第一篇:数学课加法的意义和交换律教学计划
教学目标:
1、使学生理解加法的意义,并能在实际计算中应用.
2、使学生掌握加法交换律,并会应用定律进行验算.
3、培养学生观察、比较、概括推理的能力.
教学重点:
由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中.
教学难点:
由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点.
教学过程:
一、复习准备
1.口算.
39+47 83+15 420+180
47+39 15+83 180+420
2.口答.
(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?
(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?
(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?
二、学习新课
师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)
1.教学加法的意义.
(1)例 一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
读题后,师生共同完成线段图:
学生独立解答:
137+357=494(千米)
加数加数和
答:北京到济南的铁路长494千米.
提问:
①这道题为什么用加法计算?
②加法是一种什么样的运算?
③要合并的两个数指的是什么数?合并成的一个数指的是什么数?
引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.
启发提问:加法的意义是什么?说说看.
引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.
教师板书加法的意义.
练一练
练习十一第1题,应用加法的意义说明各题为什么用加法计算.
在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.
(2)教学加法各部分名称.
提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)
教师板书.(写在例1算式的下面)
教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.
反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?
(3)加法中有关0的问题.
提问:
①我们例1做的'加法,两个加数是什么样的数?(是自然数)
②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)
③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)
引导学生讨论:
0的加法可能有哪几种情况?举例说明.
在学生讨论的基础上,使学生明确:一个数加上0,还得原数.
(4)阅读课本第47页“加法的意义”.
2.教学加法交换律.
根据加法的意义引出加法交换律.
提问:
(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)
(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)
教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.
(3)出示18+17○17+18
350+150○150+350
274+100○100+274
873+127○127+873
提问:
①观察每组算式有什么关系?○里应填什么符号?
引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.
②这几组算式有什么共同特点?你发现了什么规律?
引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.
教师明确:你们发现的这个规律,就叫做加法交换律.
板书:“两个数……,它们的和不变.”
教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?
学生看书自学:第48页.
反馈提问:
什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?
教师板书加法交换律的字母公式:
a+b=b+a
引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.
教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.
练一练
现在用你们学过的知识做第48页的“做一做”.
订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.
3.总结.
(1)说一说加法的意义是什么?
(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?
三、巩固反馈
1.口答.(用加法意义说明算法)
玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?
2.下面各式哪些符合加法交换律?
140+250=260+130 260+450=460+250
20+70+30=70+30+20 a+400=400+a
3.根据运算定律在“□”里填上适当的数.
(1)□+55=55+42(2)a+44=□+□
(3)38+35=□+38(4)48+□=72+□
订正时,要求学生严格按照定义、定律来加以说明.
四、作业
练习十一第2~4题.
板书设计
加法的意义和运算定律
例1 一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
137+357=494(千米)
加数加数和
357+137=494(千米)
答:北京到济南的铁路长494千米.
把两个数合并成一个数的运算,叫做加法.
18+17 17+18
350+150 150+350
274+100 100+274
873+127 127+873
两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:
a+b=b+a
五、教学后记:
学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。
【数学课加法的意义和交换律教学计划】相关文章:
1.第八册加法的意义和交换律教学设计
2.《加法的交换律和结合律》的说课稿
3.《加法的交换律和结合律》教学说课稿
4.《加法的意义和运算定律》的说课稿
5.加法的意义和运算定律说课稿
6.加法的意义和运算定律教案
7.比例的意义和基本性质数学课件
8.加法的简便运算教案
第二篇:加法交换律和乘法交换律
《加法交换律和乘法交换律》教学设计
教学目标:
1、理解掌握加法交换律和乘法交换律,并会用字母表示。
2、经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,体验获得数学知识、探索数学规律的常用策略。
3、在探索规律的过程中,渗透变与不变和归纳猜想的数学思想方法。教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,渗透归纳猜想的数学思想方法。教学难点:归纳猜想的数学思想方法渗透。教学过程:
一、情境导入
同学们,今天我给大家带来一个小故事:小猴子吃桃子。小猴子最喜欢吃桃子了,猴妈妈每天上午发给小猴3个桃子,下午发2个。时间长了,小猴不高兴了,怎么每天下午都少一个桃子啊?于是,猴妈妈每天上午发给小猴2个桃子,下午发3个。这下,小猴子高兴地笑了。
听完这个故事,你想对小猴说点什么啊?
