圆的周长教案(实用24篇)

2023-03-07 10:00:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《圆的周长教案(实用24篇)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆的周长教案(实用24篇)》。

篇1:《圆的周长》教案

学情分析:

学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。

教学目标:

1、理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2、培养学生的观察、比较、分析、综合及动手操作能力。

3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

教学重点:

推导并总结出圆周长的计算公式。

教学难点:

深入理解圆周率的意义。

教学过程:

备注:

创设情境,引起猜想:认识圆的周长

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1、回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2、认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2、怎样才能知道这个正方形的周长?说说你是怎么想的?

3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

(四)讨论圆周长的测量方法

1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)滚动——把实物圆沿直尺滚动一周;

(2)缠绕——用绸带缠绕实物圆一周并打开;

(3)折叠——把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法:(板书)转化

曲直

4、创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

5、明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

(五)合理猜想,强化主体:

1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。

2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的倍?

(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4、小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

篇2:《圆的周长》教案

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:

正确计算圆的周长。

教学难点:

理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

篇3:圆的周长教案

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用“几何画板”《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示“几何画板”《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

篇4:圆的周长教案

教学内容:教材第62-64页圆的周长。

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

经过对比,感受滚动法和绕绳法两种测量方法的局限性。

3.操作实验,探究圆的周长和直径的关系。

(1)观察猜想:圆的周长与它的什么有关呢?

学生猜想:可能与它的直径或半径有关。

课件演示:圆的周长随着直径或者半径的变化而变化。

(2)动手操作,找出规律。

四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

周长c(cm)直径d(cm)的比值(保留两位小数)

3.14213.14

9.533.17

12.643.15

15.853.16

31.4103.14

(3)观察表中记录的测量数据和计算结果。

①你发现周长与直径的比值有什么特点?(比值都是三点几)

②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

(4)进一步验证圆的周长总是直径的3倍多一些。

下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

(5)认识圆周率。

①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

④感受文明,激发情感。

结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

(6)总结圆的周长的计算公式。

①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

③小结:圆的周长总是它直径的π倍。

(7)进一步明确复习题答案。

结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

4.学以致用。

课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

学生读题后自己完成。让学生板演。

c=2πr

2×3.14×33=207.24(cm)≈2(m)

1km=1000m

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

巩固练习,提升能力

1.完成教材64页1题。

2.判断。

(1)圆的周长是直径的3.14倍。( )

(2)圆的周长等于圆周率与直径的乘积。( )

(3)当半径为3cm时,圆的周长为18.84cm。( )

(4)半圆的周长是圆周长的一半。( )

3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

4.完成教材66页7、8题。

课堂总结,评价拓展

本节课你有什么收获?

布置作业,巩固新知

教材66页9、10题。

板书设计:

圆的周长

圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

圆的周长总是直径的3倍多一些。

圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

篇5:圆的周长教案

教学目标:

1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2.习“试一试”。

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

篇6:圆的周长教案

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学时间:

一课时

教学过程:

一、复习。

1、口答。

4π 2π 5π 10π 8π

2、求出下面各圆的周长。

C=πd c=2πr

3.14×2 2×3.14×4

=6.28(厘米) =8×3.14

=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77 求:d=?

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)

45分钟走了多少厘米? 125.6×=94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

作业。

P65-66 第3、6、7、9题

篇7:圆的周长教案

【教学内容】

教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

【教学目标】

1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

【教学重、难点】

掌握并理解圆的周长计算公式及其推导过程。

【教具、学具准备】

圆规、直尺、课件、圆纸片、线。

【教学过程】

一、导入新课

出示情境图:谁的铁环滚一圈的距离长一些?为什么?

教师:铁环滚动一周的距离我们就叫做铁环的周长。

教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的`周长。

板书课题:圆的周长。

二、感知圆的周长与直径的关系

1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

学生指出并回答。(略)

2.观察。

课件演示右图:

问题:这两个圆周长有什么关系?你是怎么知道的?

