第一篇:垂直教案
一、课题 §4.6垂直
二、教学目标
1.使学生理解垂线的意义和垂线的第一个性质.
2.会用三角板过一点画已知直线的垂线,培养学生掌握画图的基本技能. 3.通过垂线性质的教学,培养学生发现问题的能力.
三、教学重点和难点
垂线的意义、性质和画法是重点,而垂线的画法也是难点.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、按照运动的思维方式提出问题 师:平面上的两条直线有哪些位置关系?
生:两种,平行和相交.(学生回答后,教师打出投影的两个图)(如图2-9(1),2-9(2))师:在相交直线形成的四个角中,按照两个角的关系分类,有哪两种类型的角? 生:对顶角和邻补角.
师:两条直线所夹的角中,如果按照角的大小来分类,又有哪几种?(这时老师将直线CD继续运动得到(3)和(4))生:三种:锐角、直角、钝角.
在此基础上,教师指出:图2-9(3)是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广,例如:书本相邻的两条边、窗户框相邻的两边、红十字等,因此今天我们就来研究这种特殊情况.(板书课题)
(二)、垂线的有关概念
在感性认识的基础上,引导学生得到关于垂线的一些概念.
1.定义:当两条直线相交所成的四个角中,有一个是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
2.符号:“⊥”读作“垂直于”如AB⊥CD于O,含义:直线AB与直线CD垂直,垂足是O. 3.对定义的理解:
(1)在垂直的定义中要强调只有一个角是直角就可以了,不必说四个角都是直角,因为其它三个直角都可推出来.
(2)两条直线互相垂直,是指两条直线而言.因此,说到垂线,一定是两条直线的位置关系.(3)定义具有双重性,既是判定垂直的定理,也是垂直的性质定理,在具体应用时要注意书写格式,如图2-10.
因为 AB⊥CD于O,(已知)所以 ∠1=90°.(垂直定义或垂直性质)因为 ∠AOC=90°,(已知)所以 AB⊥CD于O.(垂直定义或垂直的判定)
(三)、通过实践活动,引导学生发现垂线的第一个性质 1.教师先向学生提出一个实际问题. 怎样正确量出跳远的成绩?
2.引导学生将实际问题转化为数学问题,对做得比较好的学生,让他到黑板上画图,教师纠正并给出图2-11.
师生共同指出,BD为起跳线,A为跳远时脚落的地点. 3.教师指出:这个实际问题实质上就是转化为“从直线外一点画出已知直线的垂线问题.”那么,怎样用你手中的三角板画出这条垂线呢?
4.在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法.强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线.并引导学生思考:这样画出的为何是已知直线的垂线?
5.引导学生在作垂线的实践活动中,发现垂线的性质.
(1)如图2-12(1)中,过点A,作直线BD的垂线.在图2-12(2)中,过A点分别作BD和DE的垂线.(2)发现垂线的性质
在学生熟练地作出各条垂线之后,教师继续提问:(或以其它形式)过A点还能作出别的垂线吗? 在学生回答的基础上,教师引导学生发现以下两个结论: ①过A点作BD或DE的垂线有没有,有. ②过A点作BD或DE的垂线有几条,只一条. 在此基础上,又引导学生概括出:
垂线的第一个性质公理:过一点有且只有一条直线与已知直线垂直. 注:①“有且只有”中,“有”指“存在”,“只有”指“唯一”. ②“过一点”的点在直线外,或在直线上都可以.
(四)、应用举例,变式练习
例1:如图2-13(1),过A点分别作AB,BC和CA的垂线.
练习1,如图2-13(2),∠B=90°,过B分别作AB,BC,CA的垂线.
练习2,如图2-13(3),过B点作AC的垂线,过A点作BC的垂线,过C点作AB的垂线. 练习3,如图2-14,过P点作AB,BC,CD和DA的垂线.
讲完这个例题和练习之后,对过已知点,作已知线段的垂线的问题加以总结,重点是:有时需要对线段加以延长,作延长线的垂线.
(五)、小结
师生共同总结出本节课所学的内容. 1.理解垂线的意义.
2.根据垂线的意义,过一点画一条直线的垂线. 3.理解垂线的第一性质公理.
七、练习设计
1.选用课本中的题. 2.以下6道题供选用.
(1)画∠AOB=45°,在∠AOB内找一点F,过F点作OA,OB的垂线.
(2)画∠AOB=120°,画∠AOB的平分线OE,在OE上任取一点F,过F作OA,OB的垂线.(3)如图2-15,AO⊥BO于O,求∠AOD与∠BOC的和.
(4)如图2-16,直线AB⊥CD于O,过O点的直线EF平分∠AOD,求∠COE的大小.(5)如图2-17,AB⊥EF于O,CD⊥AB于Q,指出∠AQD与∠AOF的关系.