同学们真聪明,能够抓住桃子的变与不变进行分析。
今天,我们就抓住数学中的变与不变来探索规律。(板书:变与不变)
二、探索规律
(一)加法交换律
1、咱们在数学运算中已经学习了加法、减法、乘法、除法,根据你的学习经验,想想在运算的过程中,有没有数的位置变了,而得数不变的现象呢?你认为在什么运算中有? 生:加法、乘法
2、你能举出一个加法算式的例子吗? 师适时板书,示范写法。(比如:2+5=5+2 2+5=7,5+2=7,交换加数的位置后,得数不变,用等号连接。)有同学说乘法中也有,也请你举例来验证一下。
3、观察并思考:
(出示幻灯片,学生理解并说出算式)
4、反馈:
现在我们以黑板上的几道算式为例,请你仔细观察一下左边的加法,你发现什么规律没有?看看什么变了?什么没变?
生:加数位置变了,得数没变。
师:出示定律:两数相加,交换加数位置,和不变。
这是我们数学运算中一个很重要的运算定律,你能给它起个名字吗?(板书:加法交换律)
5、用字母表示:
加法运算中有这样一条运算定律——加法交换律,我们可以写出多少个这样的算式?
能不能想个办法,用一个式子就能表示出这个定律呢?可以同桌
商量一下。
反馈:字母、符号等。
(二)乘法交换律
通过刚才加法交换律的学习,现在请你观察这些乘法算式,你一定有所发现,你想对大家说什么? 生:乘法交换律(师板书)字母表示(师板书)
(三)联系旧知
刚才我们通过举例、观察、归纳概括出了加法交换律和乘法交换律。其实,这两个运算定律我们很早就接触过了。比如,我们一年级学习的看图写两个加法算式,应用了什么定律?再比如,二年级学习的根据一句乘法口诀写两个算式,应用了什么定律?所以说,这两个定律我们已经接触过了,只是今天我们把它归纳概括出来了。
三、达标检测:
1、完成练一练1.2.3题
2、比比谁算得快!(本节不做)
25+49+75 60+58+40 50×18×2 40×12×5
四、猜想验证
1、通过刚才的学习,我们归纳概括出了加法的交换律和乘法的交换律,知道两个数相加或两个数相乘,存在交换律。那么三个数相加或相乘,是否也可以用交换律?减法和除法是否也存在交换律呢?
2、用刚才的学习方法,同桌两人合作,举例进行验证。
3、反馈:
请你汇报的时候先说你的猜想是什么?再说怎么验证的?最后说结论是什么。
师小结:加法和乘法,我们写出了几百个算式,都符合交换加数位置,和不变。交换因数位置,积不变。而减法或除法中,只有被减数、减数相等或者被除数、除数相等的时候得数不变,其他的时候都不行。那我们能说减法和除法有交换律吗?因为我们能够举出一些反例,证明交换位置以后,结果变了,所以这个猜想不成立。
五、学习总结
今天,我们一起探索,归纳概括出了加法的交换律和乘法交换律,我发现大家很会学习。现在我们一起来回忆一下我们的学习过程好吗?
举例——观察——归纳概括出结论——猜想——验证 这是我们数学学习中一种很重要的学习方法,叫做归纳猜想法
第三篇:加法交换律和结合律.
加法交换律和加法结合律
一、说教材
各位老师大家好,我今天说的内容是九年义务教学六年制小学数学苏教版第8册第六单元的内容运算律中的《加法交换律和加法结合律》。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,是学生正确、合理、灵活地进行计算的基础,掌握好坏将直接影响学生今后的计算速度。因此,教学中要积极引导学生进行探讨,自觉应用。
二、说学生(学情分析)
对于四年级学生来说,运算律的概括具有一定的抽象性。在低年级的学习中,对加法运算规律已经掌握,这是学好本单元的有利条件。在此基础上,教学着重帮助学生把这些零散的感性认识上升为理性认识。
三、说教学目标
1、通过观察、比较和分析,归纳出加法交换律和结合律。
2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。
3、培养学生分析、判断、推理能力,提高学生解决问题的能力。
四、教学重难点
教学重点:理解加法交换律、结合律,并能正确运用。
教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。
五、说教法与学法
主要采用引导---探究进行教学,让学生用猜想—验证进行学习。教学中,引导学生自主探究、小组合作,抓住问题,尝试解决问题,感悟知识的形成。
六、说教学过程
一、故事孕伏,导入新课,录音播放故事《朝三暮四》,让学生说说听了这个故事的想法,(引出课题)【 故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲,】
二、创设情境,提出问题。出示书本情境图引入,根据提供信息,提出用加法计算的问题。
预设:
1、跳绳的有多少人?