小结:直径相等,圆的周长就相等。

3.课件演示右图:

问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

4.小结。

问题:通过刚才的观察,你有什么发现?

学生:圆的周长和直径有关系。

三、探究圆的周长与直径的倍数关系

圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

1.小组讨论,制定探究步骤。

出示探究建议:

(1)测量圆的周长和直径;

(2)记录数据;

(3)进行计算;

(4)得出结论。

2.说明活动要求。

每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

圆的直径圆的周长周长除以直径的商(保留两位小数)

3.小组合作,进行探究。

4.汇报交流。

(1)交流测量的方法。

提问:谁来介绍一下,你们组是怎样测量圆的周长的?

学生汇报测量的方法。(绳绕法、滚动法……)

教师:在这些方法中,最欣赏哪个组的方法?

小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

(2)交流计算方法和结论。

提问:观察这些计算结果,你有什么发现?你还有哪些了解?

学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

5.介绍圆周率。

圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到2061亿位。

6.总结圆周长的计算方法。

问题:你怎样理解周长/直径=π?你还能知道什么?

结论:c=πd,d=c/π,c =2πr,r=c/2π。

说明:为了计算方便,我们把π近似的取为3.14。

7.教学例2。

让学生独立列式计算,提示用估算检查计算结果。

[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

四、巩固练习

(一)判断。

1.π=3.14。()

2.计算圆的周长必须知道圆的直径。()

3.只要知道圆的半径或直径,就可以求圆的周长。()

(二)选择。

1.较大的圆的圆周率()较小的圆的圆周率。

a.大于b.小于c.等于

2.半圆的周长()圆周长。

a.大于b.小于c.等于

(三)实践操作。

请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

五、课堂小结

通过这堂课的学习,你有什么收获?你还有什么问题?

六、课堂作业

1.课堂活动第1、2题。

将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

2.练习五第1~5题。

在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

七、课后作业

1.求下面各圆的周长。

(1)d=2米(2)d=1.5厘米(3)d=4分米

2.求下面各圆的周长。

(1)r=6分米(2)r=1.5厘米(3)r=3米

[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

篇8:圆的周长教案

教学目标:

1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。

2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。

3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。

4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。

教学重点:经历探索圆周长公式的过程

教学难点:理解圆周率的意义

教学用具:多媒体课件

学习用具:圆形学具、直尺、计算器、记录单

教学过程:

一、情境导入

(课件:圆形喷水池图片)

师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔0.5米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?

师追问:喷水池外圈一圈的长度叫什么?

(圆的周长又如何计算呢?)

引出课题:看来,咱们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)

二、探究新知

1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)

2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长直径)

师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。

3、指导学习方法:那好,看学习要求。(课件)(指名读)

师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)

交流测量方法:你准备用什么方法测量圆的周长,快跟大家说一说。

滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。

绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的长度就是圆的周长。

师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!!!

4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。

5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)

圆的周长

圆的直径

圆的周长是直径的几倍

(得数保留两位小数)

师提问:如果我继续填下去,会出现什么情况?

那就用字母代替吧。填(C d 三倍多一些)

6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率 π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率 c÷d=π)它的值在3.1415926-3.1415927之间,是一个无限不循环小数。(板书:3.1415926-3.1415927)在小学阶段,我们计算时一般取两位小数,π≈3.14(板书)

7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。

8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)

要想求圆的周长,必须告诉大家什么条件?(直径)

知道半径怎么样求圆的周长?(板书:c=2πr)

9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。

10、解决实际问题:

(1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?

(2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)

三、巩固练习:

1、口算:在计算圆周长时,我们发现,3.14成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?

2、判断:你能根据今天所学知识进行判断吗?

3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?

4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。

四、谈学习收获:

篇9:圆的周长教案

教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

教学目标:

1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

教学设计思想:

复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

教学过程:

一、创设情境,揭示课题。

二、回顾整理,讨论交流。

1、怎样求圆的周长?求圆的面积有几种情况?