(6)填空:如图2-18,已知AB与EF相交于O,∠AOE=30°,AB⊥CD于O.求∠EOD的度数. 解:因为AB⊥CD于O,()所以∠COA=90°.()又∠AOC+∠AOD=180°,()所以∠AOD=90°. 又∠AOE=30°,()所以∠EOD=60°.
八、板书设计 §4.6 垂直
(一)知识回顾
(三)例题解析
(五)课堂小结
例
1、例2
(二)观察发现
(四)课堂练习
练习设计
九、教学后记
1.本教案的教学时间为1课时45分钟.
2.本课时教学设计的主导思想是:应用“发现法”教学,使学生在自己动手的基础上,发现垂线的性质.
3.在学生理解了两条直线互相垂直的意义以后,还可以让学生举一些现实生活中的实例,如:桌子的两条相交的边,书的两边,房子的一边与另一边,电线与电线杆等,这些感性的知识有利于加强学生对垂线的理解,同时也可以使学生认识到垂直的情况在实际中的应用是十分广泛的,因此我们要把它的性质讨论清楚.
4.怎样过直线外一点作已知直线的垂线,在给出具体的例子时,可以让学生充分讨论,并想象在体育课中,体育教师是怎样量这个距离的.有的人想让多量点,都采取了什么手段,(这里还隐含着垂线的第二个性质)学生在动手动脑的过程中能很快得到垂线的性质,这时教师可以充分肯定学生的探索精神,并告诉他们:你们发现了一个公理,不是只有科学家才能发现和发明,每个人只要开动脑筋,身边就有很多规律性的东西可以发现
第二篇:线面垂直教案
2012第一轮复习数学教案
线面垂直、面面垂直
教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题.(一)主要知识及主要方法:
【思考与分析】要证明线面垂直,我们可以把它转化为证明线线垂直,这道题可以通过证明A1C与平面C1BD内两条相交直线BD,BC1垂直即可.而要证明A1C与相交直线BD、BC1垂直,可利用三垂线定理的三步曲证明.基础平面分别取下底面及右侧面.
1.线面垂直的证明:1判定定理;2如果两条平行线中一条垂直于一个平面,那么另一条也垂直于
这个平面;3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;4两个平面垂直,在一个平面内垂直于它们交线的直线垂直于另一个平面.5如果两个相交平面都与第三个平面垂直,那么它们的交线与第三个平面垂直.P A6向量法:
PQABPQAB0
PQ
PQACPQAC0
CQ
2.面面垂直的证明:2如果一个平面经过另一个平面的一条垂线,1计算二面角的平面角为90 ;
那么这两个平面垂直;
题型讲解证明线线垂直
三垂线定理与平面的位置无关,即对水平位置、竖直位置、倾斜位置的平面都能用三垂线定理.下面我们通过实例来体验“三步曲”的具体应用过程.
例1(1)已知PA、PB、PC两两互相垂直,求证:P在平面ABC内的射影O是△ABC的垂心.
【思考与分析】 要证O是△ABC的垂心,我们需要证明AO⊥BC、BO⊥AC、CO⊥AB.而AO、BO、CO分别是AP、BP、CP在平面ABC上的射影,因此我们想到应用三垂线定理.分三步进行:①定线面:即面内直线BC与基础平面为底面ABC,②找三线:即垂线PO,斜线PA,射影AO,③证垂直:即AO⊥BC.同理可证其它两条.
证明:因为P在平面ABC内的射影为O,所以PO⊥平面ABC,连结AO且延长交BC于D,则AO是PA在平面ABC上的射影.
∵ AP⊥PB,AP⊥PC,PB∩PC=P,∴ PA⊥平面PBC,又BC平面PBC,∴ AP⊥BC.根据三垂线定理的逆定理知,AD⊥BC,所以AD是△ABC中BC边上的高.连结CO并延长交AB于F,同理可证CF⊥AB;所以CF是△ABC中AB边上的高,AD∩CF=O,所以O是△ABC的垂心.【反思】 解这道题时,首先应用的是线面垂直的判定定理,然后运用三垂线定理的逆定理,所以要想快速解题,我们需要熟练掌握并能综合应用所学知识.(2)正方体ABCD-A1B1C1D1中,求证:对角线A1C⊥平面C1BD.
证明:∵ A1A⊥平面ABCD,A1C是斜线,连AC,AC⊥BD,由三垂线定理知BD⊥A1C.∵ A1B1⊥平面BCC1B1,A1C是斜线,连B1C,B1C是A1C在BCC1B1内的射影,又∵ BC1⊥B1C,由三垂线定理知BC1⊥A1C.又BD∩BC1=B,∴ A1C⊥平面DBC1.
