第一篇:叠加原理实验报告
一、实验目的 1、通过实验来验证线性电路中的叠加原理以及其适用范围。
2、学习直流仪器仪表的测试方法。
二、实验器材 序号
名称
数量
备注
稳压、稳流源
DG04
直流电路实验
DG05
直流电压、电流表
D31-2
三、实验原理 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小 K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小 K 倍。
四、实验内容及步骤 实验线路如图3-4-1所示。
图3-4—1
1、按图3-4-1,取 U 1 =+12V,U 2 调至+6V。
2、U 1 电源单独作用时(将开关 S1拨至 U1侧,开关 S2拨至短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表格中。
3、U 2 电源单独作用时(将开关 S 1 拨至短路侧,开关 S 2 拨至 U 2 侧),重复实验步骤2的测量和记录。
4、令 U 1 和 U 2 共同作用时(将开关 S1和
S2分别拨至 U 1 和 U 2 侧),重复上述的测量和记录。
五、实验数据处理及分析
线性叠加定理数据记录表
实验内容 I₁ I₂ I₃ Uab Ucd Uad Ude Ufa U₁ 单独作用 8.360-2.274 6.313 2.378 0.845 3.26 4.351 4.379
U₂ 单独作用-1.06 3.586 2.422-3.46-1.24 1.245-0.59-0.537 U₁ ,U₂ 共同作用 7.423 1.231 8.761-1.248-0.411 4.413 3.797 3.783
非线性叠加定理数据记录表
实验内容 I₁ I₂ I₃ Uab Ucd Uad Ude Ufa U₁ 单独作用 8.556-2.23 6.296 0.38 0.663 3.161 4.395 4.397 U₂ 单独作用 0.041 0.041 0.045-0.002 5.872 0 0 0 U₁ ,U₂ 共同作用 7.82 0 7.836-0.002-2.089 3.957 3.974 3.953 电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。
电阻改为二极管后,叠加原理不成立。
六、实验总结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。
第二篇:实验基尔霍夫定律叠加原理的验证
实验基尔霍夫定律及叠加原理的验证
一.实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.学会用电流插头、插座测量各支路电流的方法。
3.验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。
二.实验原理
基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言,应有∑I=0;对任何一个闭合回路而言,应有∑U=0。
运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。
三.实验设备
1.直流电压表0~20V
2.直流毫安表
3.恒压源(+6V,+12V,0~30V)
4.实验线路板
四.实验电路
基尔霍夫定律实验线路如图2—1所示
叠加原理实验线路如图2-2所示。
五.实验内容
基尔霍夫定律
1.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路
结构,掌握各开关的操作使用方法。
2.分别将E1、E2两路直流稳压源(E1为+6V,+12V切换电源,E2接0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。
3.熟悉电源插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。
4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。5.用直流数字电压表分别测量两路电源及电阻元件上的电压值,记入
数据表2-1中
叠加原理
1.E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流稳压电源调至+6V; 2.令E1电源单独作用时(将开关K1投向E1侧,开关K2投向短路侧),用直流电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,3.令E2电源单独作用时(将开关K1投向短路侧,开关K2投向E2侧),重复实验步骤2的测量和记录。
4.令E1和E2共同作用时(开关K1和K2分别投向E1和E2侧),重复上述的测量和记录。
5.将E2的数值调至+12V,重复上述3项的测量并记录。
数据记入表格2—2。表2—
2六.实验注意事项
1.所有需要测量的电压值,均以电压表测量的读数为准,不以电源表盘 指示值为测量的电压值。
2.防止电源两端碰线短路。
3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性,倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,此时指针正偏,但读得的电流值必须冠以负号。
4.用电流表测量各支路电流时,应注意仪表的极性及数据表格中“+、-”号的记录。5.注意仪表量程的及时更换。
七.预习思考题
1.根据图1-1的电路参数,计算出待测的电流I1、I2和I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。
2.实验中,若用万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示
3.叠加原理中E1、E2分别单独作用,在实验中应如何操作?可否直接将不作用的电源(E1或E2)置零(短接)?
