第一篇:压缩机节能技术分析论文
摘要:文章研究了压缩机节能技术,分析了压缩机节能运行中存在的问题和运行能耗机理以及变频节能基本原理,并介绍了变频技术、集中控制技术、结构优化和工艺参数调整等效果显著的压缩机节能技术措施。
关键词:压缩机;节能技术;变频技术;集中控制技术;结构优化;工艺参数调整
压缩机是一种重要的工业设备,广泛应用于生产生活的各个方面,空调、冷库、石油工业、化工工业都离不开压缩机。但是压缩机同样也是耗电大户,其在生产生活中的运行会造成大量的电力消耗,研究压缩机节能技术十分必要。
1压缩机运行节能
1.1压缩机运行中存在的问题
1.1.1出力低,能耗高。很多工业用压缩机出于节能考虑,限制压缩机功率,导致压缩机压缩能力低于设计值,尤其是夏季载荷升高时输送量将明显下降,由于散热能力有限,使得生产线其他设备不能满荷运行,降低了生产效率。压缩机双机并联的运行模式运行效率不高,稳定性欠佳,两台压缩机并联工作,虽然能够明显增加总流量,但是单台压缩机的工作流量要比单机工作时低,因此每台压缩机的工作效率都下降了,双机并联的总压缩流量要比独立工作的流量小,而且并联之后流量增加,管道阻力损失将随之增大,机组的安全性也受到影响。
1.1.2机组运行状态不佳。这个问题主要表现在压缩机运行周期难以满足设计要求、夏季运行不稳定、故障多发等方面,一些压缩机设备长期运行,机械、电气和仪表等构件故障多发,采用事后维修的方式难以实现机组长时间无故障稳定运行,容易出现故障,导致压缩机停车,影响生产安全。
1.1.3运行维护费用偏高。旧压缩机维护费用很高,两机并行时,两组压缩机都要备用一套故障多发件,双备份成本,同时也造成了一些备用件的冗余和浪费。
1.2压缩机能量调节与能耗
压缩机一般根据设计工况冷量实际需求选型,一般情况下压缩机都是全年工作,横跨冬夏极端天气,所以面临着相对复杂的外部环境,而且实际工况和设计方案之间难免存在一定偏差,所以压缩机功率要有适当富余。现阶段,压缩机能量调节主要有间歇控制运行、吸气调节、气缸卸载、旁通调节和无极变速调节等类型,其中压缩机间歇运行是比较常见的运行方式,环境温度高于设定温度,压缩机将启动运行,环境温度下降到设定温度以下,压缩机将停止工作。这样的工作方式适用于环境温度比较稳定、负载不大的情况,但是实际使用过程中,并非任何时刻环境温度都趋于稳定,极端天气和复杂工作环境下,各种生产活动都会造成冷量负载变化,温度变化频繁,发动机频繁启停,会造成较大的能量浪费,而发电机瞬时电流会污染电网,增加电网波动,压缩机的寿命也会受到影响,因此变频技术在压缩机中也得到了更多的应用。
1.3压缩机变频节能
工况一定的情况下,压缩机制冷量和质量流量成正比,变频调节的基本思路就是通过改变压缩机电机转速来调整质量流量,从而改变总机组制冷量。
2压缩机节能技术
2.1压缩机控制工艺参数优化
2.1.1吸入压力调整。选择合适的吸入压力能够有效降低压缩机功耗,一般情况下,吸入压力越低,能耗将越大,特别是压缩机一段的吸入压力,因此可适当提高压缩机的吸入压力,在一段吸入中增加高效旋风入口分离器,进一步消除进气管网的阻力,在保证充足处理气量的同时获得更高的吸入压力。
2.1.2压缩机段间压降降低。压缩机段间压降同样也是压缩机功耗的重要原因,为了降低段间压降,可用高效换热器代替级间冷却器,减少不必要的管路设备和弯头,同时改善操作条件,降低冷却器结垢程度。
2.2压缩机结构设计优化
2.2.1三元流叶轮。三元流叶轮是专为气体流动设计的叶轮结构形式,大型压缩机一般采用这种结构形式,现有叶轮也可以通过适当的改造使之具有三元流叶轮的特点,显著改善叶轮的性能。相关理论研究和试运行证明三元流叶轮的使用能够提高叶轮运行效率最高10%左右,对原有压缩机叶轮的改造成本较低,但是能够明显提高设备生产能力,改善经济效益,压缩机的节能性能也将明显提高。