【反思】 应用三垂线定理解题一定要熟记这三个步骤,而且还需要我们有一定的空间立体感.例2在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求证:A1B⊥B1C
证明:取A1B1的中点D1,连结C1D1∵B1C1=A1C1,∴C1D1⊥ABB1A连结AD1,则AD1是AC1在平面ABB1A1内的射影,∵A1B⊥AC1,∴A1B⊥AD11取AB的中点D,连结CD、B1D,则B1D∥AD1,且B1D是B1C在平面ABB1A1内的射影∵B1D⊥A1B,∴A1B⊥B1C点评:证明异面直线垂直的常用方法有:证明其中一直线垂直于另外一直线所在的平面;利用三垂线定理及其逆定理 证明线面垂直
例3 已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC于点E,求证:AE⊥平面PBC
证明:∵PA⊥平面ABC,∴PA⊥BC
又∵AB是⊙O的直径,∴BC⊥AC 而PC∩AC=C,∴BC⊥平面又∵AE在平面PAC内,∴BC⊥AE∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC 点评:证明直线与平面垂直的常用方法有:利用线面垂直的定义;利用线面垂直的判定定理;利用“若直线a∥直线b,直线a⊥平面α,则直线b⊥平面α”
练习:
1.以AB为直径的圆在平面内PA⊥于A,C在圆上,连PB、PC过A作AE⊥PB于E,AF⊥PC于F,试判断图中还有几组线面垂直。
PA
BC
PAAB为直径ACBC
AF面PAC
AFPC
AF面PBCPB面PBCAFPB
AEPBPBAEF
cosBAC
AB2AC2BC
22ABAC
a2b2a2c2b2c2
2ABAC
a
a2b2a2c2
0
BAC为锐角,同理ABC为锐角。
P在底面射影为ABC垂心。
BC面ABC
PABC
BC面APQAQ面APQBCAQ
Q为ABC垂心
同理ACBQ
CQAB
AB面PQCPQABABPC
同理A、B5.如图,BAAA//BB确定平面
AB
ABAB//AB
AB//ABAA
AB面AACAAAB
ABAC
AB面CAAABCACAB为直角
证明面面垂直
例4在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点(1)求证:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD
1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为0”的问题,当然也可用其它的证证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0),D(0,2,0),A1(0,0,2)
D1(0,2,2),E(2,0,1),F(1,2,0)
(1)AD(0,2,0),D1F(1,0,2)
ADD1F=0×1+2×1+0×(-2)=0, AD⊥D1F
(2)AE=(2,0,1)D1F=(1,0,-2),|AE|,|D1F|设AE与D1F的夹角为θ,则 cosθ1
21001(2)
50
所以,直线AE与D1F所成的角为90°(3)由(1)知D1F⊥AD,由(2)知D1F⊥AE,又AD∩AE=A,D1F⊥平面AED,∵D1F平面A1FD1M
平面AED⊥平面A1FDB
例5已知AB是圆O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的任一
点,求证:平面PAC平面PBC.
分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另解:∵AB是圆O的直径,∴ACBC,又∵PA垂直于O所在的平面,∴PABC,∴BC平面PAC,又BC在平面PBC中,所以,平面PAC平面PBC. 点评:由于平面PAC与平面PBC相交于PC,所以如果平面PAC平面PBC,则在平面PBC中,垂直于PC的直线一定垂直于平面PAC小结:
1垂直问题来处理或在两直线上分别取它们的方向向量,然后证它们的数量积为0
2面垂直的判定定理,证明直线垂直于平面内的两条相交直线,当然再证这直线(这平面)与已知直线(或平面)重合,有时侯将线面垂直问题转化为证面面垂直问题,也许会给你带来意想不到的收获 3如证面面垂直可转化为证明一个平面经过另一个平面的垂线
用向量法证明垂直,就是证有关向量的数量积为1“直线l垂直于平面α内的无数条直线”是“l⊥α”的 AB
CD 答案:B①直线上有两点到平面的距离相等,则此直线与平面平行②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面③直线m⊥平面α,直线n⊥m,则n∥α④a、b是异面直线,则存在唯一的平面α,使它与a、b都平行且与a、b距离相等 ABCD 解析:①错误与平面相交如下图,平面α∥β,A∈α,C∈α,D∈β,B∈β且E、F分别为AB、CD的中点,过C作CG∥AB交平面β于G,连结BG、GD设H是CG的中点,则EH∥BG,HF∥GD∴EH∥平面β,HF∥平面β
∴平面EHF∥平面β∥平面α∴EF∥α,EF∥β
③错误直线n可能在平面α内④正确AB是异面直线a、b的公垂线段,E为AB的中点,过E作a′∥a,b′∥b,则a′、b′确定的平面即为与a、b都平行且与a、b距离相等的平面,并且它是唯一确定的答案:D
3在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S—EFG中必有 A⊥平面EFGB⊥平面EFG C⊥平面SEF D⊥平面SEF
解析:注意折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFGA答案:A
4PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任一点,则下列关系不正确的是 A⊥BCB⊥平面PACC⊥PB D⊥BC 解析:由三垂线定理知AC⊥PB,故选答案:C 5ABC的三个顶点A、B、C到平面α的距离分别为2 cm、3 cm、4 cm,且它们在α的同侧,则△ABC的重心到平面α的距离为解析:如下图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连结CG交
AB于中点E,又设E、G在平面α上的射影分别为E′、G′,则E′∈A′B,G′∈C′E,EE′=A′
A+B′B)=,CC′=4,CG∶GE=2∶1,在直角梯形EE′C′C中可求得GG′=3答案:3 cm
6ABCD—A1B1C1D1中,当底面四边形ABCD满足条件_______时,有A1C⊥B1D1认为正确的一种条件即可,不必考虑所有可能的情况)答案:A1C1⊥B1D1或四边形A1B1C1D1为菱形等 7ABCD—A1B1C1D1的棱长为1,则(1)A点到CD1的距离为________;(2)A点到BD1的距离为________;
(3)A点到面BDD1B1的距离为_____________;(4)A点到面A1BD的距离为_____________;(5)AA1与面BB1D1D的距离为__________6622(2)(3)(4)(5)232
328△ABC在平面α内的射影是△A1B1C1,设直角边AB∥α,则△A1B1C1的形状是_____________三角形答案:(1)
解析:根据两平行平面的性质及平行角定理,知△A1B1C的形状仍是Rt△答案:直角 4ABCD—A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD证明:连结MO ∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1又A1O平面A1ACC1,∴A1O⊥DB
(1)解:当a=2时,ABCD为正方形,则BD⊥AC又∵PA⊥底面ABCD,BD平面ABCD,∴BD⊥PA∴BD⊥平面故当a=2时,BD⊥平面PAC(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连结AM、DM、BMN∵ABMN和DCMN都是正方形,∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM(3)解:设M是BC边上符合题设的点M,∵PA⊥底面ABCD,∴DM⊥AM因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4点评:本题的解决中充分运用了平面几何的相关知识因此,立体几何解题中,要注意有关的平面几何知识的运用事实上,立体几何问题最终是在一个或几个平面中得以解决的在矩形A1ACC1中,tan∠AA1O=
22,tan∠MOC=,22
∴∠AA1O=∠MOC,则∠A1OA+∠MOC=90A1O⊥OM∵OM∩DB=O,∴A1O⊥平面9S—ABC中,N是S在底面ABC上的射影,且N在△ABC的AB边的高CD上,点M∈SC,截面MAB和底面ABC所成的二面角M—AB—C等于∠NSC,求证:SC⊥截面证明:∵CD是SC在底面ABC上的射影,AB⊥CD,∴AB⊥SCMD∵∠MDC=∠NSC,∴DM⊥SCAB∩DM=D,∴SC⊥截面MABABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值解:∵P是定点,要使PM的值最小,只需使PM⊥AB即可 要使PM⊥AB,由于PC⊥平面ABC,∴只需使CM⊥AB即可
∵∠BAC=60°,AB=8,∴AC=AB·cos60°=4
∴CM=AC·sin60°=4·
=2
B
∴PM=PC2CM2=
12P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD(1)当a为何值时,BD⊥平面PAC?试证明你的结论(2)当a=4时,求证:BC边上存在一点M,使得PM⊥(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围分析:本题第(1)问是寻求BD⊥平面PAC的条件,即BD垂直平面PAC内两相交直线,易知BD⊥PA,问题归结为a为何值时,BD⊥AC,从而知ABCD为正方形-4-
第三篇:线面垂直教案
课题:直线与平面垂直
授课教师:伍良云
【教学目标】
知识与技能
1、掌握直线与平面垂直的定义及判定定理.2、使学生掌握判定直线与平面垂直的方法.过程与方法
培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.情感、态度与价值观
在体验数学美的过程中激发学生学习兴趣,从而培养学生勤于思考、勤于动手的良好品质.培养学生学会从“感性认识”到“理性认识”过程中获取新知.教学重点
直线与平面垂直的定义及判定定理.教学难点
直线与平面垂直的定义及判定定理
教学方法:启发式与试验探究式相结合。
教学手段:PPT、实物。【教学过程】
一、实例引入,理解概念
1.通过复习空间直线与平面的位置关系,让学生举例感知生活中直线与平面相交的位置关系,其中最特殊、最常见的一种就是线面的垂直关系,从而引出课题. 2.让学生从与生活有关的直线与平面垂直现象的实例中抽象归纳出直线与平面垂直的定义,并给出学生非常熟悉的旗杆,引导他们观察旗杆与地面位置关系,验证直线与平面垂直的定义,引出直线与平面垂直的定义.即:如果直线l与平面内的任意一条直线都垂直,我们就说直线l与平面互相垂直.记作:l⊥.直线l叫做平面的垂线,平面叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
二.剖析概念,运用定义:
例1. 求证:如果两条平行直线中的一条垂直与一个平面,那么另一条也垂直于这个平面.