4.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?
八.实验报告
1.根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。2.根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正 确性。
3.根据实验数据表格,进行分析、比较、归纳、总结实验结论,即验证线性电路的叠加性与齐次性。
4.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。
5.通过实验步骤6及分析数据表格1-3,你能得出什么样的结论? 6.误差原因分析。心得体会及其他
第三篇:数据库原理实验报告
南 京 晓 庄 学 院
《数据库原理与应用》
课程实验报告
实验一 SQL Server 2005常用服务与实用工具实验
所在院(系): 数学与信息技术学院 班级:
学号:
姓名:
1.实验目的
(1)了解Microsoft 关系数据库管理系统SQL Server的发展历史及其特性。(2)了解SQL Server 2005的主要组件、常用服务和系统配置。
(3)掌握Microsoft SQL Server Management Studio 图形环境的基本操作方法。了解使用“SQL Server 2005 联机从书”获取帮助信息的方法;了解“查询编辑器”的使用方法;了解模板的使用方法。
2.实验要求
(1)收集整理Microsoft关系数据库管理系统SQL Server的相关资料,总结其发展历史及SQL Server 2005主要版本类别和主要功能特性。
(2)使用SQL Server配置管理器查看和管理SQL Server 2005服务。
(3)使用Microsoft SQL Server Management Studio连接数据库;使用SQL Server帮助系统获得所感兴趣的相关产品主题/技术文档。
(4)使用Microsoft SQL Server Management Studio“查询编辑器”编辑并执行Transact-SQL查询语句。
(5)查看Microsoft SQL Server 2005模板,了解模板的使用方法。(6)按要求完成实验报告。
3.实验步骤、结果和总结实验步骤/结果
(1)简要总结SQL Server系统发展历史及SQL Server 2005主要版本类别与主要功能特性。
(2)总结SQL Server Management Studio的主要操作方法。
(3)总结查询编辑器的功能和主要操作方法,并举例说明。
(4)总结“模板”的使用方法,并举例说明。
4.实验思考:
查询相关资料,简要描述SQL Server 2005的主要服务。
第四篇:通信原理实验报告
一、设计目的和意义1、2、3、熟练地掌握matlab在数字通信工程方面的应用。了解信号处理系统的设计方法和步骤。
理解2FSK调制解调的具体实现方法,加深对理论的理解,并实现2FSK的调制解调,画出各个阶段的波形。
4、5、学习信号调制与解调的相关知识。
通过编程、调试掌握matlab软件的一些应用,掌握2FSK调制解调的方法,激发学习和研究的兴趣;
二、设计原理
1.2FSK介绍:
数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制的频率。
2.2FSK调制原理
2FSK调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。本次课程设计采用的是前面一种方法。如下原理图:
图2 调制原理框图 3.2FSK解调原理
2FSK的解调方式有两种:相干解调方式和非相干解调方式,本次课程设计采用的是相干解调方式。根据已调信号由两个载波f1、f2调制而成,相干解调先用两个分别对f1、f2带通的滤波器对已调信号进行滤波,然后再分别将滤波后的信号与相应的载波f1、f2相乘进行相干解调,再分别低通滤波、用抽样信号进行抽样判决器即可其原理如下:
图3 相干解调原理框图
三、详细设计步骤
本试验采用两种方式实现FSK的调制 方式一:
产生二进制随机的矩形基带信号,再对基带信号进行取反,得到反基带信号。分别用不同频率的载频对它们进行调制。2FSK信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。
其表达式为:
e2FSK(t){Acos(1tn)Acos(2tn)
典型波形如下图所示。由图可见,2FSK信号可以看作两个不同载频的ASK信号的叠加。因此2FSK信号的时域表达式又可以写成:s2FSK(t)[ang(tnTs)]cos(1tn)[ang(tnTs)]cos(2tn)nn_
zak s1(t)1011001t s2(t)tcos(w1t+θn)tcos(w2t+φn)ts1(t)cos(w1t+θn)t s2(t)cos(w2t+φn)t2FSK信号t
图1 原理框图 方式一源代码与实验结果: clear all close all Fc=10;%载频
Fs=100;%系统采样频率 Fd=1;%码速率 N=Fs/Fd;df=10;M=2;i=10;%基带信号码元数 j=5000;a=round(rand(1,i));%产生随机序列 t=linspace(0,5,j);f1=10;%载波1频率 f2=5;%载波2频率 fm=i/5;%基带信号频率 B1=2*f1;%载波1带宽 B2=2*f2;%载波2带宽
