名: 学号: 姓名: 学号: 姓名:

起止日期:

目录

一、前言 ———————————————————— 3

二、心电信号简介 ———————————————— 3

三、实验要求 —————————————————— 5

四、软件设计及仿真 ——————————————— 6

五、硬件电路及仿真 ——————————————— 12

六、人体测量结果 ———————————————— 13

七、实验总结 —————————————————— 14

一、前言

心脏是人体血液循环的动力泵,心脏搏动是生命存在的重要标志,心脏搏动节律也是人体生理状态的重要标志之一。心电信号是心脏电活动的一种客观表示方式,是一种典型的生物电信号,具有频率、振幅、相位、时间差等特征要素,比其他生物电信号更易于检测,并具有一定的规律性。由于心电信号从不同方面和层次上反映了心脏的工作状态,因此在心脏疾病的临床诊断和治疗过程中具有非常重要的参考价值。对心电信号的采集和分析一直是生物医学工程领域研究的一个热点,是一项复杂的工程,涉及到降低噪声和抗干扰技术,信号分析和处理技术等不同领域,也依赖于生命科学和临床医学的研究进展。

人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。心电信号的各种生理参数都是复杂生命体(人体)发出的强噪声条件下的弱信号(除体温等直接测量的参数外),心电信号的幅度在10µV~4mV之间,频率范围为0.05~100Hz,淹没在50Hz的工频干扰和人体其他信号之中,检测过程及方法较复杂。去除信号检测过程的干扰和噪声、进行心电信号的分析是心电仪器的重要功能之一,心电信号的放大质量直接影响着分析仪器的性能和对人体心脏疾病的诊断。本次设计了一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用三导联输入—前置放大电路—带通滤波电路—次级放大电路组成的模式,并且利用软件对相应的电路进行仿真,实验结果表明,电路能够很好地完成人体心电信号的检测放大。

关键词:AD620、TL082CP、OP07CP、LM358、陷波、右腿驱动、NI ELVIS

二、心电信号简介

1.心电图

心肌是由无数个心肌细胞组成,由窦房结发出的兴奋,按一定的途径和时程,依次向心房和心室扩布,引起整个心脏的循环兴奋。心脏各部分兴奋过程中出现的电位变化的方向、途径、次序、和时间均有一定的规律。由于人体为一个容积导体,这种电变化也必须扩布到身体表面。鉴于心脏在同一时间内产生大量的电信号,因此,可以通过安放在身体表面的胸电极或四肢电极,将心脏产生的电位变化以时间为函数记录下来,这种记录曲线称为心电图,如下图所示。心电图反映心脏兴奋的产生、传导和恢复过程中的生物电变化。心肌细胞的生物电变化时心电图的来源,但是心电图曲线与单个心肌细胞的膜电位曲线有明显的区别。ECG波形是由不同的英文字母统一命名的。

心肌是由无数个心肌细胞组成,由窦房结发出的兴奋,按一定的途径和时程,依次向心房和心室扩布,引起整个心脏的循环兴奋。心脏各部分兴奋过程中出现的电位变化的方向、途径、次序、和时间均有一定的规律。由于人体为一个容积导体,这种电变化也必须扩布到身体表面。鉴于心脏在同一时间内产生大量的电信号,因此,可以通过安放在身体表面的胸电极或四肢电极,将心脏产生的电位变化以时间为函数记录下来,这种记录曲线称为心电图,如下图所示。心电图反映心脏兴奋的产生、传导和恢复过程中的生物电变化。心肌细胞的生物电变化时