2.2.2叶轮抛光。叶轮的表面粗糙度和轮组损失之间有着直接关系,可通过精铸、精车和打磨抛光的方式提高叶轮表面的光洁度。叶轮抛光的方法有很多,包括喷砂、抛光轮、液体抛光、砂带研抛等,一般根据叶轮实际结构形式和材质选择合适的抛光方案。对于表面积比较大的叶轮可进行砂带振动研抛,而结构复杂、多凹穴、凸台的叶轮可进行液体抛光。
2.2.3压缩机回流量控制。为了避免压缩机在工作中出现喘振问题,压缩机都设置有防喘振控制机构,正常工艺参数下,通过对机组运行参数的监测绘制状态曲线,并根据喘振线计算喘振控制线,从而获得喘振流量控制点,通过和入口流量的比对,控制压缩机回流量,保证压缩机能够获得充足的工作气体。可改造压缩机回流手动控制为自动控制,应用更加精确的防喘振控制系统,降低机组能耗。
2.2.4管路布局的综合优化。为了进一步降低管路内压降,需要对管路布局进行调整,提高线路布局的合理性,可使用压损来评定管路布局方案是否合理,如果入口压力和出口压力之间压差不超过5%,表示压缩机系统管路布局规划比较科学。在管路中,能够造成压损的设备结构件主要有干燥剂、冷却器、控制阀、弯头等,干燥剂、控制阀和冷却器压损可依据压损标准计量,弯头压损近似于8~10倍等径管长压损,通过对压损设备总压损的精确计算,降低管路总压损。除了优化设计,压缩机日常使用和维护保养工作对压缩机节能效果也有着很大影响,日常工作中,要采用科学的控制方式进行压缩机调整,配合预防性维护策略,降低压缩机的故障率,维持压缩机的正常性能,从而将压缩机的节能优势充分发挥出来。
2.3变频调节技术
传统压缩机一般通过控制流量和压力工艺来降低压缩机能耗,达到节能的目的,一般通过阀门节流、旁通回流和排空等方式进行控制,这些调节方式效果显著、操作简单,但是会增加管网损耗和能源浪费,而变频调速技术应用变频器控制压缩机电机转速,改变流量质量,不存在阀门节流损失,从而提高了能源的利用效率。变频调速在压缩机中的应用大幅度提高了压缩机的节能性能,依据流量传感器输出信号来调节压缩机转速,使压缩机能够准确输出现阶段需要的回流量,实现高精度的流量调节,保证压缩机能够安全、高效率的运行,在节约能源的同时还强化了压缩机的卸载能力,降低了运行噪音,设备磨损更缓慢,而功率因数则得到了明显提高。
2.4集中控制与热回收
很多情况下压缩机都不是单机工作模式,而是很多台同时工作,因此在节能改造中,应用集中控制技术实现多台压缩机的集中控制,成为降低能耗节约能源的有效措施。压缩机开启的台数一般都是固定的,当用气量下降到一定程度,就可以通过集中控制来降低压缩机的工作时间或者转速,用气量继续下降,性能好,功率大的压缩机将停止工作,通过彻底停机来消除卸载状态下的能耗,集中控制来集中调整压缩机的工作状态,从而扩大压缩机的功率范围,同时减少运行压缩机数量,降低能耗。热回收技术的基本思路是,压缩机高温油通过热能回收交换器,将热量传递给冷却水,冷却水加热之后进入保温水桶储存起来,回收压缩机工作热量。热回收技术解决了压缩机自身的散热问题,省却了压缩机的冷却风机设备投入和能耗。在工作中监测压缩机主机排气口温度,超过80℃热回收装置开始工作,保证压缩机不会过热,而余热被转换为了热水,可以用作供暖等其他用途。
3结语
节能是工业生产和日常生活中永恒的主题,压缩机节能技术就是以降低压缩机工作能耗为目的的节能技术,通过压缩机结构设计优化和运行参数调整,配合新节能技术的应用,能够显著提高压缩机的节能性能,降低压缩机工作能耗。
参考文献:
[1]梁政,李双双,田家林,朱小华,梅庆刚,张力文.CNG压缩机节能技术与试验分析[J].天然气工业,2013,(2).
[2]梁政,李双双,田家林,梅庆钢,张力文.L-12/5-250型压缩机节能改造与效果分析[J].石油矿场机械,2013,(3).
[3]杨昭,谭晶莹,李喜宏,徐晓丽.冷库压缩机变频技术节能原理与经济效益分析[J].压缩机技术,2014,(5).
[4]苏勇.陕汽压缩空气系统节能技术研究[D].西安石油大学,2014.
