第一篇:机载天线结构设计研究论文
1引言
0.45m卫星通信(简称卫通)天线项目系某型多用途载机首次安装如此大尺寸、高带宽的卫通天线,国内尚无类似产品装备可参考,并且其使用环境条件复杂,这些都对天线结构设计提出了重大挑战。天线结构设计过程重点考虑了各结构件在载机实际工作环境下的刚度、强度问题。其中许多关键部位的结构件,起着支撑天线、固定通信馈线及执行伺服驱动的作用,同时承担和隔离载机产生的振动和冲击,并实现天线的转动、定位和定向。天线结构件的刚度、强度、重量、转动惯量,直接影响到天线系统的精度和可靠性[1]。在天线结构整体设计阶段,采用了ProE三维设计软件进行结构设计,采用有限元法利用大型结构设计仿真软件MSC.Patran/Nas-tran对天线结构进行结构力学分析和仿真,加强和优化主结构件关键部位。仿真和实验结果以及实际飞行使用效果显示,天线的结构特性均能满足技术指标和使用要求。
2系统和整机要求
根据系统要求,天线系统在飞行过程中要实现准确地手动/自动跟踪卫星功能,依赖于天线座结构应具有足够的刚度、强度和传动精度,以保证整个伺服系统的结构谐振频率,提高伺服带宽,增加系统的稳定性、动态响应和传动精度。此外,根据载机实际工作环境要求,在最大限度减轻载机负担(即减轻天线重量)的前提下,应采取合理布局的设计思路以优化结构设计,使天线在使用过程中能够排除和降低载机工作环境对其产生的不利影响,保证其可靠性,达到指标要求[2]。
3总体结构设计与优化
根据载机实际情况,在保证性能的前提条件下,要求天线的尺寸和重量到达最小,对此进行了大量的优化工作,使得0.45m卫通天线外形安装尺寸(直径×高度)自最初方案提出的740mm×600mm(天线罩),重量约为50kg,优化为700mm×500mm(天线罩),重量约为40kg,如图1所示。其总体优化过程如下:天线的反射体为降低安装高度,放弃了传统的抛物面天线,采用了最新研发成功的低剖面波导阵列天线;座架则仍采用典型的方位-俯仰型结构以保证跟踪的可靠性;为了减轻重量,除关键传动部件采用40Cr合金钢外,其余结构件全部选用高强度轻质铝合金2A12-T4;由于铝合金螺纹连接处强度不够,且重复拆装性不好,参考已有航空设备安装措施,装入钢丝螺套以提高螺牙强度;天线与机体安装平台间装有隔振装置以降低机体振动带给天线的影响;天线罩为降低重量,在保证抗风强度的前提下,弃用传统的环氧玻璃布结构,采用最新的纸蜂窝夹层结构,大大降低了安装重量;所有电缆和波导则为保证气密性而经密封处理后通过安装孔进入机舱内部。按照以往的工程经验,此类机载通信/雷达天线在类似的环境和使用要求下,一般应超过此重量与尺寸。因此,与以往工程设计的不同之处之一,即在设计之初就对各结构件进行了反复的比对和二次优化。
3.1天线结构介绍
波导阵列天线的结构尺寸为597mm×300mm×17.5mm,四周切角以减小回转半径;经过减重处理后的重量约8kg,电气性能与0.45m口径抛物面天线等效,而高度和厚度则大大低于传统的抛物面天线。采用这种天线的优势包括剖面低、辐射效率高、口径分布控制精确、低副瓣、波束指向稳定、功率容量大、刚度和强度好、结构紧凑、厚度薄、相对重量轻、可靠性高等优异的电气和结构性能等。
3.2天线座架结构设计与优化
天线座架采用典型的方位-俯仰形式,结构紧凑,受力情况合理,调整方便;设计选定承载能力强、刚度好、重量轻、结构紧凑的转台式结构;因而从整体几何尺寸的优化满足了最小安装空间的要求。俯仰机构的转动支撑采用了圆锥滚子轴承,可同时承受径向力和轴向力,以最轻质最紧凑的结构满足天线支撑的需要。关键件俯仰支臂用厚铝板加工而成,其主要受力部位为轴承孔及与方位转盘的连接面,因此必须在保持结构强度要求的前提下,对支臂的非承力部分进行减重优化设计,具体做法如下:整体按照最小几何尺寸布置;保留轴承孔周边最小结构尺寸;与方位转盘、驱动、轴角装置的连接面相应保留足够厚度;保留一侧面的相对完整,另一面完全成空腔结构;增加与轴承孔的两道同心加强环筋,并根据此零件结构力学特性将其布置在最优强度位置。此外,根据以往工程设计经验,俯仰支臂与方位机构的的连接根部和俯仰传动链末级两处通常是整个座架结构的最薄弱环节,因此在这两点处预先进行了局部二次加强,加厚并尽可能圆滑支臂的连接根部,其优化过程如图2所示。
方位机构的核心传动部件转盘轴承,优选了应用广泛的带外齿的四点接触球轴承,使天线座架在保持紧凑的结构和较轻的重量的前提下,能同时承受较大的轴向载荷、径向载荷、倾覆力矩和双向推力载荷,还优化了方位总传动比。另一重要部件滑环,采用具有超长寿命、免维护、无需润滑、外形紧凑的空心轴多路滑环。方位运动的另一核心部件方位转盘同样用厚板材加工而成,负担着天线和俯仰支撑的重量,并要具备足够的刚度,其优化思路过程与俯仰支臂相似,也包括轴承结构保留、连接面强化、空腔化减重及同心加强环筋的布置,其优化过程如图3所示。方位驱动和俯仰驱动均选用轻质、紧凑、高输出扭矩的直流减速电机,末级增加间隙调整装置,可调节传动回程间隙。将经过优化设计的结构模型再由力学仿真进行分析验算。
4天线结构的力学分析
由于天线的质量分布很复杂,很难用解析的方法得到其解析解,因此采用专业有限元分析软件MSC.PATRAN/NASTRAN进行力学分析和仿真。
4.1有限元模型的建立
天线整体结构的有限元模型包括反射体、座架结构、俯仰齿轮及其连接支撑结构、方位转动机构等。为降低软件的计算量和复杂度,先对天线整体结构进行简化,去掉冗余节点,再采用MSC.PATRAN软件单独对其组成零件划分网格,最后将划分好的网格进行组装。采用了映射网格划分方法,面上网格全部为四边形,体则全部为六面体,这种划分能够更准确地描述天线座架结构的应力和位移情况[3]。模型的约束条件如下:天线座架的2个俯仰轴系各有一点的3个转角自由度释放,方位轴系释放绕垂直轴转角自由度及垂直方向位移自由度,约束其余4个自由度。模型的材料属性如下:天线座架的各轴、轴承、齿轮定义属性为钢40Cr,而其他零件定义属性为硬铝2A12-T4。建立的天线结构有限元模型如图4所示。
