信息的定义 教学设计(大全)

时间:2019-05-11 22:31:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《信息的定义 教学设计(大全)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《信息的定义 教学设计(大全)》。

第一篇:信息的定义 教学设计(大全)

1.1信息的定义教学设计

湖北省老河口市第一中学 章士菊

一、知识与技能:

能够在教师的引导下通过自己的探究获得对信息定义的理解,培养学生独立分析问题、解决问题的能力。

二、过程与方法:

利用活动或有趣的游戏,引导学生观察生活中的事例,并进行分析、加工等方法提炼方法和思想,使他们学会透过现象看本质。

三、情感、态度与价值观:

激发学生对信息的本质进行探究的兴趣和积极性,提高他们的信息素养.四、教学重点难点 教学重点:

1、能联系生活实际理解信息的内涵。教学难点:通过探究提炼信息的定义。

五、教学方法

在教学中,通过游戏、活动、生活实例等方式组织教学活动。

六、教学过程

1、引课:

信息社会发展了几十年,信息还没有确切的定义,为我们探究它提供了巨大的探究空间。

让学生思考并讨论片刻„„

2、通过活动与学生一起探究----一张纸的变形。通过该活动让学生探究如下问题:(1)我们通过什么获取信息?

答案:感觉器官

(2)我们通过感觉器官感受到什么?

(3)我们如何加工、存储、表达信息的? 通过探究得出我们对信息的理解:

信息是通过感觉器官感觉到的某一物在某一时刻呈现的某一状态或状态变化的方式,反映在大脑中并加工存储于大脑中,最终表达出来(这里的“事物”泛指一切存在于自然界,人类社会,思维活动中的对象)。老师:我们通过前面的探讨有了我们自己对信息的定义,下面我们再来看看专家是怎么对信息定义的,与我们的定义比较一下,各自有哪些闪光点?

3、赏析专家对信息的定义 用幻灯片展示专家的定义(1)钟义信对信息的定义:

信息是关于事物运动状态和状态变化方式的自我表述(或自我显示)。举例(举色盲的例子)让学生讨论理解这个定义

(2)维纳对信息的定义:信息就是信息,既不是物质也不是能量。第一次提出了”三元论”:物质、能量、信息。

(3)香农(信息论的奠基人)对信息的定义:是有别与物质与能量的第三种东西,是消除客观事物的不确定性的。

跟学生玩游戏理解香农的定义:听口令,做动作.游戏步骤: 1)请大家举起一根手指.2)请举起你左手的一根手指.3)请举起你左手的大拇指.最后总结归纳各种定义的亮点及区别。

第二篇:信息设计的一些定义

信息设计的一些定义:

信息设计使复杂的信息变得更容易理解和使用。—AIGA

信息设计是对信息清晰而有效的呈现。它通过跨学科的途径达到交流的目的,并结合了平面设计、技术性与非技术性的创作、心理学、沟通理论和文化研究等领域的技能。——弗兰克·西森Frank Thissen(Lexikon des Digitalen Informations Designs)

信息设计就是关于用户如何获取、分析和记忆信息的心理学和生理学,关于颜色、形态、图案和学习方式的作用和影响。——路易吉·卡纳蒂·德罗西(Luigi Canali De Rossi)

信息设计涉及对数据的组织和呈现:将其转化成有价值、有意义的信息。—— 内森·舍卓夫Nathan Shedroff(nathan.com)

我的引用是:“交流的唯一途径是弄清楚如果信息不被理解会是什么样子”,只有这样才能创造出可被理解的作品。理查德·索尔·沃尔曼(Richard Saul Wurman)

信息设计是将复杂的数据转换成二维视觉呈现,旨在交流、记录和保存知识。信息设计负责将完整的事实及其相互关系变得易于理解,目的在于创建信息的透明度并剔除不确定性。——格林德·舒勒(Gerlinde Schuller)

信息设计是对信息内容及其关于用户需求、意图实现特定目标的所呈现环境的定义、规划和塑造。—— 国际信息设计学会 International Institute for Information Design

信息设计被定义为一门信息筹划的艺术与科学,它使得人们能够有效地使用信息。信息设计的初级产品主要作为电子文档展现在电脑屏幕上。——罗伯特·E.赫母(Robert E.Horn)

信息设计师是一群非常特别的人,他们必须精通设计师的所有技巧和才能,并将之与科学家或数学家的严谨和解决问题的能力有机结合,还得降学者特有的好奇心、研究技能和坚持不懈的精神带到工作中去。——特里·欧文(Terry Irwin)