心电图的来源,但是心电图曲线与单个心肌细胞的膜电位曲线有明显的区别。ECG波形是由不同的英文字母统一命名的。正常心电图由一个P波、一个QRS波群和一个T波等组成。P波起因于心房收缩之前的心房极时的电位变化; QRS 波群起因于心室收缩之前的心室除极时的收位变化;T波为心室复极时的电位变化,其幅度不应低于同一导联R波的1/10,T波异常表示心肌缺血或损伤。ECG的持续时间由:P-R间期(或P-Q间期)为P波开始至QRS波群开始的持续时间,也就是心房除极开始至心室除极开始的间隔时间,正常值为0.12~0.20s,若P-R 期延长,则表示房室传导阻滞;Q-T间期为 QRS波群的开始至T波的末尾的持续时间,意为心室除极和心室复极的持续时间,正常值为 0.32~0.44s;S-T段为从QRS波群终末导T波开始之间的线段,此时心室全部处于除极状态,无电位差存在,所以正常时与基线平齐,称为等电位线,若S-T段偏离等电位线一定QRS波群持续时间正常值约为0.06~0.11s范围,则提示心肌损伤或缺血等病变;因此,实时的检测心电信号,可以从所得出的心电图上观察心脏的变化,医生就可以从所测的心电图上判断心脏各个部位的功能是否正常,所以心电图是医生治疗心脏方面的疾病所不可或缺的依据。因此心电检测就有了实际应用的意义。

图1 标准心电图图例

2.人体心电信号的干扰

人体心电信号是一种弱电信号,信噪比低。一般正常的心电信号频率范围为0.05-100Hz,而90%的心电信号(ECG)频谱能量集中在0.25-35 Hz之间。采集一种电信号时,会受到各种噪声的干扰,噪声来源通常有下面几种:

(1)工频干扰50 Hz工频干扰是由人体的分布电容所引起,工频干扰的模型由50Hz的正弦信号及其谐波组成。幅值通常与ECG峰峰值相当或更强。

(2)电极接触噪声,电极接触噪声是瞬时干扰,来源于电极与肌肤的不良接触,即病人与检侧系统的连接不好。其连接不好可能是瞬时的,如病人的运动和振动导致松动;也可能是检测系统不断的开关、放大器输入端连接不

好等。电极接触噪声可抽象为快速、随机变化的阶跃信号,它按指数形式衰减到基线值,包含工频成分。这种瞬态过渡过程可发生一次或多次、其特征值包括初始瞬态的幅值和工频成分的幅值、衰减的时间常数;其持续时间一般的1s左右,幅值可达记录仪的最大值。

(3)人为运动,人为运动是瞬时的(但非阶跃)基线改变,由电极移动中电极与皮肤阻抗改变所引起。人为运动由病人的运动和振动所引起,造成的基线干扰形状可认为类似周期正弦信号,其峰值幅度和持续时间是变化的,幅值通常为几十毫伏。

(4)肌电干扰(EMG),肌电干扰来自于人体的肌肉颤动,肌肉运动产生毫伏级电势。EMG基线通常在很小电压范围内。所以一般不明显。肌电干扰可视为瞬时发生的零均值带限噪声,主要能量集中在30-300Hz范围内。

(5)基线漂移和呼吸时 ECG 幅值的变化 基线漂移和呼吸时 ECG 幅值的变化一般由人体呼吸、电极移动等低频干扰所引起,频率小于 5 Hz;其变化可视为一个加在心电信号上 的与呼吸频率同频率的正弦分量,在 O.015-O.3Hz 处基线变化变化幅度的为 ECG 峰峰值的 15%。

三、实验要求

1.实验仪器设备:

1)作图工具:TINA原理图编辑器

2)仿真工具:使用Multisim交互式地搭建电路,然后仿真。3)电路图实验设计:面包板

4)电路测试:使用NI ELVISmx提供电压,显示电路数据。

2.设计要求

体表心电信号是微弱信号,极易受到干扰,心电前置放大电路设计要求尽可以将外界干扰排除,再通过ELVIS平台传到上位机做数字信号处理和显示。要求完成以下技术指标

(一)电路的放大倍数:800~1000倍。(二)电路的共模抑制比:大于75(三)电路的输入阻抗:大于20M(四)电路的信号的频率响应范围:0.05~120Hz

我们要设计的是三导联。心电前置放大电路一般会由两~三级组成,第一级是CMRR很高的差动放大电路,主要用来抑制共模干扰,比如工频电场干扰,但这一级放大倍数一般在10倍左右(为什么这么设定,请大家思考并查资料,采用什么电路方式来提高共模抑制比也可以查资料)。第二级通常是一个两阶低通滤波和放大10倍左右的电路。(请大家去找到合适的两阶滤波器电路,并选用合适的电容与电阻)。最后一级通常是可调放大倍数的放大电路,并提供一个低内阻的输出级。高通滤波一般在前端采用无源的一阶滤波器。