4.2模态分析
天线座架是一个复杂的弹性系统,如果其结构固有频率与伺服带宽靠近甚至落入伺服带宽之内,各种伺服噪声就会激发系统发生谐振,造成伺服系统不稳定,无法工作,甚至使结构破坏。为保证伺服系统的稳定性,并有足够的稳定裕度,通常要求结构固有频率高于伺服带宽3~5倍[4]。通过计算得到天线结构模型的固有频率,在第1、2、3、4阶模态下,其值分别为28.7Hz、29.2Hz、51.4Hz、60.8Hz,而本天线伺服系统的带宽为2.7Hz左右,可见固有频率远大于伺服系统的带宽,因此,天线的伺服系统拥有足够的稳定裕度。
4.3冲击振动分析
依据实际环境使用要求,冲击环境条件为:采用半正弦脉冲,峰值加速度15g,脉冲宽度11ms,3个互相垂直轴,6个轴向施加。对模型施加冲击载荷并进行有限元分析,得到了如下分析结果:最大应力出现在z轴(图5),可以看出最大应力处位于俯仰支臂的连接根部位置,最大应力值为109MPa,小于材料的屈服极限σ0.2=275MPa。所以,在给定的冲击载荷条件下,结构满足强度要求。振动条件见图6振动谱,其中额外迭加的4处定频振动峰值依次为1.6g、2.5g、1.7g、1.5g。对模型施加振动载荷并进行有限元分析,得到了如下分析结果:最大应力出现在y轴(图7),同样位于俯仰支臂的连接根部位置,其高斯分布规律的应力3σ值为178MPa,小于材料的屈服极限值σ0.2=275MPa。所以,在给定的随机振动条件下,结构满足强度要求。
4.4实验结果验证
按照要求对完成的设备进行冲击振动实验,从结果来看:主结构件经优化过的关键部位未出现以往相似工程中出现的刚度、强度不足的问题;改用轻质材料或采取减重措施的零部件受力情况与分析结果基本一致,均能满足设计要求;天线整体频响特性较好,在功能实验全程中运行正常,能够满足跟踪要求。
5结论
在0.45m机载天线的设计中,对载机的工作模式和环境特点进行了较为深入的研究,找出了结构设计过程中需要增强或优化的多个关键点,验证了天线结构的力学性能对伺服系统的重要性。在天线结构的设计与优化过程中,采用专业软件较好地解决了天线结构尺寸重量强度的优化设计、载机环境适应性等主要问题。天线系统精度较高,结构性能良好,从实际飞行过程中的具体通信效果来看,电气、伺服、结构等各项性能指标均完全满足系统要求。
由于国内机载卫星通信应用尚处于初步阶段,0.45m机载天线的研究结果对类似的机载雷达/通信天线的研发可以提供相应的技术参考和借鉴。需要指出的是,各种载机平台拥有各自不同的特性,对天线结构的要求也相应有所不同,建议今后对不同的载机平台,应进一步增加针对性的设计工作。
第二篇:机载天线电磁兼容分析
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
机载天线的电磁兼容性分析
姓名:周慧
学号:2011201270 摘 要:天线布局和电磁兼容是机载系统设计的关键性问题。针对机载天线的特点,本文对机载天线的电磁兼容性的核心问题和主要解决途径进行了简要介绍,对常用的有限元法、物理光学、几何光学等天线电磁兼容技术分析方法进行了比较,结合机载天线的布局问题综合分析机载天线的电磁兼容技术。关 键 词:机载天线 ;电磁兼容 ;天线布局
一、引言
随着当今科学技术的不断进步,航空军用电子设备已成为C3I 系统实施指挥和获取情报的重要手段。预警机是情报、通讯、指挥和控制中心,要实现这些战术指标,就必然要在飞机这么一个有限的空间里布置大量的电子电气设备。飞机作为一个指挥控制单元,其工作频谱覆盖范围从甚低频(VLF)到超高频(UHF),在大功率高频(HF)和超高频(UHF)设备产生并通过天线辐射的电磁环境中,保证机载设备的兼容性是相当重要而复杂的问题。在飞机系统的研制、生产和安装过程中有必要研究其变化后的电磁环境,对其兼容性状态进行分析,从而保证机载系统的正常工作。
机载通信系统中,由于系统中无线通信设备比较多,而且还要综合考虑飞机的飞行性能,安放天线的位置就受到一定的局限,因此系统中EMC 的问题尤为突出,在无法摆脱自身设备EMC的前提下,要降低这种干扰只能通过天线布局的方法,通过降低各天线对间的耦合度达到减小干扰的目的。
研究飞机天线系统的电磁兼容性的关键就是确定机载天线的辐射特性,得到其辐射方向图。确定机载天线的辐射特性可以通过实验的方法,如利用暗室和飞机模型测试数据,但是这样会浪费大量的人力、物力和财力,因此研制机载天线系统电磁兼容预测分析软件己成为当务之急。EMC预测分析的目标是评估全机的电磁兼容性状态,分析是否存在电磁干扰,以便于总体采取措施排除,尽量减少干扰问题的出现,确定关键性区域和关键性设备,确定干扰测试的重点,并为今后系统及设备设计和系统使用提供数据。
二、机载天线电磁兼容的基本理论
天线的电磁兼容,指天线或天线系统在共同的电磁环境中,其自身性能既不下降又不影响其它天线性能的一种共存状态。即某一设备上的天线既不会由于受
/ 6
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
到处于同一电磁环境中的天线布局、载体、邻近散射体和其它天线的影响而遭受不允许的性能降低,也不会使同一电磁环境中其它天线性能遭受不允许的性能降低。值得指出的是,电磁环境除了包括安装天线的平台、平台上的其它天线、遮挡物、突出金属物以外,在这里还特别增加了一项“邻近散射体”。这里所说的邻近散射体,包括了邻近载体、地形地物和海面等。