第二篇:论文-工业锅炉节能技术
工业锅炉节能技术
摘要 节能是应用技术上现实可行、经济上合理、环保与社会上可以接受的方法,来有效地利用能源。工业锅炉作为高能耗设备,其节能技术研究具有重要意义。本文根据我国工业锅炉能耗现状,以典型的燃煤用工业锅炉为例介绍了工业锅炉的节能技术。关键词 工业锅炉 节能技术 燃煤
1引言
能源是人类赖以生存的物质基础,在人类社会中起着不可替代的重要作用。随着国民经济的快速发展,能源生产已经不能满足要求,能源问题成为制约国民经济发展的重要因素,为适日益激烈的市场竞争,各企业应该把能源节约放在首位,以提高能源利用率,降低能耗。在我国,工业锅炉是重要的能量转换和利用设备,能耗约占全国总能耗的三分之一【2】。因此研究工业锅炉节能技术,对降低能耗解决能源问题具有重要意义。同时我国是以煤炭为主的能源消费大国,工业锅炉以燃煤为主,油、汽等其它燃料为辅,锅炉用煤量在全国耗煤总量中占很大比例。本文以燃煤用工业锅炉为例介绍工业锅炉的节能技术。
2工业锅炉概述
工业锅炉是一种产生蒸汽或热水的热发生和交换装置,锅炉中产生的热水或蒸汽可直接为工业生产和人民生活提供所需热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。
锅炉主要由锅和炉两部分组成。炉是燃料(煤炭)燃烧的场所,其作用是将燃料的化学能转化为热能;锅是介质(水)加热的场所,其作用是利用燃料燃烧产生的热能加热介质。我国燃煤工业锅炉能耗现状及原因
目前我国燃煤工业锅炉约有48万台,但平均运行效率约为60%-65%,比国外先进水平低15-20个百分点【6】。效率低,能耗大是我国燃煤工业锅炉普遍存在的问题,其原因主要有一下几点。
(1)单台锅炉容量太小,长期低负荷运行,能量利用率低。许多企业仅考虑到企业长期发展问题而避免锅炉在高负荷下运行,但这种“大马拉小车”的现象不能使锅炉与其他辅助设备在最佳工况下运行,结果是使能量不能得到综合利用,能效降低。
(2)我国燃煤工业锅炉设计重锅炉本体而轻燃烧设备,重锅炉主机而轻配套辅机和附件。
这种“重主轻辅”的现象使得锅炉配套设施质量低,对负荷的适应能力差,经常不能在高效率区域运行,直接造成较大的能源浪费。
(3)燃煤品种与煤质多变。我国的锅炉燃煤供应以原煤为主,且供应紧张,因此使用煤在颗粒度,煤质上很难与设计用煤匹配,这就要求锅炉有较高的适应性。但我国燃煤工业锅炉主要是层燃燃烧【5】,其燃烧特点使其很难适应这种燃煤供应状况。当不能根据煤种变化相应调整燃烧工况时就会导致煤燃烧不完全,锅炉出力不足,热效率下降。
(4)缺乏熟练的操作人员,节能监督管理工作薄弱。锅炉操作人员一般只注重锅炉的安全运行而忽视锅炉的节能,且技术水平普遍不高,不能很好的维护保养锅炉及根据煤种变化调整锅炉燃烧工况。此外,由于缺乏相应的节能法律法规,使得工业锅炉节能监督管理工作不能得到较好的实施,锅炉节能潜力未能充分发挥。
4工业锅炉节能技术简介
锅炉节能的途径有很多,但总体上可从两方面人手,其一是热能转换过程;其二是热能利用过程【7-2】。必须对整个锅炉系统进行综合分析,在不降低供热品质,提高环保性能的原则上从对系统进行改造才能实现真正的节能。4.1热能转换过程节能
锅炉的热能转换过程是指燃烧系统中燃料将化学能转换为热能的过程,因此热能转换过程的节能实际上是对锅炉燃烧系统的节能改造。4.1.1对燃煤进行分析处理
在层燃锅炉中,燃煤水分过大会使着火点延后,挥发分过高容易着火燃烧,过低则难以着火,此外煤粒度过大也易造成燃烧不完全。因此煤在进入锅炉前应进行洗选和煤质分析,包括水分,挥发分和粒度的分析,以确定最佳燃烧工况,使燃料能充分燃烧,提高燃烧效率。4.1.2采用均匀分层给煤技术
分层给煤技术利用重力筛选,使炉排上煤层颗粒按下大上小的顺序分层排列。煤层空隙大,通风良好,能够改善锅炉的燃烧工况,对提高灰渣损热失和提高锅炉的热效率有很大的帮助;均匀给煤技术使炉排横断面上煤粒均匀一致,解决了煤粒沿径向不均匀所造成的燃烧不均匀,甚至只有半边炉排着火的问题。4.1.3合理组织炉膛空间气流
炉膛空间气流的合理组织,由前后拱、二次风来完成。
前后拱是将炉膛前部(后部)的过剩空气及高温烟气推向后部(前部),在由前后拱形成的“喉口”处与炉膛前部的过剩空气和挥发分混合【4】。其作用包括使可燃气体充分燃烧,加快新燃料的着火,减少燃料层对受热面的直接辐射,保持燃尽阶段所需要的温度,减少飞灰量和不完全燃烧的损失。