2、圆的周长和面积公式是怎样推导出来的?

3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

三、发现生活中的数学问题

教师结合图片演示,让学生提出有关圆的周长和面积的问题。

图片内容:农村的喷灌、碾子、拴在木桩上的小羊。

四、走进美丽的图形世界

教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。

五、开心词典

以开心词典的形式,让学生做六道选择题。

六、走进生活,解决问题

1、小猴子骑独轮车走钢丝。求车轮要转多少周。

2、用绳子绕树干10周,求横截面的直径。

3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

七、思考生活中的数学问题

1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

2、阅读关于400米标准跑道的小资料。

课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

篇10:圆的周长教案

一,教学目标

1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

2,培养学生的观察,比较,概括和动手操作能力。

3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

二,教学重点

掌握并理解圆的周长,公式推导过程。

三,教学难点

理解圆周率的意义。

四,教学过程

一,创设情境,提出问题

1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

2,你们知道这圈花边的边长是什么 (生:圆的周长。)

3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

二,师生共同提出假设

1,请学生回忆正方形周长和边长的关系。(边长×4)

2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

生:半径,直径……

3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

4,师:你估计圆的周长是其直径的几倍

生猜想:3倍左右。

5,师:你有办法验证吗 生讨论

教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

三,合作交流,发现规律

1,学生思考后可能出现的以下办法:

⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

⑶ 学生在小组内动手操作,测量进行验证。

直径(cm) 周长(cm) 周长是直径的几倍

2 6。2 3倍多一点

3 9。1 3倍多一点

4 12。9 3倍多一点

2,

a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)

b,结合圆周率进行爱国注意教育。

c,师生共同推导计算圆的周长公式。

教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

四,实践应用,拓展新知

1,学生尝试求圆的周长

d=2cm r=3。5cm d=10cm

2,圆形花坛的直径是20cm,它的周长是多少m

3,请同学们画一个周长是15cm的圆。

教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

五,,体验成功

1,通过这节课的学习,你学会了什么

2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

板书设计:

圆的周长

围成圆的曲线的长叫做圆的周长。

c=πd c=2πr

篇11:圆的周长教案

第一单元圆的周长和面积

一.本单元的基础知识

本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

二.本单元的教学内容

P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

三.本单元的教学目标

1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。

四.本单元重难点和关键

1.教学重点:求圆的周长与面积。

2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

五.本单元的教学课时

13课时

篇12:圆的周长教案

教学目标:

1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

教学重点:

理解并掌握圆的周长的计算公式。

教学难点:

理解圆的周长与直径之间的关系。

教学准备:

圆规、剪刀、绳子、尺子。

教学过程:

一、复习旧知,引入新知

1.教师在黑板上画圆。

(1)提问:你对圆有哪些了解?

(2)指名回答,同学之间相互补充。

(3)你还想了解什么?

2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

二、合作交流,探究新知

1.认识周长的含义。

(1)师:你能指出黑板上这个圆的周长吗?

(2)从实物中指出圆的周长。

(3)用语言表述圆的周长。

学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

2.教学例4。

(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

轮胎的直径。

(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

(3)比较这三个车轮的直径和周长,你又有什么发现?

(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

3.教学例5。

(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

(3)明确要求

①画三个大小不同的圆。

②用尺子量出直径。

③用线围出圆的周长并用尺子挞出长度。

④边操作边填好表格。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

(4)学生分组按要求操作,要求分工明确。

(5)整理学生的测量结果,汇总。

(6)观察表格,说说有什么发现。

学生回答后,小结:一个圆的周长总是直径的3倍多一些。

4.认识圆周率。

(1)介绍圆周率,并板书: 3.14

(2)阅读教材第102页的你知道吗内容。

5.推导得出圆的周长计算公式及其字母公式。

板书: 或

三、巩固练习,加深理解

1.完成试一试。

(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

(2)指名说说计算方法。

2.完成练一练。

(l)学生独立完成计算。

(2)汇报交流。

3.完成练习十四第1题。

(1)学生看图,说说题目中的已知条件。

(2)学生独立完成计算。

(3)交流计算方法。

4.作业:练习十四第2、3、4题。

四、课堂小结

师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

哪些收获?