从广义上讲,机载天线的电磁兼容性包含有两个基本概念,辐射限制和抗扰度限制。辐射限制是指在不需要的空间和不需要的频段上其辐射量的控制。抗扰度限制是指天线自身对恶意发射与难以避免的反射、散射、漏射、绕射、杂乱漫射、传导等电磁能量的响应能力。
三、机载天线电磁兼容的技术重点
机载天线对整个系统的电磁兼容性能影响非常明显。这主要是因为天线具有如下两个特点:
1、天线的功能是完成电磁能量从“场”到“路”的双向转换,即将空间中的电磁场能量接收至传输线内成为导波,或将传输线内的导波辐射至空间形成电磁波。
2、多数天线辐射能量大、接收灵敏度高。相对于导线、设备、孔缝等无意辐射源,天线辐射能量要大若干个数量级。
本质上讲,机载天线的电磁兼容的核心问题就是辐射限制和抗扰度限制。因此解决天线的电磁兼容应从以下三个方面着手:电磁兼容实现手段、电磁兼容效果计算分析和天线布局优化设计。
1、电磁兼容实现手段
目前实现天线之间电磁兼容的主要手段,是通过增加天线之间的隔离度削弱天线间的相互影响,而衡量天线之间相互影响强度的指标即天线的隔离度,机载天线之间的隔离度是描述天线之间耦合的一种方式,它充分反应了天线的方向性、增益、极化状态、带内带外特性和天线之间的空间对收发天线间能量耦合的贡献。为准确表达天线间的隔离程度,将发射天线的发射功率Pta与接收天线所接收的功率Pra的比值定义为天线隔离度(Pra为Pta经过各种衰减后被接收天线所接收的功率值),通常在工程应用中,以dB 为单位表示,即:
L(dB)10lgPta
(1)Pra当2个天线均处于彼此远区场的情况下,其能量耦合主要通过辐射场实现。
设发射天线发射功率为P ta,增益为Gt,接收天线的接收功率为Pra,增益
/ 6
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
为Gr。接收天线与发射天线间的距离为D,一般情况下,收发天线直视时的天线隔离度可由公式(1)所表达的物理意义求解。当收发天线外形尺寸与D 相比较小时,收发天线均可近似被认为是具有一定方向性的点源,则发射天线发出的电磁波可被近似为球面波,且在接收天线处可视作平面波,此时天线隔离度可表示为:
L(dB)LGG
(2)
dtr4D式中,L20lg为收发天线直视情况下的空间隔离,Ld由收发天线间的距d离D和分析波长λ等因素决定,Gt为发射天线在接收方向的天线增益,应根据收发天线的相对位置从机载发射天线增益方向图中读取;Gr为机载接收天线在发射方向的天线增益,应根据收发天线的相对位置从天线增益方向图中读取。
当收发天线之间的极化不完全匹配时,还要考虑极化失配带来的隔离度LP这一项,即总的天线隔离度为:
L(dB)LGGL
(3)
dtrp如果天线不能同时满足位于彼此的远区场,则2天线之间的相互干扰主要不是通过辐射场进行的,而是通过近区束缚场或近区感应场实现。
工程上圆极化对垂直极化或水平极化的损耗为3dB左右,垂直极化和水平极化间的失配损耗为20-35dB,由于机身表面天线的安装方位比较复杂,极化失配损耗要比以上2个值要小。
2、电磁兼容效果计算分析
机载天线的电磁兼容实施过程中一个重要的环节,就是以计算机为工具,利用电磁场理论和计算电磁学的相关知识,对天线电磁兼容性的效果进行仿真计算和分析。通常情况下,对单个天线结构的阻抗特性和辐射特性的分析往往采用数值方法,而对于天线之间耦合特性(隔离度)的分析(该文中仅指远场情况下),往往采用高频方法。
随着计算机性能的快速提高,电磁场数值计算技术日益成为应用电磁学领域内的一个研究热点。由于数值计算方法直接以数值的形式代替解析表达式描述和求解电磁场问题,故在理论上只要计算机配置足够高,等待足够的时间,就可以得到以任意精度逼近准确值的几乎所有电磁场问题的解答。常用的数值计算技术包括有限元方法(FEM)、时域有限差分方法(FDTD)和矩量法(MOM)等。
有限元法是非常具有代表性、应用范围广泛的频域数值方法。该方法以变分原理和剖分插值为基础,能处理任意形状的场域、多介质和复杂交界面等情况。其所形成的代数方程系数矩阵具有对称、正定和稀疏性的特征,因而收敛性好,3 / 6
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
容易求解。由于具有这些优点,有限元法成为国内外学者的一个研究热点。但是有限元法虽然是一种灵活性强的数值计算方法,但它只适合于最大尺寸约为几个波长以下的物体。所以使用范围也受到一定的局限。
机载天线工作频率一般很高,而飞机一般有十几米到几十米长,因此机载天线系统是电大尺寸系统,对此系统的分析需要应用高频近似技术。高频近似技术是在相当严格的理论基础上发展的一系列近似方法和渐进的高频解析方法,一般可归纳作2 类:一类基于射线光学,包括几何光学(GO)、几何绕射理论(GTD)以及在基础上发展的一致性绕射理论(UTD)等;另一类基于波前光学,包括物理光学(PO)、物理绕射理论(PTD)、等效电磁流方法(ECM)以及增量长度绕射系数法(ILDC)等。
物理光学法是通过对表面感应场的近似和积分来求解散射场的,它克服了平表面和单弯曲表面所出现的无限大的问题。由于感应场保持有限,散射场也就同样有限。
几何光学是研究射线传播的一种理论,它是适用于计算电磁场零波长近似的高频方法。但是几何光学只研究直射、反射和折射问题,它无法解释绕射现象。当几何光学射线遇到任意一种表面不连续的情况,例如边缘、尖顶,或者在向曲面掠入射时,它将不能进入到阴影区。按几何光学理论,阴影区的场应等于零,但实际上阴影区的场并不等于零。为了解除几何光学场的不连续性问题,并对几何光学场计为零的场区中作出适当修正,引入了一种新的射线—绕射线,其对应的理论即几何绕射理论。
几何绕射理论的基本概念可以归结为以下3 点:
1绕射场是沿绕射射线传播的,这种射线的轨迹可以用广义费马原理确定。○2场的局部性原理:在高频极限情况下,反射和绕射这一类现象只取决于○反射点和绕射点临近域的电磁特性和几何特性。
3离开绕射点后的绕射射线仍遵循几何光学的定律。○
3、天线布局优化设计
布局设计首先是天线自身的仿真与设计,其性能指标以能否满足应用要求为先决条件,但这往往还不够。实际中常会遇到这样的情况,单独看这个天线,其各项性能指标均合格,一旦配置到载体上,其主要参数幅度方向图和相位特性将有程度不等的劣化,此时必须对天线进行必要的修改,有时甚至需要重新进行方案论证与选择。
机载天线的布置应遵循如下的4个原则:
1飞机电子系统中各分系统的天线布置应充分发挥各分系统的战技性能,○完成各自所担负的任务。
/ 6
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
2分系统天线间辐射干扰影响尽量小,即尽量减少辐射耦合。○3要充分利用载体的遮档。○4实际天线布局设计是一个综合性的反复调整过程。○下面以一个实际的飞机来综合考虑分析其各天线的布置情况
图 1 某飞机的机载天线布局
1探测雷达天线布置 ○考虑飞机气动力学影响,可采用共形相控阵天线型式,并将天线置于机身两侧和前后。
2GPS天线布置 ○GPS 接收天线,它用于接收卫星信号,因此要安装在机身上方,且尽量远离探测雷达。
3ESM天线布置 ○无源探测(以ESM 为例)频带宽,接收灵敏度高,因此ESM 天线要远离那些落于其工作频带的发射源,故ESM 天线应安装于机身前后位置。
4JTIDS天线布置 ○对JTIDS天线布置考虑应空对空、空对地通信,因此将它安装于机身上下方。5通信天线尤其是V/UHF 天线数量多,频段宽,要考虑减少相互影响,合○理布局。
在初步确定了天线在载体上的布局后,就可进行机载天线耦合干扰及天线方向图的计算机预测与分析,通过不断的调整天线的位置,最终找到最佳的天线布局方案。
四、国内外机载天线布局和EMC的发展动态
西方发达国家早在二战后就对飞机的EMC做了大量的研究工作,特别是美
/ 6
姓名:周慧
学号:2011201270
专业:电磁场与微波技术
国在六七十年代中期对电磁兼容性研究所做的工作,比较全面和系统地考察了航空、航天、航海领域中的电磁兼容机理,并进行了研究和分析,获得了大量的资料和经验,取得了较好的效果。如美军先后研究出F-4,F-15系列飞机EMC分析方法和数学模型,并将其应用于飞机的设计、研制和维修中,取得了许多技术成果和显著的经济效益。海湾战争、科索沃战争及近期的反恐战争等,使各国对美国等西方各种武器的先进性有了更直观的认识,而战争中美国飞机的卓越性能都体现了研究飞机天线系统EMC的价值。
我国在这方面研究起步很晚,与国外相比水平还远远落后,直到70年代后才开始着手研究,而且发展速度缓慢,导致我国与发达国家拉下很大距离。目前,我国已经有一些部门和单位开始重视并从事这方面的工作,实现技术的跨越式发展,可望在不远的未来赶上先进发达国家的水平,从而能够利用EMC控制,使系统和设备与环境相融合,完成对电子设备的一体化设计。
参考文献
[1] 汤仕平,杨景发.飞机天线间兼容性分析及工程应用[J].电磁干扰抑制技术.[2] 王良刚,陈龙.机载C3I 系统电磁兼容技术研究[J].电讯技术,1997,37(2).[3] 邱扬,俞智敏,袁军,田锦.机载通信系统EMC设计中天线布局优化设计[J].舰船电子工程,2004.[4] 路志勇,宋长宏.机载系统天线布局及电磁兼容性分析[J].微波学报,2010.[5] 林泽祥,兰强.天线的电磁兼容技术[J].电波科学学报,2007,22(1).[6] 袁旭猛,王浩.机载天线电磁兼容技术分析[J].无线电通信技术,2011,37(4).[7] 陈晨.机载天线辐射特性及耦合研究[D].西安:西北工业大学,2006.6 / 6
第三篇:某机载天线伺服系统电磁兼容设计及分析
某机载天线伺服系统电磁兼容设计及分析
【摘要】 本文采用近场电磁干扰源探测定位法分析了某机载天线伺服系统的辐射发射问题。通过对比测试数据确定码盘及开关电源为主要辐射源,针对码盘和开关电源辐射超标的问题采用屏蔽、接地和滤波等措施进行整改。在设计共模滤波器时使用仿真软件CST对滤波器的参数进行仿真,最后通过电磁兼容试验验证整改效果,确定伺服系统的电磁兼容性有明显的改善。
【关键词】 电磁兼容 辐射发射 屏蔽 滤波器设计
Design and Analysis of Electromagnetic Compatibility Problems of Airborne Antenna Servo System
Wang Xiao-yu,Liu Xin,Zhang De
The 54th Research Institute of China Electronics Technology Group Corporation
Abstract:In this paper,electromagnetic interference sources detection method is used for the analysis of radiated emission problem of the airborne antenna servo system.By comparing the test data,it is confirmed that the main source of radiation is the encoder and switching power supply.In order to solve the problem of the encoder and switch power source radiation exceed