学生动笔练习,投影,学生分析:欲证b,需证直线b与面内任意一条直线垂直;通过直线a转化。
通过例1,让学生知道直线与平面垂直的定义既可以用来证明直线与平面垂直,又可以用来证明直线与直线垂直。
三:通过试验,探究直线与平面垂直的判定定理
准备一个三角形纸片,三个顶点分别记作A,B,C.如图,过△ABC的顶点A折 叠纸片,得到折痕AD,将折叠后的纸片打开竖起放置在桌面上.(使BD、DC边与桌面接触)
问题1:折痕AD与桌面一定垂直吗?
问题2:如何翻折才能使折痕AD与桌面所在的平面垂直? 问题3:为什么这样折折痕与桌面是垂直的?
问题4:如果改变纸片打开的角度,折痕能与桌面保持垂直吗?
问题5:我们就可以固定平面ABD,另一个平面绕AD旋转,由此,你能总结出什么样的结论?
让学生在操作过程中,通过不断的追问,最终确认并理解判定定理的条件. 最后,引导学生从文字语言、符号语言、图形语言三个方面归纳直线和平面垂直的判定定理.
AABD图1CB图2DC
文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
符号语言:la,lb,a,b,abAl.
图形语言:
四.运用定理,加深理解:
例2:在正方体ABCDA'B'C'D'中,证明:棱BB'和底面ABCD垂直.
五、课堂练习
1.已知平面与外一直线l,下列命题中:(1)若l垂直内两直线,则l⊥(2)若l垂直内所有直线,则l⊥(3)若l垂直内两相交直线,则l⊥(4)若l垂直内无数条直线,则l⊥(5)若l垂直内任一条直线,则l⊥ 其中正确的个数为
l a b D'A'B'C'DAB
C
六、归纳小结,提高认识
1.学习小结:从知识和方法两个方面进行.
知识方面:线面垂直的定义、线面垂直的判定定理及线面垂直的性质定理.
方法方面:转化思想
七.布置作业:
(1)阅读课本相关内容进行复习;(2)学海导航
第四篇:《垂直平行》教案
《平行与垂直》教案
阿城区玉泉中心小学:张 芳
教学目标:
1、引导学生通过观察,了解垂直与平行的特点。
2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线与平行线。
3、培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。教学重点:正确理解“互相垂直”“互相平行”等概念,发展学生的空间想象能力。教学难点:相交现象的正确理解
一、导入
1、做游戏,让学生体验“同一个平面”的概念。
我们来做两个游戏
游戏1:请同学们闭上眼睛摸摸自己的桌面,手不要离开,慢慢向同桌方向的桌面移动摸一摸。
游戏2:请同学们闭上眼睛摸摸自己的桌面,再摸摸自己抽屉的面。
提问:第一个游戏中你摸到了几个平面?第二个游戏呢?(引导学生说出:第一个游戏摸到的是同一个平面,只是这个面在变大;第二个游戏摸到是二个平面)。
2、摆一摆并画一画感知两条直线的位置关系
师:同学门,你们看,老师这里有两小棒,我们随意的丢在讲台上会形成什么样的图形呢?首先请大家把我们的两只手当成两小棒,用手势表示小棒形成的图形。
师:刚才大家示范了很多的图形,现在老师用直线来表示小棒,把大家刚才示范的一种图形画在黑板上。(用直尺在黑板上画×的图形)
师:请同学们也用两条直线把自己的图形画出来。
二、探究新知。
1、观察分类,了解平行与垂直的特征
(一)展示各种情况
师:画完了吗?在小组中交流一下,看看你们组谁的想法与众不同?(小组交流)
师:哪个小组愿意上来把你们的想法展示给大家看看?(小组展示,将画好的图贴到黑板上)
师:仔细观察,你们画的跟他们一样吗?如果不一样,可以上来补充!(学生补充不同情况)
(二)小组汇报分类情况。
预案:
a.分为两类:交叉的一类,不交叉的一类;
b.分为三类:交叉的一类,快要交叉的一类,不交叉的一类;
c.分为四类:交叉的一类,快要交叉的一类,不交叉一类,交叉成直角的一类。
当学生在汇报过程中出现“交叉”一词时,教师随即解释:也就是说两条线碰一块儿了。在数学上我们把交叉称为相交,相交就是相互交叉。(并在适当时机板书:相交)2.引导学生分类。
引导学生概括出:在同一平面内两条直线的位置关系分为相交、不相交两类。(学生说出自己小组的分法后)师:对于他们小组的这种分法,你们有问题吗?