信息设计,也成交流设计,是一门快速发展的学科,与多个领域有关:字体设计、平面设计、应用语言学、应用心理学、应用人机工程学、计算机科学等等。信息设计响应了人们需要理解和使用各类事务的需要:表格、法律文件、标识,计算机界面、技术信息和操作/装配指南。——素·沃克(Su Walker)与马克·巴拉特(Mark Barratt)英国设计委员会

第三篇:教学设计的定义

一、什么是教学设计

教学设计是根据教学对象和教学目标,确定合适的教学起点与终点,将教学诸要素有序、优化地安排,形成教学方案的过程。它是一门运用系统方法科学解决教学问题的学问,它以教学效果最优化为目的,以解决教学问题为宗旨。具体而言,教学设计具有以下特征。

第一,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

第二,教学设计是实现教学目标的计划性和决策性活动。教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

第三,教学设计是以系统方法为指导。教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

第四,教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程。教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。

定义加涅曾在(教学设计原理)(1988年)中界定为:“教学设计是一个系统化(systematic)规划教学系统的过程。教学系统本身是对资源和程序作出有利于学习的安排。任何组织机构,如果其目的旨在开发人的才能均可以被包括在教学系统中。”

帕顿(Patten,J.V.见右图)在《什么是教学设计》一文中指出:“教学设计是设计科学大家庭的一员,设计科学各成员的共同特征是用科学原理及应用来满足人的需要。因此,教学设计是对学业业绩问题(performance problems)的解决措施进行策划的过程。”

赖格卢特对教学设计的定义基本上同对教学科学的定义是一致的。因为在他看来,教学设计也可以被称为教学科学。他在《教学设计是什么及为什么如是说》一文中指出:“教学设计是一门涉及理解与改进教学过程的学科。任何设计活动的宗旨都是提出达到预期目的最优途径(means),因此,教学设计主要是关于提出最优教学方法的处方的一门学科,这些最优的教学方法能使学生的知识和技能发生预期的变化。”

梅里尔(Merrill)等人在新近发表的《教学设计新宣言》一文中对教学设计所作的新界定值得引起人们的重视。他认为:“教学是一门科学,而教学设计是建立在这一科学基础上的技术,因而教学设计也可以被认为是科学型的技术(science-based technology)。”

美国学者肯普给教学设计下的定义是:“教学设计是运用系统方法分析研究教学过程中相互联系的各部分的问题和需求。在连续模式中确立解决它们的方法步骤,然后评价教学成果的系统计划过程。”

学习教练肖刚定义教学设计:“教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。”

教学活动是一种有目的、有计划的特殊认识活动,为达到教学活动的预期目的,减少教学中的盲目性和随意性,就必须对教学过程进行科学的设计。

所谓教学设计,简单地说,就是指教育实践工作者(主要指教师)为达成一定的教学目标,对教学活动进行的系统规划、安排与决策。

具体说来,教学设计是指教师以现代教学理论为基础,依据教学对象的特点和教师自己的教学观念、经验、风格,运用系统的观点与方法,分析教学中的问题和需要,确定教学目标,建立解决问题的步骤,合理组合和安排各种教学要素,为优化教学效果而制定实施方案的系统的计划过程。

由此可以看出,教学设计的过程实际上就是为教学活动制定蓝图的过程。通过教学设计,教师可以对教学活动的基本过程有个整体的把握,可以根据教学情境的需要和教育对象的特点确定合理的教学目标,选择适当的教学方法、教学策略,采用有效的教学手段,创设良好的教学环境,实施可行的评价方案,从而保证教学活动的顺利进行。另外,通过教学设计,教师还可以有效地掌握学生学习的初始状态和学习后的状态,从而及时调整教学策略、方法,采取必要的教学措施,为下一阶段的教学奠定良好基础。从这个意义上说,教学设计是教学活动得以顺利进行的基本保证。好的教学设计可以为教学活动提供科学的行动纲领,使教师在教学工作中事半功倍,取得良好的教学效果。忽视教学设计,则不仅难以取得好的教学效果,而且容易使教学走弯路,影响教学任务的完成。

教学设计是根据教学对象和教学目标,确定合适的教学起点与终点,将教学诸要素有序、优化地安排,形成教学方案的过程。

教学设计,就是要促使老师认识到自己个体的教育哲学,让这些沉睡的教育信念觉醒,并在教学中自觉地运用它、验证它、校正它、丰富它。很多人以为,教学设计或者写教案是技术性的东西,与教育哲学没有关系。很多人以为,教育哲学是教育理论工作者的话题,与一线的教师尤其是小学教师没有关系。这是极大的误解。没有什么教学活动不是在相应的教育哲学的指导下进行,没有什么教学活动不体现一定的教育哲学,有时只不过是教师自己没有意识到到而已。

第四篇:教学设计的定义

教学系统设计定义(何克抗、乌美娜、加涅、肯普、梅瑞尔、帕顿和本教材总结的定义)?