the standard,a series of measures such as shielding,grounding and filtering are adopted to carry out rectification.The parameters of filter are simulated using the CST simulation software in the design of common mode filter.Furthermore,the rectification effect is verified by the electromagnetic compatibility test.It is found that the electromagnetic compatibility of the servo system is improved obviously.Keywords:Electromagnetic compatibility,Radiation emission,Shielding,Filter design
一、引言
电磁兼容(EMC)作为一门综合性的前沿学科,在20世纪末、21世纪初的电气及电子科学中得到迅速发展,对理论及工程实践紧密结合的要求越来越高[1]。
现代社会中飞机、舰艇、汽车等各种平台在狭窄的空间中安装了各种功能的电子设备,在工作时这些设备会产生电磁干扰,对其它设备的正常工作产生影响[2,3]。短波通信是现代飞机等载体完成任务、保障安全的重要通信手段。随着技术的进步,各种飞行器对通信质量的要求日益高涨,导致飞行器上电子通信设备的种类和数量不断增长。由于通信设备都安装在飞行器壳体上,以壳体作为共地点,而在飞行期间壳体与大地并无连接,导致设备间的电磁兼容成为不可忽视的问题 [4,5]。
二、故障现象及分析
用户在使用过程中发现,当伺服系统工作时,会导致短波/超短波系统有效通信距离缩短。使用频谱仪观察短波/超短波天线接收信号频谱,在伺服系统工作时,在10MHz~200MHz频段范围内短波/超短波天线底噪有明显抬升,抬升幅度随频点不同,但最小幅度也大于10dBm。伺服系统组成如图1所示,组成伺服系统的各设备通过互联线缆进行通信。
采用电磁兼容三原则法进行分析,伺服系统是辐射源,短波/超短波天线是受影响设备,而伺服系统和短波/超短波天线之间无任何线缆连接,并分别由各自系统的隔离电源供电,因此干扰信号无法通过传导方式达到受影响设备。并且由于伺服系统的供电和信号电缆长度超过10m,而10MHz信号的波长约为30m,电缆长度已满足L≥(λ/20)的辐射发射条件,由以上条件判断辐射发射为干扰信号的传输路径。为解决该辐射发射问题,按照GJB 151A-97中对机载设备的辐射发射要求,对伺服系统进行垂直极化RE102测试,测试结果如图2所示,测试曲线在30KHz~500MHz范围内频谱严重超限,同时包括窄带尖峰噪声、宽带噪声和高密集型尖峰群噪声三种情况。
采用频谱仪和德国安诺尼公司生产的PBS系列近场探头对组成伺服系统的每个设备和设备间的互联线缆进行辐射发射检查。使用电场探头分别在距互联线缆10cm和20cm的位置进行测量,观察频谱仪上测试曲线的峰值变化并将数据记录于表1。采用对比法分析,由峰值变化可判断辐射类型主要为电场辐射。同时按照频谱仪上曲线峰值及包络的强弱排列,可得开关电源、码盘、设备间的互联电缆为主要辐射源。
三、分析及整改措施
针对产生辐射的设备进行分析和整改,按照整改措施的难易程度进行排序为互联电缆、码盘和开关电源,具体措施如下。
3.1 互联线缆
由于在进行伺服系统设计时,未考虑电磁兼容设计,所有的传输线均未使用屏蔽线缆,同时为走线美观,将信号线和电源线集中捆扎,导致线缆间耦合严重,线缆整体成为发射天线。
3.2 码盘
由于码盘在设计时已采用金属壳体进行屏蔽,因此对其使用近场探头进行检测。检测发现辐射发射在码盘插座与壳体连接处最强,拆下插座发现插座上安装的密封胶圈是绝缘体,破坏了码盘整体的电连续,将该密封胶圈更换为导电胶圈后,插座连接处的辐射发射有明显降低。同时在码盘的电源线和信号线上采用馈通滤波器LT1-200-332进行滤波,并将滤波器外壳有效接地,再次进行RE102测试,测试曲线已满足GJB151A-97的要求。
3.3 开关电源
采用靠测法,使用200MHz带宽的示波器测量开关电源的输入及输出端的电压变化,在开关电源工作时观察到输入输出端电压均叠加有高频共模噪声,将共模噪声在时域展宽后如图3所示。
在此引入CST(COMPUTER SIMULATION TECHNOLOGY)软件,该软件强大的仿真能力解决了以上滤波器设计所面对的问题。设计共模滤波器如图4所示,采用该共模滤波器并匹配合适的参数可有效抑制开关电源输入和输出端的共模噪声。经仿真可得共模滤波器在不同参数下的特性曲线,如图5所示。
按照仿真结果设计共模滤波器,在电源输入及输出端串入共模滤波器后,对开关电源进行RE102测试,测试结果如图6所示,开关电源的辐射发射已满足GJB151A-97的要求。
采用以上措施对伺服系统进行整改后,再次进行RE102测试,测试曲线如图7所示,图7-a为水平极化测试曲线,图7-b为垂直极化测试曲线,由图7可知,伺服系统的辐射发射在垂直和水平两个极化方向上都能满足GJB 151A-97中机载设备的电磁辐射发射要求。
四、结论
本文采用近场电磁干扰源探测定位法对组成伺服系统的各个设备与互联线缆的辐射发射情况进行了分析,依据分析结果确定电场辐射是干扰信号的主要传输路径。从电磁兼容问题产生所必需具备的三要素出发,采用切断传输路径及减少辐射源等措施对伺服系统进行了整改。在设计共模滤波器时引入仿真分析软件CST对滤波器的参数进行计算,确保整改后的伺服系统顺利通过了水平和垂直两个极化方向的RE102测试,改善了伺服系统的电磁兼容性。