板书设计:

圆的周长

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

篇13:圆的周长教案

教学目标:

1.生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

3.合圆周率的学习,对学生进行爱国主义教育。

教学重点:

探究圆周长与直径之间的关系,掌握圆周长公式。

教学难点:

理解圆周率的意义,能运用圆的周长公式解决一些简单的实际问题。

课前准备:

多媒体课件、大小不同的圆、线、小尺。

教学过程:

一、教学例4。

1.话交流:同学们,我们经常听人们说:“我买了一个28的自行车。”“我买了一个24英寸的彩电”。这里的“28”和“24英寸”都是表示物体规格的数字。

2.件出示例4题目及图示,全班交流:你从图中了解哪些信息?

3.组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

4.件演示车轮滚动,验证学生的发现。

5.班交流:

你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

二、教学例5。

1.件出示例5,全班交流:这样的实验你们课前做了吗?

2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

3.名汇报,全班交流。

⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

⑵ 纵观各组的实验结果,你们有什么发现?

圆的周长总是直径的3倍多一些。

4.生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

5.括圆周长公式。

⑴ 圆周率用字母π表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说π、C、d之间有什么关系?

学生先在小组内交流再全班交流。

(板书:C÷d=π,C÷π=d ,C=πd)

⑵ 求圆的周长用哪个公式?(C=πd或C=2πr)

三、巩固拓展

1.成“试一试”⑴ 学生独立计算。⑵ 全班展示交流。

2.成“练一练”。

3.成练习十四第1题。学生独立计算,再全班交流。

4.成练习十四第2题。

⑴ 学生独立计算。⑵ 全班展示交流。⑶ 学生订正。

5.成练习十四第3题。指名口头列式,学生集体计算。

6.成练习十四第4题。学生独立计算后再汇报交流。

四、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

圆的周长

篇14:圆的周长教案

教学内容:

圆的周长的综合练习

教学目标:

通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

教学重点:

理解圆的半径、直径、周长之间的关系

教学难点:

能运用知识解决一些实际问题

教学过程:

一、揭示课题

今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

板书课题:圆的周长

二、练习指导

基本练习(口答)

⑴在同一个圆内,所有的半径( ),所有的直径( ),直径是半径的( ),半径是直径的( )。

⑵( )决定圆的位置,( )决定圆的大小。

⑶什么是半径?什么是圆的直径?

⑷圆的周长总是它直径的( )倍,它是一个固定不变的数,用字母( )表示。

练习指导

1、求下面各圆的周长

d=2米 d=1.5厘米 r=6分米

2、求下面各圆的直径

C=28.26厘米 C=50.24米

3、求下面各圆的半径

C=12.56米 C=314厘米

以上几题均由学生板演,其余齐练

全班讲评,订正

三、解决实际问题

1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

①他一分钟可行驶多少米?

②他要通过2180米长的大桥,大约需要几分钟?

四、课终小结

今天我们练习了什么?你有什么收获?

篇15:圆的周长教案

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:正确计算圆的周长

教学难点:理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

一、创设情境,认识周长

二、小组合作,探究求圆周长的方法

三、运用知识,解决问题

四、课堂总结

五、布置作业

六、教学反思

教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

篇16:圆的周长教案

一、教学内容:

圆的周长计算方法与应用

二、教学目的:

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。

2.培养学生的观察、比较、分析、综合及动手操作能力。

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

三、教学重点:

1.理解圆周率的意义。

2.推导出圆的周长的计算公式并能够正确计算。

四、教学难点:

理解圆周率的意义。

五、教学过程:

(一)创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

b.什么是圆的周长?请你摸一摸你手中圆的周长。

3、师:今天我们就来研究圆的周长。并出示课题。

(二)引导探究,学习新知

1.推导圆的周长公式

(1)学生讨论

a.正方形的周长跟什么有关系?有什么关系?

b.你认为圆的周长和什么有关系?