何克抗:教学设计是运用系统方法,将学习理论与教学理论的原理转换成对教学目标(或教学目的)、教学条件、教学方法、教学评价等教学环节进行具体计划的系统化过程。

乌美娜:教学系统设计是运用系统方法分析教学问题和确定教学目标、建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程。

加 涅:教学是以促进学习的方式影响学习者的一系列事件,而教学设计是一个系统化规划教学系统的过程。

肯 普:教学系统设计是运用系统方法分析研究教学过程中相互联系的各部分的问题和需要,建立解决它们的方法步骤,然后评价教学成果的系统计划过程。

梅瑞尔:教学是一门学科,而教学设计是建立在教学科学这一坚实基础上的技术,因而教学技术也可以被认为是科学型的技术。教学的目的是使学生获得知识技能,教学设计的目的是创设和开发促进学生掌握这些知识技能的学习经验和学习环境。

帕 顿:教学设计是设计科学大家庭的一员,设计科学各成员的共同特征是运用科学原理及运用来满足人的需要。因此,教学设计是对学业设计业绩问题的解决措施进行策划的过程。

教材总结:教学系统设计是以促进学习者的学习为根本目的,运用系统方法,将学习理论与教学理论等原理转换成对教学目标、教学内容、教学方法和教学策略、教学评价等环节进行具体计划,创设有效的教与学系统的“过程”或“程序”。教学系统设计是以解决教学问题、优化学习为目的的特殊的设计活动,既具有设计学科的一般性质,又必须遵循教学的基本规律。

第五篇:《绝对值的定义》教学设计

《绝对值的定义》教学设计

作为一名教师,时常需要用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。优秀的教学设计都具备一些什么特点呢?下面是小编为大家收集的《绝对值的定义》教学设计,欢迎大家分享。

《绝对值的定义》教学设计1

教学目标:

知识目标:

(1)理解绝对值的概念及表示法。

(2)理解数的绝对值的几何意义。

能力目标:

(1)掌握求一个数的绝对值及有关的简单计算,

(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

教学重点、难点:

重点:

绝对值的概念和求一个数的绝对值。

难点:

绝对值的几何意义。

教学手段:

多媒体(powerpoint)教学与板书相结合。

教学过程:

一、新课引入

我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10Km到达A处,另一位同学乘上乙出租车向西行驶10Km到达B处。

二、合作学习

把全班同学分4—5组分组讨论完成下面的三个问题

1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)

2:思考两位同学付费额度是否一样?为什么?

3:结论付费额度与行驶方向有没有关系?

然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)

这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。说明在数轴上的A(+10)、B(—10)两点到原点(书店)的距离是一样的,都是10。同样数轴上+5和—5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。(注意是离开原点的距离)

如数轴上表示-5的点到原点的距离是5,所以—5的绝对值是5,记作;+5的绝对值也是5,记作。其实际意义是:数轴上+5这个点到原点的距离为5。(强调绝对值符号的书写格式)

三、课内练习

1、求下列各数的绝对值:-1。60-10+10同时说出它们的几何意义。

2、说出下列各数的绝对值:-7-2。0501000

由上述两题可概括出:(在教师的引导下让学生得出结论)

一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。(注意一个数的绝对值不可能是负数,而是非负数。)

(一)典例分析

1、求绝对值等于4的数?

注:分析例题时尽量培养学生利用数轴来解决问题的能力。

2、计算:

四、反馈练习

3、举一个生活中的实际例子,说明解决有的问题只需考虑数的绝对值。(如港口的吞吐量;一位学生上学、放学一共所走过的路等)

4、填表:

相反数

绝对值

21

—0。75

5、画一条数轴,在数轴上分别标出绝对值是6,1,2,0的数

6、计算:

五、探究学习

1、某人因工作需要租出租车从A站出发,先向南行驶6Km至B处,后向北行驶10Km至C处,接着又向南行驶7Km至D处,最后又向北行驶2Km至E处。

请通过列式计算回答下列两个问题:

(1)这个人乘车一共行驶了多少千米?

(2)这个人最后的目的地在离出发地的什么方向上,相隔多少千米?

2、写出绝对值小于3的整数,并把它们记在数轴上。

六、小结

一头牛耕耘在一块田地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过的距离之和,有时候我们是无法想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。

七、布置作业

做作业本中相应的部分。

《绝对值的定义》教学设计2

教学目标

1.了解绝对值的概念,会求有理数的绝对值;

2.会利用绝对值比较两个负数的大小;

3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.

教学建议

一、重点、难点分析

绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义

绝对值的表示方法

用绝对值比较有理数的大小

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

四、有关绝对值的一些内容

1.绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.