参 考 文 献
[1] 戴斌,张炫.某雷达产品关于RE102试验问题分析[J].火控雷达技术,2012,41(1):76-80
[2] 薛正辉,高本庆.机载短波天线间隔离度的全波分析[J].电波科学学报,2000,15(4):477-481
[3] 纪奕才,邱杨,陈伟,等.车载多天线系统的电磁兼容问题分析[J].电子学报,2002,30(4):560-563
[4] 刘莹,谢拥军,张勇.车载集群通信系统“自顶向下”电磁兼容设计[J].电子科技大学学报,2010,39(5):720-724
[5] 田锦,谢拥军,辛红全,等.复杂系统电磁兼容评估的改进TOPSIS方法[J].电子学报,2013,41(1):105-109
第四篇:消费类电子产品论文:消费类电子产品天线阻抗匹配的研究
消费类电子产品论文:消费类电子产品天线阻抗匹配的研究
【中文摘要】消费类移动电子产品逐渐成为人们日常生活的必需品,消费类电子产品有智能手机、MID、PND及最近流行的平板电脑等,在这些电子产品中,普遍存在一个或多个无线接收或发射装置,天线是发射或接收电磁波的关键器件。但有些天线单纯依靠它本身的结构及特性,很难达到最佳接收或发射效果。如何根据不同的天线特点在大规模生产的时候进行有效匹配,满足这些天线收发性能指标的设计要求就成了一个重要课题。本文对一些主要的天线特点、性能的设计要求及阻抗匹配方法进行了介绍。较详细地分析了GPS天线阻抗特性及匹配方法、WIFI和蓝牙阻抗特性及匹配方法、FM天线阻抗特性及匹配方法。在消费类移动电子产品中要求匹配电路简单,生产效率高,满足用户要求及使用方便,其中宽带天线往往是一个难点,因为简单的电路快速匹配与宽带系统本身就矛盾。本文重点研究宽带U波段数字电视拉杆天线的特点及阻抗匹配方法,通过利用MATLAB工具箱遗传算法函数和实测数据仿真计算来实现消费类便携式电子产品天线阻抗匹配。最后以一实际的拉杆天线为例,结合实测数据,应用Matlab遗传算法工具箱,求得其相关参数后,再去指导实际的匹配,得到最后的匹配参数。实例证明了本文提出的基于Matl...【英文摘要】Consumptively mobile electronic-products such as smart phones, MID, PND and fashionable Tablet PC, etc.are indispensable in the society.In these electronic products, one
or more wireless receiver or transmitter device is necessary.So, the antenna is of utmost importance since it is the key device to transmit or receive electromagnetic waves.However, it is difficult to achieve the best receiving or transmitting performance just relying solely on the structure and properties of the antenna itself.So, it...【关键词】消费类电子产品 天线阻抗匹配 Matlab遗传算法 拉杆天线
【英文关键词】Consumptive electronic products Impedance matching MATLAB genetic algorithm Rod antenna 【目录】消费类电子产品天线阻抗匹配的研究4-5Abstract5-6
第1章 绪论9-13
摘要
1.1 课题1.3 研究第2章 研究的背景9-10的主要内容和方法
1.2 国内外研究现状10-1111-12
1.4 本文思路12-13
2.1 网络参数介绍阻抗匹配网络相关研究13-2013-1713-14带宽15-172.1.1 天线的输入阻抗及调谐器的输入阻抗2.1.2 天线的反射参数14-15
2.1.3 匹配网络
2.2.1 匹
2.2 天线匹配网络的作用17-19
2.2.2 匹配网络的作用配网络的影响17-1818-1919-2020-332.2.3 匹配网络的结构192.3 本章小结第3章 消费类电子产品天线阻抗匹配结构及方法3.1 GPS天线阻抗特性及匹配方法20-23
3.1.1
GPS天线简介203.1.2 GPS天线阻抗特性20-223.1.3 GPS天线匹配结构及匹配方法22-23及匹配方法23-25WIFI及蓝牙阻抗特性25
3.2 WIFI及蓝牙阻抗特性
3.2.2
3.2.1 WIFI及蓝牙简介23-2424-25
3.2.3 WIFI及蓝牙匹配方法
3.3.1 FM天3.3.3 FM天线3.3 FM天线阻抗特性及匹配方法25-283.3.2 FM天线阻抗特性
25-27线简介25阻抗匹配方法27-28及匹配结构28-31
3.4 移动数字电视U波段天线阻抗特性3.4.1 移动数字电视简介28
3.4.2 移动数字电视接收基本原理28-29阻抗特性29-30配的状况30-31及问题31-32
3.4.3 移动数字电视天线
3.4.4 移动数字电视拉杆天线实际的阻抗匹3.5 目前解决宽带天线快速匹配的主要方法3.6 本章小结32-33
4.1 遗传算法
第4章 遗传算法及33-39
4.1.1 遗传MATLAB工具箱33-43算法概述33-3434-37
4.1.2 遗传算法的一些基本概念
4.2 4.1.3 遗传算法处理过程及流程37-39Matlab工具箱及遗传算法函数39-42具箱39-4141-42