(2)猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?

(3)动手操作

a.以小组合作学习方式进行实践, 1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

b.汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的.三倍多一些?

2.认识圆周率、介绍祖冲之

(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14

(2)介绍祖冲之

3.归纳圆的周长公式

(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

师板书:C=πd

(2)圆的周长还可以怎样求?由于 d=2r则:C=2πr。师板书:C=2πr

师问:圆的周长分别是直径与半径的几倍?

(三)巩固应用,强化新知

1.求下面各圆的周长。

1)d=2米 2)d=1.5厘米

2.求下面各圆的周长。

1)r=6分米 2)r=1.5厘米

3.判断题

(1)π=3.14 ( )

(2)计算圆的周长必须知道圆的直径 ( )

(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )

4.选择题

(1)较大的圆的圆周率( )较小的圆的圆周率。

a 大于 b 小于 c 等于

(2)半圆的周长( )圆周长。

a 大于 b 小于 c 等于

5.课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

6.实践操作

请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。

(四)课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

反思:

“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的'学习环节。

1.动手实践,探究圆周长的测量方法。

怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。

当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。

学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。

2.探究圆周长与直径的关系,寻找圆周长的计算方法。

在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。

学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。

在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。

篇17:圆的周长教案

教学目标:

1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

3.初步学会透过现象看本质的辨证思想方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

教学重点:正确计算圆的周长。

教学难点:理解圆周率的意义,推导圆周长的计算公式。

教具准备:多媒体课件三套、系绳的小球。

学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

教学过程:

一、以旧引新,导入新课

1.复习长方形、正方形的周长。

我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

2.揭示圆的周长。

(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

二、动手操作,引导探索

1.测量圆周长的方法。

(1)提问:你知道了什么是圆的周长,还想知道什么?

我们先研究怎样测量圆的周长,请同学们分组讨论一下。

把你们讨论的结果向大家汇报一下?学生边回答边演示。

(2)教师甩动绳子系的`小球,形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

2.认识圆周率。

(1)探讨圆的周长与直径的关系。

①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

提问:你们是怎么看出来的圆周长跟直径有关系?

②学生测量圆周长,并计算周长和直径的比值。

圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

生测量、计算、填表。在黑板上出示一组结果。

请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

(2)揭示圆周率的概念。

通过以上的观察你发现了什么?

任何圆的周长总是直径的3倍多一些。

那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用表示。(指导读写。)

(3)了解让中国人引以为自豪的圆周率的历史。

关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。=3.141592653

3.推导圆周长的计算公式。

根据刚才的探索,你能总结出圆周长的计算公式吗?

篇18:圆的周长教案

教学内容:

教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题

教学目标:

1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。

2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。

3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。

教学重点:

理解并掌握圆的周长的计算公式

教学难点:

推导圆的周长公式

教学过程:

一、教学例4。

1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。

2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?

3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

4.课件演示车轮滚动,验证学生的发现。

5.全班交流

你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

二、教学例5。

1.课件出示例5,全班交流:这样的实验你们课前做了吗?

2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

3.指名汇报,全班交流。

⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

⑵ 纵观各组的实验结果,你们有什么发现?

圆的周长总是直径的3倍多一些。

4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

5.概括圆周长公式。

⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?

学生先在小组内交流再全班交流。

(板书:Cd=,C=d ,C=d)

⑵ 求圆的周长用哪个公式?(C=d或C=2r)

三、巩固拓展

1.完成试一试

⑴ 学生独立计算。⑵ 全班展示交流。

2.完成练一练。

3.完成练习十四第1题。

学生独立计算,再全班交流。

4.完成练习十四第2题。

⑴ 学生独立计算。

⑵ 全班展示交流。

⑶ 学生订正。

5.完成练习十四第3题。

指名口头列式,学生集体计算。

交流:为什么求是车轮的周长?

