全等三角形课件

时间:2019-05-11 20:58:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全等三角形课件》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全等三角形课件》。

第一篇:全等三角形课件

全等三角形课件

【教学目标】

1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2.继续培养学生画图、实 验,发现新知识的能力.【重点难点】

1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2.重点:灵活运用SSS判定两个三角形是否全等.【教学过程 】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:

(1)画一线段AB使 它的长度等于c(4.8cm).(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC.△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.).2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

3、问题

3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知 AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA5、练习:

6、试一试:已知一个三角形的三个内 角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相 同).三个对应角相等的两个三角形不一定全等.三、加强练习,巩固知识

1、如图,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,.与 相等吗?请说明理由.四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.五、作业

第二篇:全等三角形电子课件

全等三角形电子课件讲解了什么是全等形、全等三角形及全等三角形的对应元素、以下是小编整理的全等三角形电子课件,希望下面对数学全等三角形定理公式的内容讲解学习,学生们都能很好的掌握。

【教学目标】

1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实 验,发现新知识的能力、【重点难点】

1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2、重点:灵活运用SSS判定两个三角形是否全等、【教学过程 】

一、创设问题情境,引入新课

请问学生,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的、(学生们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等、)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等、满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究、二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?

先请几位学生说说画图思路后,教师指导,学生们动手画,教师演示并叙述书写出步骤、步骤:

(1)画一线段AB使 它的长度等于c(4、8cm)、(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C、(3)连结AC、BC、△ABC即为所求

把你画的三角形与其他学生的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现了什么?

学生们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的、这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S、S、S、)、2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形、)

3、问题

3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

三、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等、三个角对应相等的两个三角不一定会全等。

第三篇:全等三角形判定课件

全等三角形是几何学中的重要概念,下面就是小编为您收集整理的全等三角形判定课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

全等三角形判定课件

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1)投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

思考题:

板书设计:

探究活动

(2)证明 :AF∥DE

第四篇:全等三角形优质课课件

一、教材背景及学情分析:

本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发现全等三角形的性质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。

二、教学目标分析:

1、知识技能

了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。

2、数学思考

在图形的变换以及实际操作的过程中,发展学生的空间观念,培养学生的几何直观能力。

3、过程与方法

在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径

4、情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等形和全等三角形的体验;在探究和运用全等三角形性质的过程中感受数学活动的乐趣。

5、教学重点

⑴全等三角形以及相关概念。

⑵探索全等三角形的性质.

6、教学难点

寻找并掌握全等三角形对应角、对应边的方法。

三、教法分析

《课标》指出:学生是学习的主人,教师是学习的组织者、引导者、合作者,本节课以学生的活动为主线,以突出重点、突破难点、发展学生的数学素养为目的,采用以自学辅导式为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合,注重数学与生活的联系,创设一系列有启发式、挑战性的为题激发学生学习的兴趣,引导学生用数学的眼光思考问题,发现规律,验证猜想,注重师生互动,生生互动,更着眼于学生的实际,充分提现学生的心理需要,从而发展他们的能力和自主学习的意识。

四、课前准备

教具:直尺、三角形纸板、同一底片的两张照片、多媒体课件。

学具:同一底片的照片两张、三角形纸板。

五、教学过程

1、创设情境、激发兴趣,引入新课

问题1:我们每个人手里的数学课本在外形和大小上有什么关系呢?你能发现下面的里两个图形有什么美妙关系吗?(多媒体展示)

通过学生观察、猜想初结论后,教师板书课题(本环节约3分钟)

2、动手实践、师生互动、启发思维

问题2:学生自己动手(同桌互相配合)。

⑴、把同一底片洗出来的两张照片上的图形沿边框剪下来,把剪下来的 图片放在一起,你有什么发现?

⑵、取一张纸,将自己的三角板按在纸上,画下图形,照图形裁下来,纸样与三角形的形状、大小有什么关系?

⑶、问题3:通过刚才的体验,大家谈谈什么样的两个图形是全等形,全等三角形?如何表示两个全等三角形呢?