4.2.1 Matlab及函数工
4.2.2 MATLAB遗传算法需要使用的函数4.3 本章小结42-43
43-64
第5章 基于遗传算法的拉杆天线匹配网络设计43-44
5.1 拉杆天线匹配网络结构
5.3 拉杆5.2 拉杆天线没有匹配的主要参数44天线匹配网络数学表达44-46算法实现46-63
5.4 拉杆天线匹配网络的遗传
5.4.1 拉杆天线无匹配网络时的测试及计算
结果46-51算法设计匹配网络正55-6364-65
5.4.2 匹配阻抗表达式52-55
51-525.4.3 遗传
5.4.4 仿真结果进行实际匹配及修
第6章 结论与展望
在攻读硕士5.5 本章小结63-64参考文献65-68
致谢68-69学位期间发表的论文
第五篇:可重构天线研究
可重构天线设计
近年来,无线通信技术得到飞速发展,系统对天线性能的要求越来越高。大容量、多功能、超宽带是目前无线通信系统发展的重要方向,为了提高系统容量,下一代无线通信将更多的考虑采用MIMO技术。MIMO技术指的是利用多个发射天线和多个接收天线进行无线传输的技术,在分集技术出现后多径效应在MIMO系统中作为一个有利因素被加以利用,从而改善了每一个用户的服务质量及提高了频谱利用率。但是,随着使用天线数目的增加,通信系统的整体成本和重量也随之增加,而且会带来电磁兼容方面的问题,使得MIMO技术实现的复杂度和成本大幅度增高,不能充分发挥其技术优势。技术相对成熟的相控阵天线又存在馈电网络复杂、需增加移相器以及由此造成的高成本和高技术难度等缺点。可重构天线在这种背景下应运而生。
可重构天线就是采用同一个天线或天线阵,通过引入开关器件控制天线的辐射结构来实现工作模式的转换,使其具有多个天线的功能。这种天线能够根据应用需求改变其关键特性参数,如工作频率、辐射方向图、极化方式、雷达散射截面和输入阻抗等,具有不用人工干预,便于控制等特点。可重构天线为天线技术的发展带来了一次革命,为提高无线通信系统容量、扩展系统功能、增加系统工作带宽、实现软件无线电等方面提供重要的技术保障,将对无线通信技术带来深远的影响。
可重构天线按照功能可分为频率可重构天线、方向图可重构天线、频率和方向图同时可重构天线、极化可重构天线等。方向图是天线的一个重要特性,在军民用雷达、智能武器制导、无线通信等系统中要求天线具有方向图可控性,因此,方向图可重构天线是可重构天线研究的重要方向。
1可重构天线基本原理
天线设计是一个很复杂的电磁问题, 虽然天线的种类形形色色, 但其本质归根到底就是设计一个具有特定电流分布的辐射体。天线所要求的各个参数都是由其辐射体或包围辐射体的封闭面上的电流分布决定的。可重构天线作为一种新型的天线, 之所以可以重构天线的参数、具有可切换的不同的工作模式, 其本质也就是通过改变天线的结构进而改变天线的电流分布来实现的。因此, 可重构天线的设计需要高效的电磁分析手段, 而不是等同于多个传统天线的简单叠加。目前在可重构天线设计的电磁分析中广泛使用的方法有: 时域有限差分法(FDTD)、有限元法(FEM)、边界元法(BEM)、矩量法(MOM)等。特别是FDTD, 由于它具有建模容易、计算时间短、对电磁特性模拟精确等优点, 因此在可重构天线的设计中有很大的应用价值。
2频率可重构天线
理想的频率可重构天线指的是保持天线其他特性不变,在一定范围内具有对频率的调谐或切换能力的大线。重构天线工作频率的方法有:加载开关,加载可变电抗元件,改变天线机械结构,以及改变天线的材料特性。这些方法都依据相同的工作原理:改变大线的有效电长度从而使相应的L作频率发生变化。
线天线,环天线,缝隙天线和微带天线都属于谐振天线。对于这些类型的大线而言,天线的有效电长度主要决定了天线的工作频率、带宽(分数带宽一般不超过10%,常见数值在1%到3%之间)和天线上的电流分布。比如,对于传统的线性双极大线,一阶谐振发生在天线长度接近半个波长处,这时天线表面的电流分布导致了水平全向的辐射模式。因此,如果我们希望使该天线工作于更高的频率,我们可以缩短双极天线的长度,而这个长度对应于改变后的工作频率的半个波长,这样便达到了频率重构的目的。以上准则不仅对于双极大线成立,也同样适用于环天线、缝隙天线和微带天线。
2.1开关可重构
天线的有效电长度可以通过加载开关的方法加以控制改变,从而达到重构天线频率的目的,比如光学开关,PIN二极管开关,FET开关,以及射频为电子机械系统——MEMS开关等。据文献中介绍,光学开关相对于其他类型的开关,有助于减少开关数量并且降低开关偏置线的影响。
2.2加载可变电抗
加载可变电抗元件的重构方式与加载开关的重构方式基本相同,两者的区别只在于,前者能够在一定范围内实现对频率的离散切换,后者则可以在儿个频率之间进行连续调谐。
文献中一种连续调谐微带贴片天线,就是在天线的两辐射边分别加载变容一极管。变容管的反偏电压范围在0到30V之间,对应其电容值可以从24连续变化至0.4pF。随着偏置电压的改变,加载贴片边缘的电容值对天线的有效电长度进行调谐,由此可获得一个大带宽连续频率调谐范围。
2.3改变机械结构
相对于电重构方式,采用机械方式重构天线结构能够获得更大的频率变化,不论是在开关离散重构还是连续变化重构的情况下。这种重构方式的主要挑战在于天线的物理设计,激励机制,以及在结构发生巨大的变化的同时对天线其他特性性状的保持上。一种通过机械结构变化而连续调谐天线频率的的例子是一个磁制动微带天线。天线工作于26GHz附近。在天线表面附着一层很薄的磁材料,天线的辐射片与介质基片构成一定的角度.利用一种被称为塑料变形组装的微机械加工过程,对该天线施加外加的DC磁场可以使粘合在基片上的弯折塑料部分变形,从而导致辐射贴片与基片的夹角发生变化。角度上小的改变会导致工作频率的变化而保持辐射特性无明显变化;而大的角度变化则在改变工作频率的同时,使天线的辐射方向图也发生明显的改变。特别是当贴片与水平基片之间的仰角超过45度时,天线的方向图更接近一个喇叭天线,而当仰角接近90度时,天线的方向图则过渡为单极天线的形式。