6.完成练习十四第4题。

学生独立计算后再汇报交流。

四、总结延伸

本节课,你有哪些收获?还有什么疑问?

篇19:圆的周长教案

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的`周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

篇20:《圆的周长》优秀教案

教材分析:

圆的周长是在学生学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步来学习的。从生活实际入手,利用学生掌握的有关圆的知识,通过实验得出结论。

学情分析:

本单元第一部分通过对圆的研究,使学生初步认识了研究曲线图形的基本方法,也渗透了曲线图形与直线图形的内在联系。前期的学习和认识都为学生学习研究“圆的周长”奠定了良好的知识、方法基础和铺垫。“圆的周长”教学部分,教材在编排上加强了启发性和探索性,注重让学生动手操作,使学生在实践活动中通过交流、思考来探究,逐步导出和掌握计算公式。教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径、半径的关系,验证猜测等过程理解并掌握圆的周长计算方法。

教学目标:

知识与技能:知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

过程与方法:通过对圆周长的测量和计算公式的探讨,培养学生的观察、猜测、比较、分析、综合和主动研究、探索解决问题方法的能力。

情感态度与价值观:初步学会透过现象看本质的辩证思想方法,渗透“化曲为直”的数学思想,培养爱国主义情感,激发民族自豪感。

教学过程:

(一)创设情景,导入课题。

1、创设情境。

(1)、教师出示熊大和光头强跑步比赛,请同学判断比赛的公平性并说明原因。

师:学习新知识之前,老师想邀请大家一起来看一场比赛,每个同学都是裁判,有没有兴趣?比赛开始!

(2)、师:看到这儿,你对这个比赛有什么看法?

学生判断比赛的公平性并说明原因。

学生发表看法,可能的回答如下

生1:不公平,因为光头强沿着正方形跑,熊大沿着圆形跑。

生2:不公平,因为正方形的周长比圆形的周长要长。

(3)、教师小结,引出本节课题。

师:看来,这个比赛与跑道的周长有关系。上节课同学们已经认识了圆,这节课我们就一起来研究圆的周长。(板书课题)

设计意图:通过熊大和光头强比赛的情景创设,一方面是激发学生的学习兴趣和参与研究的主动性,体会数学与生活的密切联系;另一方面通过两种图形路程的不同,引出新课。

2、认识圆的周长。

(1)、师:什么是圆的周长?怎样求圆的周长?

(2)、教师出示圆形纸片。师:谁能上来指一指,哪个长度是这个圆形纸片的周长。

(3)、教师在大屏幕上用flash动画出示圆环框架并小结。

师:同学们说的很好,围成圆的曲线的长就是指圆的周长。

设计意图:本环节的设计是让学生初步感知本课的知识范围,做好心理铺垫;老师展示的目的是为下面“化曲为直”的方法打基础。

3、讨论圆的周长的测量方法。

(1)师:要想测量这个圆的周长,能用直尺直接测量吗?为什么呢?

(2)、师:你们有没有办法来测量它的周长?把你的方法在小组内交流一下。

学生分组讨论,小组代表发言:

生1:不能,因为圆的周长是一条曲线,而直尺是直的!

生2:把圆片放在直尺上滚动一周,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准另一刻度线,这时圆正好滚动一周。圆滚动一周的长就是圆的周长。(滚动法)

生3:用一条长线把圆绕一周,捏紧这两个正好连接的端点,把线拉直,这两点之间的线的长就是圆的周长。(绕线法)

(3)、教师跟随小组代表发言,用边演示边总结测量方法。

教师小结:看来,同学们不论是用绕线法也好,滚动法也罢,都是非常巧妙地将曲线转化成了直直的一条线段再来测量,也就是一种化曲为直的方法,你们真是太棒了!