设想:当出现“b”情况后,教师要引导学生自己发现问题,通过想象直线是可以无限延伸的,并把直线画得长一些,使学生明白,看起来快要相交的一类实际上也属于相交,只是我们在画直线时,无法把直线全部画出。
当出现“c”的分法时,开始同“b”的做法一样,先使学生明确快要相交的一类也属于两条直线相交的情况。再使学生明确分类时要统一标准。相交的一类,快要相交的一类,不相交一类,这样分类是以相交与否为分类标准。而相交成直角是根据两条直线相交后所成角度来分类的。二者不是同一标准,所以这种分法是不正确的。从而达成分类的统一,即相交的一类、不相交的一类。
总之,在分类过程中重点引导学生弄清看似两条直线不相交而事实上是相交的情况。先想象是否相交,再请一两名学生动手画一画,从而达成共识。
3.小结:在同一平面内,画两条直线会出现几种情况?
三、归纳认识,明确平行与垂直的含义
(一)揭示平行的概念
1.归纳平行的含义
师:那剩下的这组直线相交了吗?(生:没有)想象一下,画长点,相交了吗?(生:没有)再长一点,相交了吗?(生:没有)无限长,会不会相交?(生:不会)(边提问边用课件演示)
师:这种情况你们知道在数学上叫什么吗?我们就说这两条直线互相平行。(板书:互相平行)知道为什么要加“互相”吗?(学生回答)谁能说说什么是互相平行?(学生试说不完整的概念)
这就是我们今天要认识的第一位朋友。在我们的生活中哪里有平行线呢?
师:刚刚我们欣赏了一些有关平行线的图片,平行线的存在使得我们生活中的事物看起来更有序。接下来还请同学们看一张图片(出示立交桥)这是我们生活中常见的立交桥,它使我们的道路变的更通畅,从桥上经过的汽车与桥下行驶的车就不会撞到一起,也就是这两条道路不会相交,但是,不相交是不是就是说这两条道路互相平行呢?不是,因为这两条直线不在同一平面内,所以判断两条不相交的直线是不是平行线,一定要看它们在不在同一平面内。
3.练习:下面的各组直线,哪几组互相平行?
4.小结:判断两条直线是否是平行时,“在同一平面内”、“不相交”这两个条件缺一不可。
(二)提示垂直的概念
1.归纳垂直的含义。
师:咱们再来看看两条直线相交的情况。你们发现了什么?(都形成了四个角)
师:你认为在这些相交的情况中哪种最特殊?(相交形成了四个直角)
师:两条直线相交成直角,而其他情况相交形成的都不是直角,有的是锐角有的是钝角。
师:你是怎么知道他们相交后形成了四个直角呢?(学生验证:三角板、量角器)
师:像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。用自己的语言说说什么是互相垂直。(学生试说后指名回答)(课件出示互相垂直的概念)
2.练习:下面的各组直线,哪几组互相垂直? 3.小结:判断两条直线是否是垂直时,关键看这两条线所交的角是不是直角。
4、那在我们生活中有哪些物体中有互相垂直的图形?(学生举例)
师:其实在生活中,互相平行和互相垂直不是单独存在,例如下面的图形中既有互相平行也有互相垂直。(出示图片)
师:有了平行和垂直的存在我们的世界变得有序、整洁,接下来老师就考考你对这两位朋友的了解。
四、练习巩固,深化垂直与平行的理解
1.生活中我们常常遇到垂直与平行的现象,你能举几个例子吗?(学生举例后教师可适当添加一两个没想到的例子。
2.我们看看运动场上也有这样的现象吗?(出示主题图)
3.下面每个图形中哪两条线段互相平行?哪两条线段互相垂直?(出示几何图形)
五、拓展延伸,发展垂直与平行的空间概念
(一)摆一摆,发展垂直与平行的延伸
师:下面咱们一起来做个游戏,(出示小棒)每根小棒代表一条直线。
1.把两根红色小棒摆成和绿色小棒平行,看一看,这两根红色小棒互相平行吗?