2、女生有多少人?
3、跳绳的男生和踢毽的女生一共有多少人
4、参加活动的一共有多少人?
【设计意图:创设贴近学生的生活情境,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。】
三、引导探究,建构模型。
(一)、研究加法交换律
1、解决问题,初步感知。
根据问题“参加跳绳的有多少人?”学生口头列式。引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+28
2、引发猜想,举例验证
问:是不是所有的两个数相加,交换加数的位置,和都不变呢?既然是猜想就需要验证,怎样来验证?(板书:猜想 验证)
请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。
小结:我们过去用交换加数的位置再算一遍的方法来验证加法,就是应用了加法交换律。
3、观察等式,发现规律。
问:观察这些等式,说说它们有什么共同特点?
4、引导学生探索加法交换律的表达方式。
①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。汇报: 预设1:我们用数字(文字)表示 2:我们用符号表示 3:我们用字母表示
②比较表示的不同方式,提出用字母表示发现的规律比较简洁。出示板书:a+b=b+a 指出:这样的规律就是加法交换律。(板书)
【设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。】
(二)研究加法结合律
1、再次出现主题图
研究:参加活动的一共有多少人?
学生列式后,板书等式:(28+17)+23=28+(17+23)
观察比较上面算式,思考:等式左右两边什么变了?什么没变?
2、丰富表象,初构规律
完成书上的两组算式,再次比较等式左右两边的“变”与“不变。问: 你发现了什么?
3、举例验证,确认规律
学生小组合作,进一步举例验证规律。
得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)【设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有
字母的式子来表示。这样,既渗透了“猜想、验证、建模”的数学理性思想,又发展了学生分析、比较、归纳、概括的能力。】
(三)、巩固练习,拓展延伸。
1、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用
2、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。
3、游戏:找朋友。
(1)哪两个同学手上的树叶的和是100?
(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。
【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】
(四)、全课总结,引申知识
今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。
【及时总结、巩固所学知识,重视学法总结。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】 七.说板书
良好的板书是课堂的缩影。本科的板书简洁明了,展示学生知识形成的过程,抓住教学脉络,有利于学生知识的建构。v
第四篇:加法的意义和加法交换律教学设计
加法的意义和加法交换律教学设计
教学目标
1.使学生理解加法的意义,并会应用解答实际问题.
2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性. 3.使学生理解并掌握加法交换律并能运用这一定律进行验算.
教学重点
使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握. 教学难点
学生对加法意义、加法交换律运用. 教学步骤
一、复习.
1、口算.
44+56 37+23 180+20 42+8+10 12+0 0+17 386+124 124+235
2、导入 :以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.
二、探究新知.
(一)教学加法的意义.
1、加法的意义.
(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米? 教师提问:这题怎样解答?
(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?(板书:两个数合并成一个数的运算就叫加法)教师明确:这就叫加法的意义.(板书:加法的意义)
(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?
说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的运算,所以这道题要用加法计算.
2、加法等式中各部分名称.
教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)
3、有关0的加法.
教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有 哪几种情况呢?
小结:任何数和0相加都得原数.
(二)教学加法交换律
1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用.
2、教师提问:137+357=494(千米),表示求的是什么? 如果要求济南到北京的铁路长又该怎样列式计算呢? 357+137=494(千米)
3、引导学生观察,比较两种解法的结果. 教师板书:137+357=357+13
4、出示例2,引导学生归纳规律. 18+17○17+18 124+235○235+124 0+25○25+0 规律:
①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置. ②每个等式中,左右两边的加数的和相等.
教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.
教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.
5、练习:判断:下面各等式运用了加法交换律,对吗?为什么? 9+7=7+9 10+1=10+1 20+8=2+26 2+0=0+2
6、用字母表示加法交换律.
教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢? 教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(教师领读几遍,提醒学生不要按汉语拼音来读)教师板书:a+b=b+a 2 提醒注意:a与b可以表示0、1、2、3、„„中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变.
7、学生分组自由举例说明加法交换律.
8、学习、掌握了加法的交换律,目的在于更好地运用.实际上,在以前我们早就应用它解决计算问题.同学们想一想:在哪些计算中都用了加法交换律呢?(验算)
9、练习:运用加法交换律,在下面的□里填上适当的数. 766+589=589+□ 257+□=474+257 a+15=15+□
三、巩固发展.