师:(出示一个很大的圆形摩天轮)你能用这两种方法测量它的周长吗?

看来,这两种测量的方法还是有一定的局限性的,那你们有什么好办法?

设计意图:通过尝试性的动手测量,使学生较为牢固地掌握了周长的概念,也很好地培养了学生的动手操作能力,在这个过程中使学生切身体会到“化曲为直”的转化思想。

(二)自主学习,探究新知。

1、猜测。

师:正方形的周长与它的边长有关,那么,请你大胆猜想,圆的的周长与什么有关呢?(播放)

2、探讨圆的周长与直径的关系。

师:圆的周长和直径到底有什么样的倍数关系呢?现在我们就以小组为单位,测量3个大小不同的圆片的周长与直径,并通过合作的方式完成实验报告单,各组组长要分工明确。(出示操作要求并播放轻音乐)

设计意图:训练了学生的思考习惯,也为下面学习找准方向,充分尊重了学生的主体地位。本环节重在加强学生小组合作、合理分工、条理思考、大胆推理与清楚表达的指导,旨在为每一位学生的自主学习创造机会与条件,使每一位学生在自己的参与、思考与经历中获得经验认识,培养学生良好的数学学习方法、习惯和数学思考能力。

3、共同发现。

师:同学们,和大家分享一下你们测量的数据和计算结果,好吗?仔细观察实验报告单上的计算结果,你们有什么发现?

生:我发现圆的周长都是直径的3倍多一些。

每个小组汇报完后,把实验报告单粘贴在黑板上)

4、介绍圆周率。

师:你们可真了不起,刚才,同学们测量了大大小小不同的圆,但却有着相同的发现,那就是任何圆的周长都是它直径的3倍多一些。其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是3倍多一些。这个倍数是一个固定不变的数,我们它叫做圆周率(板书)。(介绍误差)用字母π来表示。读法与写法。

师:其实,有关圆周率的知识还有很多,那么我们就一起走进兔博士网站了解一下圆周率的由来。(播放)

师:看完这些资料,你有何感想?

设计意图:通过播放有关祖冲之的资料,引导学生发表感触,及时激励学生,对学生进行爱国教育,增强民族自豪感!

5、推导圆的周长公式。

师:在计算时为了方便,我们只取它的近似值,π≈3.14,你能根据我们的结论推导出圆的周长公式吗?

生:因为圆的周长总是它直径的π倍。所以圆的周长=直径X圆周率。如果用C表示圆的周长,那么C=πd或C=2πr。

篇21:《圆的周长》优秀教案

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学时间:

一课时

教学过程:

一、复习。

1、口答。

4π2π5π10π8π

2、求出下面各圆的周长。

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πdC=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77求:d=?

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴3.14×8

⑵3.14×8×2

⑶3.14×8÷2+8

3、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

作业。

P65-66第3、6、7、9题

篇22:《圆的周长》优秀教案

一、教学目标

【知识与技能】

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

【过程与方法】

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

【情感态度与价值观】

积极参与数学活动,培养学习数学的兴趣。

二、教学重难点

【重点】圆的周长的计算公式。

【难点】圆的周长公式的推导过程。

三、教学过程

(一)导入新课

创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

教师明确,圆一圈的长度即为圆的周长。

引入课题——圆的周长。

(二)探索新知

1.探索发现

学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

学生汇报测量结果及测量方法。

教师引导学生思考,圆的周长大小与什么有关。

学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

教师明确直径是半径的2倍,可看其中一项即可。

2.探索圆的周长与圆的直径关系

小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

小组汇报分享测量结果,教师板书。

学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

学生汇报通过多次测量计算比值总在3.1左右。

教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

给出圆周率的特点:

(1)是一个无限不循环的小数;

(2)我国伟大的数学家祖冲之将其精确到小数点后七位;

(3)现在为了方便只要取小数点后两位即可。

(三)应用新知

问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?