2.把两根红色小棒摆成和绿色小棒垂直,看一看,这两根红色小棒有什么关系?
(二)折一折,形成垂直与平行的表象(预留练习)
1.把一张长方形纸折两折,使三条折痕互相平行。
2.把一张正方形纸折两次,使两条折痕互相垂直。
六、课堂总结
今天这节课你有什么收获?
第五篇:垂直与平行教案
垂直与平行教案
[教学内容]
人教版《义务教育课程标准实验教科书·数学》四年级上册64~65页的内容。[教学设想]
本课教材是在学生学习了直线及角的认识的基础上教学的,是认识平行四边形和梯形的基础。垂直与平行是同一平面内两条直线的两种特殊的位置关系,在生活中有着广泛的应用。如何唤起学生的生活经验,感知生活中的垂直与平行的现象?如何进一步发展学生的空间想象能力,让学生发现在同一平面内两条直线的位置关系并得出结论?本课主要通过观察、讨论、操作、交流等活动让学生去感知、理解、发现和认识。感知生活中的垂直与平行的现象,初步理解垂直与平行是同一平面内两条直线的位置关系,发现同一平面内两条直线的位置关系的不同情况,初步认识垂线和平行线;并且通过一系列的数学活动使学生的空间想象能力得到进一步的发展,如对“面”的想象、对两条直线位置关系的想象、对看似不相交而实际相交情况的想象等等。围绕这些目标,我们在设计教案时努力体现了以下几个特点。
1.创设纯数学研究的问题情境,用数学自身的魅力感染学生。
本课在设计导入时,并没有从生活中的现象入手,而是直接进入纯数学知识的研究氛围,带领学生先进行空间想象,把两条直线的位置关系画到纸上,然后进行梳理分类。之所以这样设计,原因有两个:一是学生对直线的特点已有了初步认识,有一定的知识基础和空间想象能力,对两条直线的位置关系会有更丰富的想象,而生活中平行、垂直的现象居多,情况较单一,不利于展开研究;二是四年级的学生在各个方面都处在一个转型阶段,它应为高年级较深层次的研究和探索打好基础、做好过渡,逐步培养学生对数学研究产生兴趣,用数学自身的魅力来吸引、感染学生。
2.以分类为主线,通过学生自主探索,体会同一平面内两直线间的位置关系。
新教材从研究同一平面内两条直线的位置关系入手,逐步分析出两条直线的位置关系有相交和不相交之分,相交中还有相交成直角与不成直角的情况,是一种由“面”到“点”的研究,这样设计,不仅符合学生的认知规律,也更有利于学生
展开探索与讨论,研究的意味浓了。所以,在设计教案时我们大胆地让学生以分类为主线,通过小组汇报、班级争论、教师点拨等活动,帮助学生在复杂多样的情况中逐步认识到:在同一平面内两条直线的位置关系只有相交和不相交两种情况,相交中有成直角和不成直角两种情况。通过两次分类、分层理解,提高学生的空间想象能力,培养学生初步的问题研究意识。
3.在知识探究的过程中完成自主探究意识与空间想象能力的培养。
(1)自主探究意识的培养。整节课自始至终注重对学生自主探究意识的培养。主要表现在以下几个方面。首先,学生画完两种直线的位置关系后,在小组中进行归类整理。其次,对两条直线位置关系的理解,以学生为主体展开讨论进行分类整理。再次,在练习的过程中,创设生活中的情境,让学生主动探索、发现规律。
(2)空间想象能力的培养。主要表现在以下几个方面:①无限大平面的想象以及在同一平面内两条直线位置关系的想象;②对看似两条直线没有相交而实际却相交的情况的想象;③对平行线永不相交的想象;④拓展练习中有无数条直线与已知直线平行或垂直的想象。
[教学目标]
1.引导学生通过观察、讨论感知生活中的垂直与平行的现象。
2.帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。
3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。
[教学重点]
正确理解“相交”“互相平行”“互相垂直”等概念,发展学生的空间想象能力。[教学难点]
相交现象的正确理解(尤其是对看似不相交而实际上是相交现象的理解)。[教具、学具准备]
课件,尺子,三角板,量角器。
[教学过程]
一、导入:复习直线的特点
师:前面我们已经学习了直线,那位同学愿意与大家分享一下直线有哪些特点呢?