2.绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.

3.绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.

(4)两个相反数的绝对值相等.

五、运用绝对值比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小.

比较两个负数的方法步骤是:

(1)先分别求出两个负数的'绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断.

2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大.

教学设计示例

《绝对值的定义》教学设计3

一、学习与导学目标:

知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

A、创设情境(幻灯片或挂图)

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;

(3)︱0︱=。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4-202。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

1、幻灯片

2、师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

《绝对值的定义》教学设计4

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

《绝对值的定义》教学设计5

教学内容

七年级上册课本11----12页1.2.4绝对值

教学目标

1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

教学重点与难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

教学准备

多媒体课件

教学过程

一、创设问题情境

1、两只小狗从同地方出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作-xxxxxxxxxx,B处记作xxxxxxxxxx。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念-———绝对值。

二、建立数学模型

1、绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

注意:①与原点的关系②是个距离的概念

2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6,0,-10,+10

2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:

1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

3.出示题目

(1)-3的符号是xxxxxxx,绝对值是xxxxxx;

(2)+3的符号是xxxxxxx,绝对值是xxxxxx;

(3)-6.5的符号是xxxxxxx,绝对值是xxxxxx;

(4)+6.5的符号是xxxxxxx,绝对值是xxxxxx;

学生口答。

师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

5、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数?

②一个数的绝对值是它的相反数,这个数是什么数?

③一个数的绝对值一定是正数吗?

④一个数的绝对值不可能是负数,对吗?

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

(由学生口答完成,进一步巩固绝对值的概念)

6、例2.求绝对值等于4的数

(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴(如下图)

②从几何意义上分析,画一个数轴(如下图)

因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

所以绝对值等于4的数是+4和-4

6、练习:做书上12页课内练习1、2两题。

四、归纳小结

1、本节课我们学习了什么知识?

2、你觉得本节课有什么收获?

3、由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

1、让学生去寻找一些生活中只考虑绝对值的实际例子。

2、课本15页的作业题。

《绝对值的定义》教学设计6

一、教学目标:

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材P66习题2.4A组3、4、5.

《绝对值的定义》教学设计7

教学目标

1、掌握绝对值的概念,有理数大小比较法则。

2、学会绝对值的计算,会比较两个或多个有理数的大小。

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

教学难点

两个负数大小的比较

知识重点

绝对值的概念

教学过程

(师生活动)设计理念

设置情境

引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对

有什么规律?、

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

课堂练习例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

附板书:

1.2.4绝对值

下载信息的定义 教学设计(大全)word格式文档
下载信息的定义 教学设计(大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    定义与命题教学设计

    定义与命题 教学设计(二) 教学目标 (一)教学知识点1命题的概念 1.命题的组成:条件和结论. 2.命题的真假. (二)能力训练要求1能够判断什么是命题. 1.能够分清命题的题设和结论.会把......

    信息教学设计

    信息教学设计 信息教学设计1 一、本课说明本课介绍了信息技术的应用及发展前景,回顾了在人类社会的历史长河中,信息技术全面的发展历程。二、课前准备信息发展的图片、视频。......

    信息分类的定义及其原则

    信息分类的定义及其原则 一、信息分类的定义信息分类是指在一定范围内,为了某种目的,以一定的分类原则和方法为指导,按照信息的内容、性质及管理者的使用要求等,将信息按一定的......

    教学系统设计的含义和定义

    教学系统设计的含义 教学系统设计(Instructional System Design,简称ISD),通常也称教学设计(Instructional Design),这门学科的发展综合了多种理论和技术的研究成果,参与教学系统设......

    有效教学定义

    有效教学定义 有效教学就是教师通过教学活动,使得学生在一定的时间内让学生得到全面发展。然而很多学者对于有效教学都给出了自己的定义。张璐指出:有效教学指教师遵循教学活......

    教学的定义

    教学的定义 1. 所谓教学,乃是教师教,学生学的统一活动;在这个活动中,学生掌握一定的知识和技能,同时,身心获得一定的发展,形成一定的思想品德。 ——王策三《教学论稿》 2. 教学就是......

    概括信息教学设计

    “信息概括”复习课设计(1课时) 教学目标: 1.学会阅读信息材料,掌握删选重要信息的方法,提高信息概括能力。 2.掌握正确的解题思路,提高简明而通顺的表达能力。 教学流程: 一、考......

    信息安全教学设计

    教学设计 课题:信息安全 计划课时:1课时 时间:第十五周星期四下午第三节 班级: 授课教师: 教材分析 本节是初中生的必修课,现在大部分学生都会上网,但是网络中的病毒和垃圾一直侵蚀......