四、软件设计及仿真

1、前置放大电路和右腿驱动电路的设计

(1)前级放大电路是将采集到的心电信号直接放大,该信号包含了很多背景噪声以及较高的共模信号,若这些干扰信号也随着心电信号一起被放大,将导致心电信号完全被湮没在噪声信号中,因此前级放大电路是关键,它必须满足高输入阻抗,高共模抑制比,低噪声,低漂移等特点。因此选用仪用放大器AD620,它采用经典的三运放改进设计,只需要一个电阻就能实现对增益的调节。它具有较高的输入阻抗和共模抑制比,能够很好地达到要求。对于前级放大的增益不宜过大,否则会使干扰信号过强,不利于后期处理。

(2)右腿驱动电路专为针对50Hz工模干扰,提高CMRR而设计的,原理是采用人体为相加点的共模电压并联负反馈,其方法是取出前置放大级中的共模电压,经驱动电路反相后在加回体表上,一般做法是将此反馈信号接到人体的右腿上,所以称为右腿驱动。通常,病人在做正常的心电检测时,空间电厂在人体产生的干扰电压以及共模干扰是非常严重的,而用右腿驱动电路就能很好地解决了上述问题。

图1 前置放大电路

由电路图1可知1脚和8脚之间的等效电阻RG20k6.67k,根据

3G49.4k1可得,该电路的增益RGG=8.41,其中电阻R1、R2的匹配性会直接影响到该放大电路的共模抑制比,因此要尽量保持阻值的相等。

图3 仿真结果

由图3仿真结果可以看出,输入1mV,40HZ的交流电压后,经AD620芯片 放大测量出的信号值达到12mV左右,有效值为8.64mV,即实际放大倍数为8.64倍,与理论值相近。

2、滤波电路的设计

因为电路所要求的频带范围为0.05Hz到100Hz,由于纯粹的带通滤波器的幅频特性不好控制,因此选择低通和高通两个滤波器串联,形成一个带通滤波器。低通滤波器的截止频率为100Hz,高通滤波器的截止频率为0.5Hz。在芯片选择方面,由于运放本身的频带范围会影响所做滤波器的特性,因此选择频带范围较宽的TL082做为滤波器的运放。TL082是一种通用的J-FET双运算放大器,能够用一个芯片来完成低通和高通滤波。我们采用二阶的滤波器,虽然滤波阶数越高,滤波效果越好,但是,滤波阶数过高了就会提高成本,而且阶数越高滤波电路结构会更加复杂,调试也更加有难度。二阶低通滤波相对于一阶来说,其滤波性能

1更加稳定,效果更好。图1为滤波电路。根据公式f得,截止频

2R1R2C1C2率分别为49Hz和0.08Hz,并其增益都为1。

图1 带通滤波电路图

通过过对实际信号的滤波来检验滤波器的特性,心电信号是属于低频信号,则前级要放大的信号必定为低幅值、低频率的信号,由于信号的幅值和频率都很小,更加容易受到噪声的影响。在经过高通和低通滤波之后,可以看出滤波器在截止频率范围内提供了有效的滤波。

3、主放大电路设计

整个电路的放大部分主要由主放大来承担,由于前级的放大倍数为8.6倍,因此将主放大的倍数定在100倍,整个电路总的增益为860倍(陷波器的增益不包括在内)。这部分利用低偏置电压的TL081CD来承担。反向输入端的1K和100K的电阻决定100倍增益,同相输入端利用100K电阻平衡两端电压,增大共模抑制比。如图1所示:

图1 主放大电路仿真图

在同相输入端输入60Hz,1mV Vpp的正弦信号,经运算放大器放大后在6号脚测到信号Vpp约为10.1V,如图2所示:主放大电路的实际放大倍数大约在100倍,与理论值的误差是由芯片本身的特性以及电阻的失配引起。

图2 主放大电路仿真结果 4、50HZ陷波器的设计

由于测得的心电信号中夹杂了工频干扰,难以去除,并且干扰信号的幅值与心电信号相近,严重影响了心电信号的识别,因此在对信号进行第二级放大时采用了一个陷波器,用于除去工频干扰。该陷波器的中心频率为50Hz,并且具有1.5倍的增益。50HZ陷波电路电路图如图1所示:

图1 陷波电路

图2 仿真结果

理论上中心频率50Hz左右时有比较明显的衰减,而测量结果也跟理论相近,对于实际电路,采用频率50Hz,峰峰值为1V的,正弦信号进行测试,从图2中看出,经过陷波器之后,原本峰峰值为1V的信号,在1.5的增益下应该为1.5V,实际测得的增益为由于是50Hz的信号,衰减至0.1V,效果较明显。

5、总体电路设计

图1 心电采集设计框图

电路设计中最重要的是抑制信号中噪声的产生及对噪声信号的滤除,使其对心电信号本身的影响达到最小。本次实验中心电信号选择为0.5至100Hz之间的频带。因为心电信号幅值大致都在1mV至3mV之间,电路供电电压为±5V,因此选择放大倍数为800至1000倍。总的电路图设计如图2所示:

图2 心电采集电路总图

图3 仿真结果

理论上的放大倍数计算得出,前置放大倍数为8.41倍,主放大倍数为100倍,所以总体放大倍数约为841倍。然而从图3的仿真结果看出,实际前置放大倍数约为7.57倍,这是因为带通滤波模块会衰减一部分信号,使总体的放大倍数减小,仿真实验到此成功结束。

五、硬件电路及仿真

1、前置放大电路

在面包板上搭建了以AD620为中心的差动放大电路以后,用NI ELVIS软件仿真,输入一个频率为25Hz,峰峰值为1V的正弦信号,得出的结果如图1,可看出峰峰值放大了8倍左右,与软件仿真结果相近。当共模输入信号时,测得的共模增益小于0.001,如图2所示。

图1 前置放大电路测试结果

图2 共模输入测试结果

2、带通滤波电路

用一个低通滤波电路和一个高通滤波电路搭建好一个带通滤波电路,软件仿真计算出的带通截止频率在0.08Hz-49Hz之间,但由于是实际的电路做不到理想化,所以信号从30Hz就开始衰减,如图1所示。

图1 带通滤波器测试结果 3、50Hz陷波电路

图1 陷波测试结果

图1可看出在中心频率为51Hz左右时的信号有明显的衰减,由于阻值的选择不同,所以测试结果与软件仿真结果存在一定的误差。

4、后级放大电路

图1 后级放大测试结果

搭建好电路以后,测试得出图1的结果,由图可看出,后级放大倍数在110倍左右,与理论值的误差是由芯片本身的特性以及电阻R4和R5的失配引起。

5、总体电路

图1 差模输出 图2 共模输出

输入为25Hz,10mV的正弦波。采用差模输入时,输出为11.13V左右,放大1113倍采;用共模输入时,输出为1.59mV,放大0.16倍。由公式CMRR10log(Ad2)可得,整个电路的共模增益为76.8dB。Ac

六、人体测量结果

图1 实际测量结果

在实际测量时,电极贴的位置及个人的皮肤状况也会影响测量结果。可以用清水湿润皮肤,并用砂皮磨掉表面的死皮,这样会使测量效果更加。同时被测人的体质不同也会对测量结果有影响。

图2 实际电路图

在面包板上完成上述电路的搭建,并对每一部分都进行单独调试。最终的电路实物图如图2所示。左上为前置放大,使用了AD620芯片,左下为右腿驱动电路,使用的芯片为TL082CP,中上和中部构成了一个带通滤波电路,使用了两个TL082CP,中下为陷波电路,使用的芯片为OP07CP,右下为第二级放大,使用了TL082CP芯片。在实际测量时,采用三导联的方式,一根接右腿,其余两个分别接左右手,若分别接左右胸口效果会更佳,由于不是很方便就采用接左右手腕的方式。