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%产生基带信号 st1=t;for n=1:10 if a(n)<1;for m=j/i*(n-1)+1:j/i*n st1(m)=0;end else for m=j/i*(n-1)+1:j/i*n st1(m)=1;end end end st2=t;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%基带信号求反 for n=1:j;if st1(n)>=1;st2(n)=0;else st2(n)=1;end end;figure(1);subplot(411);plot(t,st1);title('基带信号');axis([0,5,-1,2]);subplot(412);plot(t,st2);title('基带信号反码');axis([0,5,-1,2]);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%载波信号 s1=cos(2*pi*f1*t);s2=cos(2*pi*f2*t);subplot(413)plot(s1);title('载波信号1');subplot(414), plot(s2);title('载波信号2');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调制 F1=st1.*s1;%加入载波1 F2=st2.*s2;%加入载波2 figure(2);subplot(311);plot(t,F1);title('s1*st1');subplot(312);plot(t,F2);title('s2*st2');e_fsk=F1+F2;%合成调制信号 subplot(313);plot(t,e_fsk);%画出调制信号 title('2FSK信号')figure(3)title('加噪后的信号')xlabel('Time');ylabel('Amplitude');e_fsk=awgn(e_fsk,60);%对调制信号加入噪声 plot(t,e_fsk);
方式二:
直接用2FSK的调制与解调函数dmod与ddemod函数对信号进行调制与解调,用加噪函数awgn对已调信号进行加噪,再用求误码率函数symerr 和simbasebandex求出误码率和信噪比并画出其图像。方式二源代码与实验结果:
Fc=10;
%载频
Fs=100;
%系统采样频率
Fd=1;
%码速率
N=Fs/Fd;
df=10;
numSymb=25;%进行仿真的信息代码个数 M=2;
%进制数
SNRpBit=60;%信噪比
SNR=SNRpBit/log2(M);
seed=[12345 54321];
numPlot=25;
%产生25个二进制随机码
x=randsrc(numSymb,1,[0:M-1]);%产生25个二进制随机码
figure(1)
stem([0:numPlot-1],x(1:numPlot),'bx');
title('二进制随机序列')
xlabel('Time');
ylabel('Amplitude');
y=dmod(x,Fc,Fd,Fs,'fsk',M,df);%产生调制信号 numModPlot=numPlot*Fs;
t=[0:numModPlot-1]./Fs;
figure(2)
plot(t,y(1:length(t)),'b-');%画出调制信号 axis([min(t)max(t)-1.5 1.5]);
title('调制后的信号')
xlabel('Time');
ylabel('Amplitude');
randn('state',seed(2));
y=awgn(y,SNR-10*log10(0.5)-10*log10(N),'measured',[],'dB');%在已调信号中加入高斯白噪声
figure(3)
plot(t,y(1:length(t)),'b-');%画出经过信道的实际信号
axis([min(t)max(t)-1.5 1.5]);
title('加入高斯白噪声后的已调信号')
xlabel('Time');
ylabel('Amplitude');%相干解调
z1=ddemod(y,Fc,Fd,Fs,'fsk',M,df);
%带输出波形的相干M元频移键控解调
figure(4)stem([0:numPlot-1],z1(1:numPlot),'ro')axis([0 numPlot-0.5 1.5]);title('相干解调后的信号')xlabel('Time');
ylabel('Amplitude');figure(5)
stem([0:numPlot-1],x(1:numPlot),'bx');
hold on;
stem([0:numPlot-1],z1(1:numPlot),'ro');
hold off;
axis([0 numPlot-0.5 1.5]);
title('相干解调后的信号原序列比较')legend('原输入二进制随机序列','相干解调后的信号')
xlabel('Time');
ylabel('Amplitude');%误码率统计
[errorSym ratioSym]=symerr(x,z1);figure(6)
simbasebandex([0:1:5]);
title('相干解调后误码率统计')
实验总结:
第五篇:通信原理实验报告
通信原理实验报告
中南大学
《通信原理》实验报告
姓 名 班 级 学 号
课程名称 指导教师
通信原理 董健
通信原理实验报告
目录
通信原理实验报告
实验一 数字基带信号
一、实验目的
1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容
1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。、用示波器观察HDB3、AMI译码输出波形