生:无端点,两端可以无限延伸
二、新知
1、创设情境:
今天咱们继续学习直线的有关知识。但是今天老师给同学们带来的直线是两条
调皮的直线,他们俩活泼好动,在白纸上的位置可不是固定的,同学们请你们开动脑筋,想一想这两条直线会有怎样的位置关系,想好了就在纸上画出来。开始吧。(学生试画,教师巡视)
师:大多数同学已经很好的完成了任务,同学们的想象力可真丰富,请同学到黑板画出来这么多种情况。让画法不同的同学到黑板上补充;
师:把它们分分类吗?同桌之间相互交流交流。(小组讨论、交流)生:汇报分类结果
预案:a.分为两类:交叉的一类,不交叉的一类;
b.分为三类:交叉的一类,快要交叉的一类,不交叉的一类;c.分为四类:交叉的一类,快要交叉的一类,不交叉一类,交叉成直角的一类。
(1)当学生在汇报过程中出现“交叉”一词时,教师随即解释:也就是说两条线碰一块儿了。在数学上我们有专有名词来形容交叉,称为相交,相交就是相互交叉。(板书:相交)
(2)针对快要交叉的一类进行解释,让学生想象在无限大的平面上两条直线的位置关系
师:同学们,看好了,老师这儿有一张纸上面画着两条直线(二号纸),记住这张纸以及上面的两条直线了么?现在请大家闭上眼睛,跟着老师的话进行思维。我们把脑海中的这张纸朝着上下左右四个方向无限延伸,我们是不是可以得到一个无限大的平面啊?在这个无限大的平面上,还有两条呈八字形的直线。根据我们第二单元所学知识,我们知道直线也是无限延伸的。想一想,这两条直线无限延伸下去。。他们的位置关系是怎样的?谁来告诉我。
生:相交。
师:看起来快要相交的一类实际上也属于相交,只是我们在画直线时,无法把直线全部画出。
(3)给出正确的分类
先使学生明确快要相交的一类也属于两条直线相交的情况。再使学生明确分类时要统一标准。
相交的一类,快要相交的一类,不相交一类,这样分类是以相交与否为分类标准。而相交成直角是根据两条直线相交后所成角度来分类的。二者不是同一标准,所以这种分法是不正确的。从而达成分类的统一,即相交的一类、不相交的一类。
不相交
相交
2、归纳:明确平行与垂直的含义
A、揭示平行的概念
师:以上五幅图中,老师发现相交占了四张,不相交却只有一张,我们先来研究这一张好不好啊。我们来看这张图,这组直线相交了吗?(没有)想象一下,画长点,相交了吗?(没有)再长一点,相交了吗?(没有)无限长,会不会相交?(不会)
师:这种情况你们知道在数学上叫什么吗?数学上我们不是简单地说不相交,而是说这两条直线互相平行。(板书:互相平行)谁能说说什么是互相平行?(生:在一个平面内不相交的两条直线,它们之间的关系叫做互相平行)
师:知道为什么要加“互相”吗?(生:两条直线)强调:要说互相平行或平行线至少需要2条直线。师:能说一条直线是平行线吗?应该怎么说呢?引导学生说出:红线是绿线的平行线,或绿线是红线的平行线,也可以说红先和绿线互相平行。
板书小结:在同一平面内两条直线的位置关系
不相交
=互相平行互相平行的两条线叫做平行线
相交
不相交指的是永不相交;
两条直线:平行线是指两条(或两条以上)的直线,不能孤立的说一条直线叫平行线。
B、提示垂直的概念
师:咱们再来看看两条直线相交的情况。你们发现了什么?
生:都形成了四个角
师:你认为在这些相交的情况中哪种最特殊?
生:相交形成了四个直角
师:两条直线相交成直角,而其他情况相交形成的都不是直角,有的是锐角有的是钝角。
师:你是怎么知道他们相交后形成了四个直角呢?
生:验证用三角板、量角器
板书:在同一平面内两条直线的位置关系 不相交=互相平行 互相平行的两条线叫做平行线
相交 不成直角
=互相垂直
师:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。用自己的语言说说什么是互相垂直。(生:如果两条直线相交成直角,就说这两条直线相互垂直)说说什么是
垂足,什么是垂线。强调互相。
师:你认为判断两条直线是否垂直最主要的是看什么?
生:相交成直角
师:能不能说红线是垂线。
引导学生说出:红线是绿线的垂线,或绿线是红线的垂线,也可以说红线和绿线互相垂直。
3、生活中的教学
课件出示生活中的例子图片,让同学们更深入的理解平行与垂直的定义。
4、练习拓展
a、生活中我们常常遇到垂直与平行的现象,你能举几个例子吗?(学生举例后教师可适当添加一两个没想到的例子。
b、咱们看看几何图形中有没有垂直和平行的现象?(出示几何图形)
c、下面咱们一起来做个游戏
1.摆出两根红色小棒与绿色小棒平行,想象有多少条直线跟绿色小棒平行。观察发现规律。
2.摆出两根红色小棒与绿色小棒垂直,想象有多少条直线跟绿色小棒垂直。观察发现规律。