(本环节约6分钟)

3、动态演示,观察归纳,尝试体验(多媒体演示)

问题4:三角形在平移、翻折、旋转的过程中是否发生了改变?各图中的两个三角形全等吗?(多媒体演示,给学生更直观的启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变,所以平移、翻折、旋转前后的图形全等,这是利用运动的方法寻找全等的一种策略)。

本环节约5分钟

4、自主学习,深入思考,获取概念。

通过学生自学课本P31内容,理解全等三角形对应元素的概念,培养学生的数学概念辨析能力,并能将三角形经过平移、翻折、旋转前后的对应元素找出来,同时能正确的表示两个全等三角形,强调要将对应的顶点写在对应的位置上。

5、启发猜想,合作实践,验证猜想。

问题5:全等三角形的对应角有什么关系呢?对应边呢?(通过对图形的观察、以及演示,启发学生大胆猜想,并通过动手实践、验证猜想的正确性。)

本环节约5分钟

6、学以致用,分层练习,巩固提高(多媒体展示)

通过对三个练习题的讨论分析、总结得出根据文职元素寻找对应角、对应边的方法,从而配用学生对较复杂图形的识别能力,进一步加深学生对全等三角形的认识。

本环节约10分钟

7、反馈评价,师生小结(多媒体展示)

问题6:本节课你学到了什么?你最大的收获是什么?你还有什么问题呢?

本环节有5分钟

8、回味知识,布置作业

未了加深学生对知识的理解,促进学生对课堂的反思,布置阅读本节课内容后,分层次完成P33页12.1 第1、2题。

六、板书设计

屏幕



一、相关概念



二、三角形全等的性质



三、学生练习



七、教学反思:

本教学设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形实验,加深对“三角形全等”、“对应”含义的理解,即培养学生的画图、识图能力,又提高了逻辑思维能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思想过程,而这样的过程能够促进学生对数学的正真理解和把握,从而不仅获得了数学知识、技能,而且经历了数学活动的过程,体验了数学活动的方法。同时,情感、态度价值观都能得到很好的发展。

第五篇:全等三角形的课件

一般来说考试中出现的线段与角相等需要证明全等,我们可以用全等的相应知识点来解题。下面是关于全等三角形的课件的内容,欢迎阅读!

一、教材分析

(一)本节内容在教材中的地位与作用。

对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形与全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

(二)教学目标

在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:

(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。

(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。

(3)培养学生勇于探索、团结协作的精神。

(三)教材重难点

由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。

(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。

二、教法选择与学法指导

本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。

三、教学流程

(一)创设情景,激发求知欲望

首先,我出示一个实际问题:

问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……

然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以与毛毛一起来攻克这个难题呢?

这样设计的目的是既交代了本节课要研究与学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。

(二)引导活动,揭示知识产生过程

数学教学的本质就是数学活动的教学,为此,本节课我设计了下列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。

活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。

活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。

活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。

活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺与剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。

活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。

活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。

最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。

若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?

活动七:在给出的画有的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。

教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。

(三)例题教学,发挥示范功能

例题教学是课堂教学的一个重要环节,因此,怎样充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。

首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。

问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。

问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?

这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。

在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:

(1)基础知识应用。完成教材P139练一练2。

(四)课堂小结,建立知识体系。

(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。

(2)你还有哪些疑问?

下载全等三角形课件word格式文档
下载全等三角形课件.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    关于全等三角形教学课件

    全等三角形是我们小学数学必上课程。下面小编带来的是关于全等三角形教学课件,希望对你有帮助。一、教材分析本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形......

    八上全等三角形课件

    三角形是由不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形叫做三角形.常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与......

    全等三角形的判定课件

    【教学目标】1.探索三角形全等“边角边”的条件.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【教学重、难点】1.应用“边角边”证明两个三角......

    全等三角形的性质课件

    篇一:全等三角形的性质课件执教老师:xx教学内容:湘教版数学八年级上册第三单元“全等三角形的性质”教学目标:1、在现实情境中,了解全等形的概念及全等三角形的概念及其性质2、在......

    全等三角形判定2课件范文

    导语:课件(courseware)是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。以下是小编整理全等三角形判定2课件的资......

    证明三角形全等的课件[大全五篇]

    学习是一个循序渐进的过程,需要同学们不断的学习和努力。小编为大家提供了证明三角形全等的课件,希望能帮助大家更好的复习所学的知识。证明三角形全等的课件一、设计的意图:现......

    数学全等三角形复习课件(合集5篇)

    同学们身边有很多的全等形,全等三角形是最基本,应用最广泛的一类全等形,要想学好全等知识,一定要掌握下面的内容。接下来小编为你带来数学全等三角形复习课件,希望对你有帮助。一......

    全等三角形

    复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。 活......