三、实验步骤
1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:
(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);
通信原理实验报告
(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
通信原理实验报告
3、用示波器观察HDB3编译单元的各种波形。仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。
全1码对应的AMI码
全1码对应的HDB3码
通信原理实验报告
全0码对应的AMI码
(2)将K1、K2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI码
通信原理实验报告
和HDB3码。
AMI码
HDB3码
通信原理实验报告
(3)将K1、K2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ,观察这些信号波形。
CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的DET
CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET HDB3
通信原理实验报告
CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的BPF
CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的BPF
CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的BS-R
通信原理实验报告
CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的BS-R
通信原理实验报告
CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的NRZ
CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的NRZ
通信原理实验报告
四、根据实验现象回答
1.根据实验观察和纪录回答:
(1)不归零码和归零码的特点是什么?
不归零码特点:脉冲宽度τ 等于码元宽度Ts 归零码特点:τ <Ts(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?为什么? 与信源代码中的“1”码对应的AMI 码及HDB3 码不一定相同。因信源代码中的 “1”码对应的AMI 码“1”、“-1”相间出现,而HDB3 码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。
举例: 信源代码:
***001 AMI: 10000-110000-1000001 HDB3:10001-11-100-100010-1 2.总结从HDB3码中提取位同步信号的原理。HDB3位同步信号
整流窄带带通滤波器整形移相
HDB3中不含有离散谱fS(fS在数值上等于码速率)成分。整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱fS成分,故可 通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。
通信原理实验报告
实验二 数字调制
一、实验目的
1、掌握绝对码、相对码概念及它们之间的变换关系。
2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。
3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。
4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容
1、用示波器观察绝对码波形、相对码波形。
2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、实验步骤
本实验使用数字信源单元及数字调制单元。
1、熟悉数字调制单元的工作原理。接通电源,打开实验箱电源开关。将数字调制单元单刀双掷开关K7置于左方N(NRZ)端。
2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK(即调制器的输入),CH2接数字调制单元的BK,信源单元的K1、K2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律 AK波形
通信原理实验报告
BK波形
3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。
CH1接2DPSK,CH2接AK
通信原理实验报告
CH1接2DPSK,CH2接BK
4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)示波器CH1接AK、CH2接2FSK
通信原理实验报告
示波器CH1接AK、CH2接2ASK
四、实验总结
1、设绝对码为全
1、全0或1001 1010,求相对码。
2、设相对码为全
1、全0或1001 1010,求绝对码。
3、设信息代码为1001 1010,假定载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。