教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

(四)小结作业

提问:通过本节课,你有什么收获?

课后作业:回家找一个圆形,借助直尺测量,计算出周长。

四、板书设计

篇23:《圆的周长》优秀教案

教材内容:

例1及“做一做”中的题目。

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点:

理解和掌握求圆周长的计算公式。

教学难点:

对圆周率π的认识。

教学过程:

一、创设情境,导入新课。

⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、引导探索,展开新课。

㈠引出圆周长的概念

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

㈡测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用“几何画板”《小球的轨迹》演示形成一个圆

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的.一般方法呢?

㈢探讨圆的周长与直径的关系

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵学生拿出自备的三个大小不同的圆。

A.哪个圆的周长长?

B.圆的周长与它的什么有关?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示“几何画板”《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”《周长与直径的关系》中C1、C2、C3分别与直径的倍数关系,最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

⒋推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?

三、初步运用,巩固新知

⒈完成教科书92页第1题的(1)、(3)题。

⒉判断

①圆的周长是直径的π倍。

②大圆的圆周率小于小圆圆周率。

⒊例1和“做一做”任选一题。

⒋看书质疑

四、新知小结

小结:要求圆的周长,一般需要它的直径或半径。知道圆的直径,怎样求周长?知道圆的半径,怎样来计算周长?

五、反馈回授,课堂总结

师:通过今天这节课学习,你有什么新的收获?

篇24:《圆的周长》优秀教案

教学目标:

⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题;

⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

教学流程:

一、揭示课题

⑴猜测这节课的学习内容。

⑵揭示课题--圆的周长。

二、确定探索新知的方向。

⑴观察课前画在黑板上的两幅图。

分别指出正方形、圆形和正六边形的周长。

⑵沟通联系。

找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

⑶比较周长的长短。

以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

⑷确定探究方向。

量出圆的周长和直径,算出它们之间的倍数。

⑸准备数据采集。

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

三、合作探究新知。

⑴学生操作活动。

小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

教师在分组活动中采集到的数据。(是后加的,时加的)

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

⑵合理,得出公式,

看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

⑶介绍祖冲之。

四、利用新知解决简单的数学问题。

⑴说出计算周长的算式。

⑵口答练习十八1~2。

⑶作业练习十八3~4。

下载圆的周长教案(实用24篇)word格式文档
下载圆的周长教案(实用24篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆的周长教案

    圆的周长教案 篇1 篇一:六年级圆的周长数学教案【教学目标】1、 让学生知道什么是圆的周长。2、 理解并掌握圆周率的意义和近似值。3、 初步理解和掌握圆的周长计算公式,能正......

    圆的周长教案

    圆的周长教案 篇1 篇一:六年级圆的周长数学教案【教学目标】1、让学生知道什么是圆的周长。2、理解并掌握圆周率的意义和近似值。3、初步理解和掌握圆的周长计算公式,能正......

    圆的周长教案

    关于圆的周长教案模板汇编五篇圆的周长教案 篇1 【教学目标】:1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的......

    圆的周长教案

    圆的周长教案 篇1 教学目标1.使学生认识圆的周长,初步理解圆周率的意义。2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。3.通过介绍......

    圆的周长教案

    庞村镇西庞村小学朱春梅圆的周长圆的周长 教材简析 圆的周长公式,对于学生来说是比较抽象的,因此,教材设计了两个实践活动,让学生通过小组合作、探究、交流,形象的感知到圆的周......

    圆的周长教案

    《圆的周长》教学设计 重庆荣昌区昌元许溪中心小学:黄晓英 教学目标: 1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。 2、运用圆的周长的知识解决现实生......

    圆的周长教案

    圆的周长 邝朝旺 教学目标: 1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。2、使学生理解和掌握圆周长公式,并能运用......

    圆的周长教案

    圆的周长教学设计 一、激情导入 1、 动物王国正在举行动物运动会可热闹了,想不想去看一看? 2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路......