1、填空.
(1)把()数合并成()数的运算叫做加法.(2)一个数加0,还得().如12+0=().
2、下面各等式哪些符合加法交换律?符合的画“√”.
230+370=380+220 30+50+40=50+30+40 a+10=100+a 230+420=430+220
四、课堂小结.
今天我们学习了加法的意义和加法的一个运算定律——加法交换律.谁能结合具体的题目说一说的含义?(学生讨论)
五、布置作业 .
1、根据运算定律在下面的□填上适当的数.
48+□=72+□ 29+35=□+29 a+38=□+□ □+55=55+42
2、口算下面各题,说一说是怎样应用运算定律的.
91+89+11 85+41+15+59 168+250+32 282+53+37+18
六、板书设计 加法的意义和运算定律
例
1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米? 137+357=494(千米)357+137=494(千米)
答:北京到济南的铁路长494千米.
意义:把两个数合并成一个数的运算叫做加法. 7+0=7 0+7=7 0+0=0 例2 加法交换律:
137+357=357+137 18+17=17+18 24+235=235+24
第五篇:加法交换律和结合律教案
《加法交换律和结合律》教学教案
民勤县南关小学 王雪琴
教学内容:加法交换律和结合律 教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。课程资源的开发与利用:多媒体课件 教学过程:
一、创设情境,初步感知
1、课前谈话(讲“朝三暮四”的故事)
听了这个故事,你想说些什么呢?(交换、不变)
2、情境引入
(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)
(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)(3)师:你能提出用加法计算的问题吗? ①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人
④参加活动的一共有多少人?
(2)我们先来解决第一个问题:参加跳绳的一共有多少人? 你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45(人),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28 =45(人)观察比较这两个不同算式的计算结果。提问:你们发现了什么? 引导学生说出:28+17和17+28的结果都是45。教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)
(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个 例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。
2、在列举中验证规律 象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。谁愿意来交流。
提问:你写了几个?说说看。
根据学生回答,教师相机板书算式,有没有比她多的。
提问:指着板书,你们写的时候有没有什么规律? 学生能说到加数不变,交换位置,结果是一样的就行。按照这样的规律,如果老师给你时间你还能写吗?
能写几个?无数个,写不完,用省略号表示(板书„„)
3、在反思中概括规律
有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗? 需要合作的同学,可以四人小组合作。教师巡视搜集信息。估计情况:
甲数+乙数=乙数+甲数,„„ 请同学起来交流:
如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。
小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。
5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)
三、学习加法结合律。1.在情境中感受规律 刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?
你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。
交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)
有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)
如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。
观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)提问:它符合加法交换律吗?(不符合,加数的位置没变)
提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。
2、在计算中验证规律。再来看这样两组算式:算一算,下面的Ο 里能填上等号吗?汇报前置性作业第四题。
(45+25)+13Ο45+(25+13)(36+18)+22Ο36+(18+22)如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。学生回答,教师板书:(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)
那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?
你还能写出类似的等式吗?汇报前置性作业第五题。指名几个学生回答,追问:你是怎么想的?
回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的。有这样规律的算式多吗?板书„„
3、揭示加法结合律
观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗? 小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b 表示?c表示?
板书:(a+b)+c=a+(b+c)跟老师一起读一遍。
指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如: 9+7想:
=9+(1+6)=(9+1)+6 =10+6 =16 三:巩固内化,拓展应用。
1、课件出示想想做做第1题。
师:下面的加法等式各应用了什么运算律?先说给同桌听听。
师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。
2、课件出示想想做做第2题:
师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。
师:第三、四两道算式,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。
3、课件出示想想做做第4题。
师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。
(1)38+76+24
(3)(88+45)+12
(2)38+(76+24)
(4)45+(88+12)
师:对于这样的比赛结果,你有什么话想说? 比较每组中的两道题有什么联系?哪道题计算更简便些?
师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。
4、完成想想做做第5题
师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十, 因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整
十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)
5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)
6、你想和班级中哪几号同学交朋友?
四、课堂总结 师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。板书设计:
加法的运算定律
加法交换律
加法结合律
28+17=45(人)17+28=45(人)
(28+17)+23
28+(17+23)28+17=17+28
=45+23
=28+40 17+23=23+17
=68(人)
=68(人)学生汇报的算式
(28+17)+23=28+(17+23(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)
a+b=b+a
(a+b)+c=a+(b+c)