长方体和正方体体积练习
教学内容:苏教版义务教育教科书第18页例11、“练一练”、练习四第5~8题。
教学目标:
1.让学生经历长方体和正方体的统一体积计算公式的推导过程,进一步认识两种几何体的基本特征及它们之间的关系。
2.使学生会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。
教学重点与难点:
会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。
教具:课件
教学过程:
一、推导长方体和正方体统一的体积公式
1.长方体体积的另一种计算方法
(1)弄清“底面”、“底面积”的含义.
当学生知道图中长方体的特征之一是有两个相对的面是正方形后,让他们指出图中哪一个面是底面,说说这个底面积怎样求.学生回答后,课件将这个底面涂上颜色.并标上底面积的计算方法:
底面积=长×宽=边长×边长.
告诉学生,一个长方体的6个面中,任何一个面都可以做底面,不一定要以水平放置的面做底面.应根据问题中的需要来决定,哪一个面利于问题的解决,就确定那个面为底面.
(2)推出长方体体积的另一种计算方法.
提问:“你们掌握的长方体体积计算公式是什么?”学生回答后板书:长方体体积=长×宽×高
再问:“古代数学家是怎样计算长方体体积的?”学生回答后在上面计算公式的下方对着写:长方体体积=底面积×高.
引导学生对照两个公式,找出它们的异同点及之间的联系.让学生认识到古人和今人计算长方体体积的方法是一致的,两个公式可以写成如下形式:
长方体体积=长×宽×高
↓
↓
=底面积×高
2.推出正方体体积的另一种计算方法.
(1)课件展示学生讨论前面第(4)个探究性问题的答案:将长方体的高减少到和底面边长相等时,这个长方体就变成了一个最大的正方体.
(2)让学生说出这个正方体的底面(课件随即涂上颜色),然后推出这个正方体体积的另一种计算方法:
正方体体积=棱长×棱长×棱长
↓
↓
=
底面积
×
高
3.归纳出长方体和正方体统一的体积公式,并用字母表示出来.
教师指着长方体、正方体体积计算公式提问:“这两个公式能统一起来吗?”学生回答后,教师写上长方体、正方体体积计算的统一公式,并用字母表示出来.
长方体(或正方体)的体积=底面积×高
V=Sh
二、应用统一的体积计算公式解决实际问题
1.做书上“练一练”第1、2题。
学生独立作业,对正时用课件显示答案.提醒学生正确书写体积单位“立方厘米”。
2、做“练一练”第3题
哪个面是横截面?应先求什么?再求什么?
3、练习四第5题
借助教室里的柜子、讲台等实物,帮助学生理解占地面积的含义。指生板演,集体订正。
4、练习四第7题
指导学生理解题意,说说长方体体积计算公式。你会用方程解吗?设怎样写?
让学生独立作业,集体订正。
三、全课总结
这节课我们学习了什么知识,你受到了那些启发?
四、布置作业:练习四的第4、6、8题.
五、板书设计:
长方体正方体体积=底面积×高
V=S×h
V=Sh