2.4改变材料特质
虽然对导体重构的设计思想在可重天线设计中占主导地位,改变天线的材料特性同样能够到达对天线频率的调谐。应用静电场可以改变铁电体材料的相对介电常数,而应用静磁场可以改变铁氧体材料的相对磁导率。这些相对介电常数和磁导率的变化会导致天线有效电长度的改变,从而改变天线的工作频率。这一方法本质上的一大优点是,这类材料的相对介电常数和磁导率比较一般常用材料的相应数值要高,这可以显著减小天线的尺寸。而这一方法的主要缺点则是,这些标准铁电体和铁氧体材料(通常厚度在毫米量级)相对于其他类型基片的高传导率会严重损害天线的效率。
3极化可重构天线
天线极化可重构性作为一种附加的自由度,通过在系统使用中切换天线的分集方式,可以有助于提高系统在变化的环境中对干扰信号的免疫能力,从而达到改善链路质量的效果。天线表面的电流方向决定着天线远区电场的极化方式。为获得极化可重构性,天线结构,材料特性,或者馈电结构必须改变天线表面的电流方向。极化可重构可以是不同方向的线极化之间的重构、左旋或右旋圆极化之间的重构,或者是线极化与圆极化之间的重构。达到这些改变的机制(比如改变开关状态或结构)与前面描述的频率重构机制基本相同,当然,它们具体的实现方式有所差异。该种重构性主要的实现困难在于,在实现极化可重构性的同时要保持天线的阻抗或频率特性的稳定。
由于微带天线易于产生线极化和及圆极化波的优点,现今文献中报道的极化可重构大线设计基本都是基于微带天线形式的。
Fries等人研制了一种带有PIN三极管开关的缝隙环天线。该天线可以实现线极化与圆极化、或左旋与右旋圆极化状态之间的切换。对于线极化/圆极化设计,将位于45°和一135°方向的两个二极管正偏可获得线极化特性,反偏则获得圆极化特性。为实现左旋与右旋圆极化状态之间的重构,在设计中增加了对称的不连续结构。在两种设计中,为开关提供适当的OC偏置的同时又要保证RF信号的连续性(采用电容连接地平面各部分),所以对地平面的设计尤其重要。该结构说明了相对于传统的固定天线,为使天线具有可重构性需要附加元素的重要性——基本辐射结构可能大致相同,但是在提供DC偏置连接和保持RF信号稳定方面则需要做重大调整。
4方向图可重构
理想的方向图可重构天线指的是,在保持天线其他特性参数不变的情况下对辐射方向图具有调节能力的天线。天线辐射结构上电流或磁流的分布情况直接决定了天线的空间辐射方向图的形状。由于这种源电流与由其导致的辐射方向图之间的对应关系,使得在保证频率特性不发生很大改变的前提条件下获得方向图重构性能变得十分困难。天线设计者首先要确定所需的电流分布(包括幅度和相位信息)。一旦所需的电流分布拓扑结构确定下来,设计者根据这一点选择一种基本的天线形式,然后对其做必要改动最后实现期望的电流分布形式.这一设计过程与阵列合成技术十分相似。剩下的任务就是考虑如何修改设计以保证天线终端的阻抗特性不发生大的改变,或者为改变的阻抗特性提供可调节的补偿匹配电路。在某些情况下,可以选择诸如反射器天线或寄生祸合天线结构。这类天线的输入端与天线结构的重构部分具有更好的隔离,这就允许天线的阻抗特性不随方向图的重构而发生改变。
5国内外研究现状
虽然可重构天线在近年来得到了高度重视,并且研究发展迅速,但是在具体实现上还存在一些难点和瓶颈。首先,开关的引入会影响天线的电流分布,天线产生的辐射场,对射频开关的性能也会带来影响,而目前有不少关于可重构天线的研究并没有采用真实的开关。其次,可重构天线的研究成果中极少提到偏置电路的设计思路。最后,可重构天线包含了天线本身、射频开关、直流偏置电路等方面的内容,而绝大部分的研究仅限于开关和天线本身,很少有对可重构天线进行整体性研究的例子。
通常为了衡量天线的性能,我们关注天线的两种类型参数性能,一是天线的输入端口阻抗随频率变化的性能(或称天线的频率响应特性);一是天线的远场辐射性能(或称辐射模式)。天线作为一种换能器装置能够将波导中传播的导行波转化为自由空间传播的电磁波。因此天线兼具路和场的性质。作为电路一部分的天线模块,相对于馈线来说是一个一端口负载元件,其输入阻抗和带宽由天线类型、天线表面源分布情况和周围环境等因素决定。尤其是输入阻抗,对于馈电点附近的物理细节十分敏感.另一方面,电磁波的辐射是由时变电流元和磁流元产生的,作为空间辐射源的天线模块,其上的时变源的分布状态决定着它的远场辐射模式。改变天线的表面电流或磁流分布状态就能够改变它的空间辐射特性(这也是重构 天线辐射模式的着眼点),但同时天线的频响特性也发生变化;反之为了改变天线的频率响应而改变天线表面的源分布也会影响其空间辐射性能。由此我们可以获得如下结论:对天线的频率响应和辐射模式参数的两者之一进行重构势必会影响天线另一个参数的性能。即,频率响应的改变会对辐射模式产生影响:而天线辐射模式的变化也同样会影响天线的频率响应性能。而可重构天线终极的研究目标是希望获得对天线的各个参数进行分别独立控制的能力。因此这种频率响应与辐射模式之间的关联性质成为可重构天线设计者面临的最大挑战。国内外对可重构天线重构参数的研究主要集中在频率、方向图、极化方式等方面,其中频率可重构天线的研究成果较多。近来,人们将分形天线引入到可重构天线研究中,在分形天线口径的适当位置安装MEMS开关,通过调节开关状态,可以实现天线的频率重构或方向图重构。由于分形图形具有自相似性,因而分形天线具有重构工作频率的潜力。目前,国内才刚刚开始对分形天线进行可重构方面的研究工作,而国外的研究也多在频率重构方面,方向图重构方面的研究进行得相对较少。