七、实验总结

1、难点

(1)前置放大电路中抑制共模信号的调制。

(2)消除随机噪声、工频噪声、内部噪声的干扰。(3)电路图的设计,芯片、电阻等元件的选择。

2、调试经验

(1)开始连接的电路没有加入50Hz陷波电路,但在实际测量中有大量的工频干扰,于是加入了该模块,结果有效地一直掉了工频干扰。

(2)原来选择的低通滤波起的阻值为11K,理论计算出的截止频率为97.6Hz,但实际测量中大量的干扰频率在50Hz左右,于是修改了阻值,改为33K,这样可以滤掉更多的干扰,有利于得出正常的心电图。

(3)第一次没有成功测出心电信号,经讨论才知道是因为前置放大器模块没有做好,导致大量的共模信号进入了电路,由于心电信号非常微小,就被这些干扰信号淹没了,于是修改了差分输入的阻值,选择了两个特别接近的阻值,以减小共模干扰,计算出前置放大器的共模抑制比在0.001dB左右,有效抑制了共模干扰,最终得出了正常的心电信号。

(4)虽然最后实验成功了,但是还是存在一些干扰信号,说明滤波这一块还需改进。心电测量电路中对噪声的消除是十分重要的。外界噪声很有可能在电路的任何一部分掺杂进来,所以在最后再加一个低通滤波器滤除高频噪声是必要的。(5)电极的放置对心电的影响也很大,放在一个准确的位置可以很容易地从示波器上看到清晰的波形,反之,心电信号太过微弱会被噪声完全淹没。

(6)实验中,有源滤波器比无源的滤波效果要好很多。两个有源滤波器串联构成的带通滤波器也比无源和有源串联的效果好。

(7)对于电容的选择:在本次实验中,用瓷片电容的效果比电解电容要好一点。因为瓷片电容构成的滤波器滤除高频成分的性能好,电解电容构成的滤波器滤除低频成分的性能好。

下载LabVIEW声卡数据采集信号分析音频信号虚拟仪器word格式文档
下载LabVIEW声卡数据采集信号分析音频信号虚拟仪器.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    信号分析一页开卷专题

    通常把语言、文字、图象或数据等统称为蕴涵着消息的信号,将受信者从消息中获得的新知识称为信息。描述信号的参数:频率、幅度和相位。 信号分类: 模拟信号、量化信号、抽样信......

    现代信号处理(信号分析)

    (一).信号分析 1、编制信号生成程序,产生下述各序列,绘出它们的时域波形 1) 单位抽样序列 (n) 2)矩形序列 RN(n) 3)三角波序列n1,0n3x3(n)8n,4n7 0,其它 4) 反三角波序列4n,0n3x4(n)......

    分析市场信号五篇

    分析市场信号 有家企业所在的半条街餐饮业一阵红火,轿车结队,宾客不绝,瞅着眼热也盖了座二层酒店。不料开张后这街变得冷冷清清,“大户”一去不复返,此地空余豪华楼。 响应市场信......

    《随机信号分析》实验报告

    《随机信号分析》实验报告学号: 姓名: 2009年12月21日实验一:平稳随机过程的数字特征 1、 实验目的 “正文、小四宋体1.5倍行距” 2、 实验任务 3、 实验流程 4、 实验结果 5、......

    基于Labview的函数信号发生器的设计(开放性实验)

    开放性实验设计(报告) 摘 要 本次设计基于美国国家仪器(NI)的虚拟仪器开发平台Labview,使用图形化语言编程,设计了一款虚拟函数信号发生器。该虚拟函数信号发生器能够产生正弦波、......

    虚拟声学信号采集系统设计论文(合集)

    1虚拟声学信号采集分析系统设计研究1.1系统前面板的设计虚拟仪器的前面板设计是否合理对虚拟仪器的使用效果有着重要的影响,它直接面向使用者,使用者对其分布的合理程度也有着......

    随机信号分析实验报告(最终五篇)

    H a ar r b bi in nI In ns st ti it t u ut te eo of fT Te ec ch h n no o l lo og gy y实 验 报 告 告课程名称:随机信号分析院系:电子与信息工程学院 班级: 姓名: 学号:指导教师: 实验时......

    信号分析与处理 期末考试

    2014-2015学年第一学期期末考试 《信号分析与处理中的数学方法》 学号: 姓名: 注意事项: 1.严禁相互抄袭,如有雷同,直接按照不及格处理; 2.试卷开卷; 3.本考试提交时间为2014年12......