4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。
通信原理实验报告
实验三 模拟锁相环与载波同步
一、实验目的
1.掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。
2.掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。
3.了解相干载波相位模糊现象产生的原因。
二、实验内容
1.观察模拟锁相环的锁定状态、失锁状态及捕捉过程。2.观察环路的捕捉带和同步带。
3.用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。
三、实验步骤
本实验使用数字信源单元、数字调制单元和载波同步单元。
1.熟悉载波同步单元的工作原理。接好电源线,打开实验箱电源开关。
2.检查要用到的数字信源单元和数字调制单元是否工作正常(用示波器观察信源NRZ-OUT(AK)和调制2DPSK信号有无,两者逻辑关系正确与否)。
3.用示波器观察载波同步模块锁相环的锁定状态、失锁状态,测量环路的同步带、捕捉带。
(1)观察锁定状态与失锁状态
打开电源后用示波器观察ud,若ud为直流,则调节载波同步模块上的可变电容C34,ud随C34减小而减小,随C34增大而增大(为什么?请思考),这说明环路处于锁定状态。用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT,可以看到两个信号频率相等。若有频率计则可分别测量CAR和CAR-OUT频率。在锁定状态下,向某一方向变化C34,可使ud由直流变为交流,CAR和CAR-OUT频率不再相等,环路由锁定状态变为失锁。
接通电源后ud也可能是差拍信号,表示环路已处于失锁状态。失锁时ud的最大值和最小值就是锁定状态下ud的变化范围(对应于环路的同步范围)。环路处于失锁状态时,CAR和CAR-OUT频率不相等。调节C34使ud的差拍频率降低,当频率降低到某一程度时ud会突然变成直流,环路由失锁状态变为锁定状态。
4.观察环路的捕捉过程
先使环路处于失锁定状态,慢慢调节C34,使环路刚刚进入锁定状态后,关闭电源开关,然后再打开电源,用示波器观察ud,可以发现ud由差拍信号变为直流的变化瞬态过程。ud的这种变化表示了环路的捕捉过程。
通信原理实验报告
5.观察相干载波相位模糊现象
使环路锁定,用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT信号,反复断开、接通电源可以发现这两个信号有时同相、有时反相。
通信原理实验报告
四、实验总结
1.总结锁相环锁定状态及失锁状态的特点。
答:模拟锁相环锁定的特点:输入信号频率与反馈信号的频率相等,鉴相器输出电压为直流。模拟锁相环失锁的特点:鉴相器输出电压为不对称的差拍电压。2.设K0=18 HZ/V,根据实验结果计算环路同步带ΔfH及捕捉带ΔfP。答:代入指导书“3式”计算得:v112v,则
fH186108Hz;v28v,则fp18472Hz
3.由公式nRCKdKo及6811n计算环路参数ωn和ζ,式中 Kd=6
2(R25R68)C114
-6 V/rad,Ko=2π×18 rad/s.v,R25=2×10,R68=5×10,C11=2.2×10F。(fn=ωn/2π应远小于码速率,ζ应大于0.5)。
答:nn2186.5fn17.6Hz远小于码速率 ;111rad4362(210510)2.21051032.2106170.5(波特);1110.6
24.总结用平方环提取相干载波的原理及相位模糊现象产生的原因。
答:平方运算输出信号中有2fc离散谱,模拟环输出信号频率等于2fc,二分频,滤波后得到干扰波;2电路有两个初始状态,导致提取的相干载波有两种相反的相位状态 5.设VCO固有振荡频率f0 不变,环路输入信号频率可以改变,试拟订测量环路同步带及捕捉带的步骤。
答:环路处于锁定状态后,慢慢增大C34,使ud增大到锁定状态下的最大值ud1(此值不大于+12V);
① ud增大到锁定状态下的最大值ud1值为: 4.8 V
通信原理实验报告
②
继续增大C34,ud变为交流(上宽下窄的周期信号)。③ 环路失锁。再反向调节减小C34,ud的频率逐渐变低,不对称程度越来越大。
④ 直至变为直流。记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud2;继续减小C34,使ud减小到锁定状态下的最小值ud3;
环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud2为:2.4 V ud减小到锁定状态下的最小值ud3为 :1.6 V ⑤ 再继续减小C34,ud变为交流(下宽上窄的周期信号),环路再次失锁。然后反向增大C34,记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud4。环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud4的值为:4.4 V
通信原理实验报告
实验四 数字解调与眼图
一、实验目的
1.掌握2DPSK相干解调原理。
2.掌握2FSK过零检测解调原理。
二、实验内容
1.用示波器观察2DPSK相干解调器各点波形。
2.用示波器观察2FSK过零检测解调器各点波形。3.用示波器观察眼图。
三、实验步骤
1.复习前面实验的内容并熟悉2DPSK解调单元及2FSK解调单元的工作原理,接通实验箱电源。将数字调制单元单刀双掷开关K7置于左方NRZ端。
2.检查要用到的数字信源、数字调制及载波同步单元是否工作正常,保证载波同步单元处于同步态!