二次风一般占送风量的5%~12%,要求风速达40m/s.70m/s,以保证有足够的穿透烟
气的能力和穿透深度【7】。工业锅炉(尤其是大容量锅炉)在使用二次风后热效率明显提高。二次风的介质可以是热空气、烟气、蒸汽等。其作用包括(1)加强炉内气流的搅拌与混合,增加可燃物在炉膛内的停留时间,使化学不完全燃烧损失降低。(2)可以同时利用两股二次风对吹使炉内形成气流漩涡,气流的旋涡分离作用可以使煤粉和灰粒被甩回炉内,从而减少飞灰量,使机械不完燃烧全损失降低。4.1.4保证空气供应充足和合理
空气是燃料燃烧的必要条件,合理配风对提高燃料燃烧效率,降低能耗有很大帮助。合理配风应包括(1)沿炉排长度方向应合理配风,因为沿炉排长度方向燃烧状况不同。如中段燃烧最旺盛需空气量最大,在炉排头尾两段以挥发分和残炭的燃烧为主,故只需少量空气。(2)沿炉排宽度方向应均匀配风,以使燃烧均匀,防止出现火口等不正常燃烧现象。4.2 热能利用过程节能
热能利用过程是指将燃烧放出的热量有效地传递给工质(水),产生要求参数的蒸汽或热水的过程,实现能量的综合有效利用,降低能量传递过程的损失时该过程节能的关键。4.2.1 保证锅炉给水品质
锅炉给水如果含盐量过高,会使锅炉受热面上结构,恶化传热状况(水垢的导热系数仅是钢的1/100~1/200),使排烟温度升高,降低能效。此外水垢还会引起受热面金属过热,降低材料机械强度,使管壁鼓包或胀管【3】。因此要采用有效的水处理技术使锅炉给水达到所需标准,并且要及时清除水垢,以减少能源浪费、改善锅炉的运行安全性和提高锅炉的运行效率。
4.2.2 采用保温材料
由于锅壳、烟道、省煤器、管道等部件温度高于环境温度,因此会向外散热产生热损失。因此可以采用在这些部件外包保温材料,不仅可以减少散热,而且可以反之锅炉炉膛和烟道漏风,减少热损失。保温材料应满足导热系数小,热稳定性高,对管壁无腐蚀等特点。常用的保温材料有膨胀珍珠岩,硅酸铝板,硅酸盐抹面,石棉和矿渣棉等【2】。4.2.3 蒸汽冷凝水的回收利用作为锅炉给水
锅炉产生的蒸汽属于高品质热源,经利用后得到的蒸汽冷凝水也属于热能资源,应该充分利用而不应该外排。通常将回收后的蒸汽冷凝水作为锅炉给水,其优点包括(1)能提高给水温度,降低煤耗。(2)蒸汽冷凝水含盐量低,能减少软水用量与锅炉排污量。
高温蒸汽冷凝水通常要经冷却才回到给水系统被加以利用,但这样不仅增加能耗而且不能充分利用蒸汽冷凝水的热量。为此国外开发了直接将饱和温度的冷凝水送回给水系统予以利用的技术,减少了冷凝水降温造成的能量损失【5】。4.2.4高温烟气的回收利用
许多中小型工业锅炉的排烟温度均在300℃左右,有的高达400℃,直接排放不仅会造成污染而且会损失大量热量,因此宜增设锅炉尾部受热面以降低排烟温度【4】。如小型锅炉
可增加省煤器来加热锅炉给水以降低煤耗,中型锅炉可增加空气预热器来加热入炉膛空气使燃料能充分燃烧。
结论
综上所述,燃煤工业锅炉的节能工作包括对热能转换过程和热能利用过程进行能量优化,如改进燃烧状况,提高给水品质,回收利用蒸汽冷凝水和热烟道气等措施。
锅炉的节能工作首先要充分分析可利用热能的品味,重点回收高品味热能,其次要通过改进工艺来降低能耗,尽可能的利用副产品,以实现能源的梯级利用和循环再生。各企业应根据自身情况有针对性的加强工业锅炉节能技术改造,达到用最少的能耗来获得最大效益的目标。
参考文献:
[1]王光臣.工业锅炉的节能技术措施[J].应用能源技术,2009(3):17-20.[2]王睿,李莹.影响燃煤工业锅炉能耗的因素及技改措施[J].装备制造技术,2011(9):210-212.[3]陈会丽,刘新尚,宋传静.浅谈工业锅炉节能技术[J].中国科技纵横,2011(19).[4]范北岩.工业锅炉节能技术及其应用--2005国际石油和化工节能技术发展论坛论文集.北京:中国化工节能技术协会,2005:45-53.[5]刘克平.变频调速节能技术在工业锅炉燃烧过程中的应用分析[J].长春工业大学学报(自
然科学版),2007,28(z1).[6]商红彬,李东刚,吴增福,杜涛.工业锅炉节能技术--自主创新振兴东北高层论坛暨第二
届沈阳科学学术年会论文集.沈阳:沈阳市科协,2005:166-169.[7] 赵振元.工业锅炉用户须知 安全节能与环保技术 北京:中国建筑工业出版社1997.