3.2DPSK解调实验
(1)将数字信源单元的BS-OUT用信号连线连接到2DPSK解调单元的BS-IN点,以信源单元的FS信号作为示波器外同步信号,将示波器的CH1接数字调制单元的BK,CH2(建议使用示波器探头的x10衰减档)接2DPSK解调单元的MU。MU与BK同相或反相,其波形应接近图4-3所示的理论波形。
(2)示波器的CH2接2DPSK解调单元的LPF,可看到LPF与MU同相。当一帧内BK中“1”码“0”码个数相同时,LPF的正、负极性信号电平与0电平对称,否则不对称
通信原理实验报告
(3)示波器的CH1接VC,调节电位器R39,保证VC处在0电平(当BK中“1”与“0”等概时LPF的中值即为0电平),此即为抽样判决器的最佳门限。
(4)观察数字调制单元的BK与2DPSK解调单元的MU、LPF、BK之间的关系,再观察数字信源单元中AK信号与2DPSK解调单元的MU、LPF、BK、AK-OUT信号之间的关系。BK与 2DPSK 的MU
BK与 2DPSK 的LPF
通信原理实验报告
BK与 2DPSK 的BK
AK与 2DPSK 的MU
通信原理实验报告
AK与 2DPSK 的LPF
AK与 2DPSK 的BK
通信原理实验报告
AK与 2DPSK 的AK-OUT
(6)将数字调制单元单刀双掷开关K7置于右方(M序列)端,此时数字调制器输入的基带信号是伪随机序列(本系统中是M序列)信号。用示波器观察2DPSK解调单元LPF点,即可看到无噪声状态下的眼图。
通信原理实验报告
4.2FSK解调实验
将数字调制单元单刀双掷开关K7还原置于左方NRZ端。将数字信源单元的BS-OUT用信号连线换接到2FSK解调单元的BS-IN点,示波器探头CH1接数字调制单元中的AK,CH2分别接2FSK解调单元中的FD、LPF、CM及AK-OUT,观察2FSK过零检测解调器的解调过程(注意:低通及整形2都有倒相作用)。LPF的波形应接近图4-4所示的理论波形。
AK与 2FSK的 FD
AK与 2FSK的 LPF
通信原理实验报告
AK与 2FSK的 AK-OUT
四、实验总结
1.设绝对码为1001101,根据实验观察得到的规律,画出如果相干载波频率等于码速率的1.5倍,在CAR-OUT与CAR同相、反相时2DPSK相干解调MU、LPF、BS、BK、AK波形示意图,总结2DPSK克服相位模糊现象的机理。
当相干载波为-cosωt时,MU、LPF及BK与载波为cosωt时的状态反相,但AK仍不变(第一位与BK的起始电平有关)。2DPSK系统之所能克服相位模糊现象,是因为在发端将绝对码变为了相对码,在收端又将相对码变为绝对码,载波相位模糊可 使解调出来的相对码有两种相反的状态,但它们对应的绝对码是相同的。