第三篇:大型商场节能技术分析
大型商场照明节能技术分析
黄秀敏 杨玉龙 孙晓光
(吉林油田勘察设计院)摘要:随着现代经济的日益发展,节能已经是当今社会一个不可忽视的主要问题,本文关于大型商场照明节能方面的一些问题,采取的有效措施及取得的经济效益。
关键词 大型商场 照明电路 节能
近几十年,我国的经济有了迅猛的发展,随之带来的结果就是能源开始越来越缺乏,对一些用电时间较长、较多的机构, 比如大型商场,据测算, 其照明耗电占大型商场所有耗电的40%左右,中央空调用电约占30%,其他用电设备用电约占35%。通过对商场的基本用电设备的分析,目前的大型商场中存在着非常大的节能空间。本文主要探讨大型商场照明节能需要采取的有效措施。
近年来,照明产品有了显著的改进,朝着高光效,高显色性,长寿命,低价格发展。选用这些产品,可以大大提高照明电路的节能效果。为了提高照明电路的节能效果,可以从输电线路、开关、照明器、镇流器等环节考虑。
1.选用线损比较小的传输导线,合理优化配电方式,可以把单相的改为三相或三相四线制,线损可以比原来下降75%~80%。
2.正确、合理选用光源,是实施节能照明工程的重要因素。选用光源要考虑以下两个方面;(1)根据场所使用情况的特点、建筑面积,选用合适的光源类型。
(2)根据使用要求选择光源的显色性和色表。
荧光灯的光效、显色性、寿命等不断改进,品种不断发展,这一系列的改进,使荧光灯的光效从早期的28Lm/W提高到104Lm/W,寿命从1000h提高到24000h,显色指数Ra提高到85以上,专用于需要高显色性场所的荧光灯,Ra已达到95~98,光效为65Lm/W,作为特殊用途的荧光灯,Ra最高可达到99,光效为59Lm/W。金属卤化灯更以其光效高、寿命长为见长,日益受到人们所重视。我们在商场照明设计中,当空间高度较低时,以荧光灯作为主光源,再配以小功率金卤灯作为副光源。当空间高度较高时,则采用250W以上的金卤灯作为主光源。
3、照明自动控制系统的应用天气较亮的时候人们经常忘记关灯,有时为了局部需要又往往不得不大面积的开灯,因此致使大量电能被浪费。解决这一问题较好的办法通常是采用照明自动控制系统。如采用超声波开关系统或微机自动控制系统及优化开关控制路数,以满足灯开、关的数量和事先设定的照度要求,以期合理用电。
4、优质电子镇流器的应用。我们通常使用的镇流器都是电感镇流器,因为它价格便宜且不易损坏。电感镇流器虽然可起到镇流作用,但其消耗的电能相当于匹配的荧光灯功率的20%,且功率因数低.噪音大、频闪严重。而电子镇流器则可使照明系统的光效提高15%,节电率通常在20%以上,每只电子镇流器的功耗只有大约2.5W,功率因数可达0.9以上,同时线路的损耗也会相应减少。由于利用高频点火,因而其兼有启动速度快、无噪音、无频闪的优点。
5、照明节电器的使用.照明节电器是通过提高灯光电路系统的功率因数,调节电路电压电流的幅度,降低灯具和线路的工作温度,从而最大限度地降低灯光照明电路的电能损耗。其特别加强的磁场能量补偿技术,可保证灯光系统的启动正常运行稳定,达到节电的目的。节电效果显著,不产生任何高次谐波,不会对电网产生任何影响;降低灯具、镇流器、开关和线路的工作温度从而延长其使用寿命,降低了维护成本;投资成本低廉,应用范围广;安装改造简单,不改变原有线路的控制状态,不改变用户的用电习惯和使用方式,不影响正常生产生活。
以上照明节能措施的实施,不仅对节约电能,保护全球环境具有十分重要的意义,而用经济效益也是十分可观的。照明节电设备的节电率为25~35%,照明节能改造后的综合节电率在30%以上。一个大型商场每月的用电量约为30万元,其中照明用电约为10万元,如果进行照明系统的节电工程改造每月将给商场节约电费3万元以上,每年可节约40万元左右的电费开支。从而可快速收回投资成本,高效的节电和可靠的运行。
作者简介:黄秀敏(1979--)女,2004年毕业于大庆石油学院通信工程专业,工程师,现于吉林油田勘察设计院电信室从事电气设计工作,联系电话:6259944.
第四篇:自动化压缩机的论文
随着社会的不断进步,科技和工业的不断发展,对于压缩机这种各行各业都要用到的设备的要求在不断提高。以下是小编整理好的自动化压缩机的论文,欢迎大家阅读参考!
摘要 工业自动化代表着工业发展的成果之一,能够进行自动化对于人力成本、工作绩效等都是一个很大的优势。压缩机在各个方面都有着广泛用途,是工业中的重要设置。但是我国目前经济的发展要求能够对压缩机的工作效率进行提高,所以将压缩机自动化是一个最根本的办法。本文从压缩机的结构出发,对压缩机自动化的设计和实现进行一个概括。
关键词 压缩机;自动化;设计与实现;控制系统;节能压缩机自动化技术概述
随着社会的不断进步,科技和工业的不断发展,对于压缩机这种各行各业都要用到的设备的要求在不断提高。所以压缩机的发展非常快,对于压缩机目前的气动技术也已经被运用到了工业自动化的范围。本文从空气压缩机的角度来进行对其的系统自动化改造,当然由于对于空气压缩机的整体自动化改造实在是太复杂了,所以这里只从控制系统来进行阐述,阐述系统改造的设计与应用。空气压缩机即空压机,种类很多,常见的有活塞式、螺杆式和离心式,在工业生产中具有广泛的运用。在实际生产使用中发现,原有的空压机控制系统存在着许多的缺点和不足,例如启动电流大、噪音大、耗电量大、运行不平稳等。因此需要对其控制系统进行改造和优化。根据实际生产经验,可以采用可编程变频器技术对空压机原控制系统进行改造。改造后的控制系统,工作稳定可靠,节能明显,具有良好的经济效果。空气压缩机控制系统改造过程
运行空压机将压缩空气送入两台用于储气和缓冲系统压力波动的储气罐,然后分两路向用户供气。一路是不经过干燥处理的杂用气,一路是经过两台干燥器干燥处理的仪用气。改造前空压机的压力变送器和设定的加载卸载参数来控制各自的启停、加载、卸载。
原空压机采用传统的控制系统,存在着很多的缺点和不足,主要表现在:启动过程中虽然采用降压启动,但是启动电流依然很大,而且启动时间长,会对电网产生巨大的冲击作用,并且影响其它设备的正常运行;由于空压机经常处于空载状态,会造成电能的严重浪费,增加了企业的生产成本;空压机工频运行时噪音很大,造成工作条件恶劣,而且其运行状态的突然变化会对设备本身造成很大的破坏作用,缩短了设备的使用寿命。
正因为原空压机控制系统存在着以上的种种不足,急需对其控制系统进行改造。以下就是空气压缩机控制系统改造的系统流程。
如图1所示,改造后的控制系统主要由变频器、PID智能控制器、压力传感器、软件控制单元等组成。控制系统根据压力传感器检测到的空压机出口处的压力值大小,通过PID智能控制器和变频器来调整空压机的工作状态,达到实时控制的目的。
在改造后的控制系统中利用变频调速技术实现恒压供气控制,克服了原控制系统在供气方式上存在的诸多的不足。在此方案中,将储气罐中的压力作为主要的控制对象,储气罐中的压力通过压力变送器转换为电信号后传到PID智能控制器,通过与压力设定值进行比较,得出偏差值,通过PID设定的控制模式运算产生控制信号,控制信号经变频调速器控制电机的工作频率和电机的转速,使得储气罐中的压力值始终与设定的压力值大小相接近,以满足空压机工作的需要。其控制系统主要是主要利用了系统反馈控制的原理来搭建和实现的。在改造后的控制系统中添加了工频和变频之间切换的功能,这样做的目的主要是为了保留原有的控制和保护系统。在改造后的控制系统中空压机的启动时通过变频器来启动的,实现了空压机的软启动,避免了启动过程中启动电流对电网和设备的冲击作用。压缩机自动化改造后的经济效果
进行改造后经济效果是非常明显的,主要表现以下几个方面:
1)节能效果显著。采用变频调速的方法调整供气量,使得电机输出功率基本与转速成正比关系,可以取得很好的节电效果,据统计,节电率平均可达26%以上。
2)利用变频技术实现空压机的软启动,可以抑制过大的启动电流,避免了对电网产生的冲击作用,减小启动过程中设备的机械振动和对设备本身的冲击作用。
3)采用变频调速技术可以无冲击地完成电动机的加减速运行,减小了电机设备的磨损,延长了空压机和其他设备的使用寿命,从而达到对设备进行优化控制。
4)采用变频调速技术后噪音问题得到了很好的解决,对环境起到了很好的保护作用。
此外,可以根据实际的生产情况,采用满足设备要求的最低压力值进行输出,降低了输气管道的损耗,同时在满足设备正常运行要求情况下,降低了用气量,节约了电能。采用改造后的控制系统,系统的自动化程度提高,由于采用恒压供气,设备工作稳定性变好了,生产工艺得到了优化,产品质量也随之得到了提高。
综上所述,基于可编程变频器技术改造后的空压机控制系统,实现了理想的控制效果,供气系统安全、可靠和高效。系统的自动化程度得到很大的提高,减少了设备的操作、维护人员;空压机工作的稳定性得到了很大程度的提高,噪音得到了很好的控制;具有良好的节能效果,同时降低了设备的维护费用,提高了设备的使用寿命。总的来说,降低了企业产品的生产成本,对企业具有非常好的经济效果。
参考文献
[1]文丽松。PLC和变频器在矿山空气压缩机改造中的应用[J]。采矿技术,2008,8(5):102—103。
[2]白坤海。空压机变频及微机自动控制系统研究[D]。山东: 山东大学,2006,5。
[3]罗韬。基于可编程变频器控制的空气压缩机控制系统的改 造[J]。江西有色金属,2009,23(2):44—45。
[4梁启宇。10kV螺杆空压机的节能升级控制策略[J]。电力通用 机械,2009,5:77—79。
[5]陈陶锴。空压机控制系统改造[J]。科技动态,2007,4(298):37—38。
第五篇:节能技术
地源热泵中央空调:地源热泵机组利用土壤或水体温度冬季为12-22℃,温度比环境空气温度高,热泵循环的蒸发温度提高,能效比也提高;土壤或水体温度夏季为18-32℃,温度比环境空气温度低,制冷系统冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率大大提高,可以节约30--40%的供热制冷空调的运行费用,1KW的电能可以得到4KW以上的热量或5KW以上冷量。
与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量;由于地源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60%。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及中、北欧如瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。能量回馈技术:
1、回馈节能基本原理
将运动中负载上的机械能(位能、动能)通过能量回馈装置变换成电能(再生电能)并回送给交流电网,供附近其它用电设
备使用,使电机拖动系统在单位时间消耗电网电能下降,从而达到节约电能的目的。
2、回馈节能解决方案
能量回馈装置的作用就是能有效的将电动机的再生电能高效回送给交流电网,供周边其它用电设备使用,节电效果十分明显,一般节电率可达15%~45%。此外,由于无电阻发热元件,机房温度下降,可以节省机房空调的耗电量,在许多场合,节约空调耗电量往往带来更优的节电效果。在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。
在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。
功率因数补偿技术:功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。
所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的相位差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,它等于电压×电流×电压电流间相位差的余弦。
由此可以看出,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。
一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作,由公式P=UIcosΦ
可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。
提高功率因数,可以充分发挥电力设备的潜力,这也不难理解。因为任何电力设备,工作时总是在一定的额定电压和额定电流限度内。工作电压超过额定值,会威胁设备的绝缘性能;工作电流超过额定值,会使设备内部温度升得过高,从而降低了设备的使用寿命。对于电力设备,电压与电流额定值的乘积,称为这台设备的额定视在功率S额即也称它为设备的容量,对于发电机来说,这个容量就是发电机可能输出的最大功率,它标志着发电机的发电潜力,至于发电机实际输出多大功率,就跟用电器的功率因数有关,用电器消耗的功率为
功率因数高,表示有功功率占额定视在功率的比例大,发电机输出的电能被充分地利用了。例如,发电机的容量若为15000千伏安,当电力系统的功率因数由0.6提高到0.8时,就可以
使发电机实际发电能力提高3000千瓦,这不正是发挥了发电机的潜力吗?设备的利用也更合理。从这个角度来讲,功率因数可以表示为有功功率与机在功率的比值,即
如何提高功率因数,是电力工业中需要认真考虑的一个重要而又实际的问题。在平常遇到的电感性负载的电路中,例如日光灯电路,一般采用并联合适的电容器来提高整个电路的功率因数。闭环控制技术:闭环控制是根据控制对象输出反馈来进行校正的控制方式,它是在测量出实际与计划发生偏差时,按定额或标准来进行纠正的。闭环控制,从输出量变化取出控制信号作为比较量反馈给输入端控制输入量,一般这个取出量和输入量相位相反,所以叫负反馈控制,自动控制通常是闭环控制。比如家用空调温度的控制
在控制论中,闭环通常指输出端通过“旁链”方式回馈到输入,所谓闭环控制。输出端回馈到输入端并参与对输出端再控制,这才是闭环控制的目的,这种目的是通过反馈来实现的。正反馈和负反馈是闭环控制常见的两种基本形式。其中负反馈和正反馈从达于目的的角度讲具有相同的意义。从反馈实现的具体方式来看,正反馈和负反馈属于代数或者算术意义上的“加减”反馈方式,即输出量回馈到输入端后,与输入量进行加减的统一性整合后,作为新的控制输出,去进一步控制输出量。实际上,输出量对输入量的回馈远不止这些方式。这表现为:运算上,不止于加减运算,还包括更广域的数学运算;回馈方式上,输出量对输入
量的回馈,也不一定采取与输入量进行综合运算形成统一的控制输出,输出量可以通过控制链直接施控于输入量等等。相控调功技术:相控技术采用闭环反馈系统进行优化控制,通过实时测量电动机的电压与电流波形,由于电动机为一感性负载,其电流与电压波形通常存在相位差,该相位差的大小与其负载的大小有关。相控器将实际相位差与依据电动机特性的理想相位差进行比较,并依此来控制SCR可控硅整流桥触发角以给电动机提供优化的电流和电压,以便及时调整输入电机的功率,实现“所供即所需”。电能质量质量技术:
(1)电压质量。给出实际电压与理想电压间的偏差以反映分配的电力是是否合格。电压质量通常包括:电压偏差、电压频率偏差、电压不平衡、电压瞬变现象、电压波动与闪变、电压暂降、暂升与终端、电压谐波、电压陷波、欠电压、过电压等。
(2)电流质量。电流质量与电压质量密切相关,为了提高电能的传输效率,除了要求用户汲取的电流是单一频率正弦波形外,还应尽量保持该电流波形与供电电压同相位。电流质量包括:电流谐波、间谐波或次谐波、电流相位超前与之后、噪声等。
(3)供电质量。包括技术含义和非技术含义两部分,技术含义有电压质量和供电可靠性;非技术含义是指服务质量,包括供电部门对用户投诉与抱怨的反应速度和电力价目的透明度等。
(4)用电质量。包含电流质量和非技术含义等,如用户是否按时、如数缴纳电费等。
治理方法:
一、瞬变现象 在电力系统运行分析里。它表示电力系统运行中一种并不希望而又事实上出现的瞬时事件。由于RLC电路的存在,大多数人的概念里瞬变现象自然是指阻尼振荡现象。关于此,IEEE里有一个含义更宽,描述也更简单的定义:变化量的部分变化,且从一种稳态过渡到另一种稳态过程中,该变化逐渐消失的现象。但这样描述在电能质量领域里会存在潜在的许多分歧。下面对瞬变的两种普遍类型做一下介绍:
1、冲击性瞬变现象是在稳态条件下,电压、电流的非工频、单极性的突然变化现象。通常用上升和衰减时间来表现冲击性瞬变的特性,也可以通过其频谱特性成分表示。
2、振荡瞬变现象是一种电压、电流的非工频、有正负极性的突然变化现象。对于迅速改变瞬时值极性的电压和电流振荡问题,常用其频谱成分(主频率)、持续时间和幅值大小来描述其特性。
二、短时电压变动
这一类型包括电压暂降(也称为骤降或凹陷)和短时间电压中断等现象。若按照持续时间长短来划分,进一步还可将其分成瞬时、暂时和短时三种类型。顺便指出:如此细分的目的是用于电能质量监测中队电压干扰分类统计。
1、电压中断,当供电电压降低到0.1p.u以下,且持续时间不超过1min时,我们就认为出现的电压中断现象。出现原因可能是系统故障、用电设备故障或控制失灵等。
2、电压暂降是指工频条件下电压方均根值减小到0.1~0.9p.u之间、持续时间为0.5~50周波的短时电压变动现象。电能质量领域使用暂降(sag)来描述短时电压降低已经很多年了,IEC把这一现象成为骤降(dips)在国内外行业内这两个词可以相互替换,是同意词。
3、电压暂升的涵义是指在工频条件下,电压均方根值上升到1.1~1.8p.u之间、持续时间为半个到50个周波的电压变动现象。与暂降的起因一样,暂升现象也是同系统故障相联系的。我们可以用幅值大小和持续时间来表征这一现象。由于分类的方法不同,在许多资料中也使用“瞬态过电压”作为“电压暂升”的同义词。电压暂升现象远没有电压暂降现象那样常见。
三、长时电压变动
长时间电压变动是指,在工频条件下电压均方根值偏离额定值,并且持续时间超过1分钟的电压变动现象。分两种情况,即过电压和欠电压。通常,过电压和欠电压并非由于系统故障造成,而是由于负荷变动或系统开关操作引起的。
1、过电压过电压是指在工频条件下交流电压方均根值升高,超过额定值10%,并且持续时间大于1分钟的电压上升现象。过电压的出现通常是负荷投切的结果。
2、欠电压是指在工频条件下交流电压方均根值降低,低至额定值的90%且持续时间超过1分钟的电压变动现象。与过电压的出现原因正好相反。某一负荷的投入或某一电容器的切除都可能引起系统欠电压。
3、持续中断是指系统电压迅速降到0且持续时间大于1min。这种长时间电压中断往往是持久的。当系统事故发生后,往往需要人工应急处理以恢复正常供电,通常需数分钟或数小时。持续电压中断是特有的电力系统现象。但如果是电气设备检修或线路更改导致停电,或由于工程设计不当或电力供应不足引起的持续中断,则不属于电能质量问题。
四、电压不平衡
电压不平衡,时常被定义为与三相电压或电流的平均值的最大偏差,并且用该偏差与平均值的百分比表示。电压不平衡也可以用对称分量发来定义即用负序或零序分量的百分比加以衡量。电压不平衡的起因主要是负荷不平衡(如单相运行)所致,或者是三相电容器组的某一相熔断器熔断造成的。大于5%的电压不平衡属于电压严重不平衡,它的起因很可能是由于单相负荷过重引起的。
五、波形畸变
波形畸变是指电压或电流波形偏离稳态工频正弦波形的现象,可以用偏移频谱描述其特征。波形畸变有五种重要类型,即直流偏置、谐波、间谐波陷波和噪声。
1、直流偏置,在交流系统中出现直流电压或电流称为直流偏置。这可能是由于地磁干扰或半波整流引起的。例如为延长灯管的寿命在照明系统中采用的半波整流器电流,会是交流变压器偏磁以至于发生磁饱和,引起铁芯发热缩短寿命直流分量还会引起接地极和其它电气设备连接的电解腐蚀。
2、谐波,把含有供电系统设计运行频率整数倍频率的电压或电流定义为谐波。可以把畸变波分解成工频和各次谐波分量的综合。电力系统中的非线性负荷是造成波形畸变的源头。
3、间谐波,与谐波定义方法类似,只是将整数倍于工频的条件换成非整数倍。
4、陷波是电力电子器件在正常工作情况下,交流输入电流从一相切换到另一相时产生的周期性电压扰动。由于陷波的连续出现,可以用受影响电压的波形频谱来表征该量。但由于陷波的相关频率相当高,很难用谐波分析中习惯采用的测量手段来反映它的特征量,通常把它作为特殊问题处理。例如,一种评价指标规定,出现的陷波以其下陷深度和宽度来衡量。
5、噪声是指带有低于200kHz宽带频谱,混叠在电力系统的相线、中性线或信号线中的有害干扰信号。电力电子装置、控制器、电弧设备、整流负荷以及供电电源投切等都可能产生噪声。由于接地线配置不当,未能把噪声产地至远离电力系统,常常会加重对系统的噪声干扰和影响。噪声可以对点射设备的正常工作造成危害。采用滤波器、隔离变和电力线调节器等措施能减缓噪声的影响