高中一年级数学必修一知识点总结

2020-07-23 17:20:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高中一年级数学必修一知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中一年级数学必修一知识点总结》。

高一数学必修1各章知识点总结

第一章

集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)

元素的确定性如:世界上最高的山

(2)

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)

元素的无序性:

如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{

}

如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)

集合的表示方法:列举法与描述法。

u

注意:常用数集及其记法:

非负整数集(即自然数集)

记作:N

正整数集

N*或

N+

整数集Z

有理数集Q

实数集R

1)

列举法:{a,b,c……}

2)

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR|

x-3>2},{x|

x-3>2}

3)

语言描述法:例:{不是直角三角形的三角形}

4)

Venn图:

4、集合的分类:

(1)

有限集

含有有限个元素的集合(2)

无限集

含有无限个元素的集合(3)

空集

不含任何元素的集合  例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:

集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B

(5≥5,且5≤5,则5=5)

实例:设

A={x|x2-1=0}

B={-1,1}

“元素相同则两集合相等”

即:①

任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹

B那就说集合A是集合B的真子集,记作AB(或BA)

③如果

AÍB,BÍC,那么

AÍC

如果AÍB

同时

BÍA

那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:

空集是任何集合的子集,空集是任何非空集合的真子集。

u

有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB

={x|xA,或xB}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

S

A

记作,即

CSA=

S

A

AA=A

AΦ=Φ

AB=BA

ABA

ABB

AA=A

AΦ=A

AB=BA

ABA

ABB

(CuA)

(CuB)

=

Cu

(AB)

(CuA)

(CuB)

=

Cu(AB)

A

(CuA)=U

A

(CuA)=

Φ.

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:

y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|

x∈A

}叫做函数的值域.

2.值域

:

先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

4.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A

B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

5.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;

(2)

图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

(A)

定义法:

任取x1,x2∈D,且x1

作差f(x1)-f(x2);

变形(通常是因式分解和配方);

定号(即判断差f(x1)-f(x2)的正负);

下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

首先确定函数的定义域,并判断其是否关于原点对称;

确定f(-x)与f(x)的关系;

作出相应结论:若f(-x)

=

f(x)

f(-x)-f(x)

=

0,则f(x)是偶函数;若f(-x)

=-f(x)

f(-x)+f(x)

=

0,则f(x)是奇函数.

第二章

基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.

u

负数没有偶次方根;0的任何次方根都是0,记作。

当是奇数时,当是偶数时,2.分数指数幂

正数的分数指数幂的意义,规定:,u

0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1)·;

(2);

(3)

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0

定义域

R

定义域

R

值域y>0

值域y>0

在R上单调递增

在R上单调递减

非奇非偶函数

非奇非偶函数

函数图象都过定点(0,1)

函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

二、对数函数

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—

底数,—

真数,—

对数式)

说明:

注意底数的限制,且;;

注意对数的书写格式.

两个重要对数:

常用对数:以10为底的对数;

自然对数:以无理数为底的对数的对数.

u

指数式与对数式的互化

幂值

真数

N=

b

底数

指数

对数

(二)对数的运算性质

如果,且,,那么:

·+;

-;

注意:换底公式

(,且;,且;).

利用换底公式推导下面的结论

(1);(2).

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:

对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.

对数函数对底数的限制:,且.

2、对数函数的性质:

a>1

0

定义域x>0

定义域x>0

值域为R

值域为R

在R上递增

在R上递减

函数图象都过定点(1,0)

函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

第三章

函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

(代数法)求方程的实数根;

(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

下载高中一年级数学必修一知识点总结word格式文档
下载高中一年级数学必修一知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中必修一生物知识点总结

    高中必修一生物主要讲了内容?有哪些知识点必须掌握的?以下是小编整理的高中一生物知识点总结,欢迎阅读。高中必修一生物知识点总结11、生命系统的结构层次依次为:细胞→组织→器......

    必修一知识点总结

    必修一重点词组句子归纳总结 1 Unit1 Friendship 重点词组: be good to 对….友好 add up 合计 another time 改时间 get sth done 使…被做calm down 镇定下来 have got to......

    生物高中必修一知识点[5篇]

    知识是青年人的最佳的荣誉,老年人最大的慰藉,穷人最宝贵的财产,富人最珍贵的装饰品。下面小编给大家分享一些生物高中必修一知识,希望能够帮助大家,欢迎阅读!生物高中必修一知识1......

    高中高一数学必修1各章知识点总结

    高中高一数学必修1各章知识点总结(1) 第一章 集合与函数(1) 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三......

    高一化学必修一知识点总结

    必修1全册基本内容梳理 从实验学化学一、化学实验安全 1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验......

    必修一英语知识点总结

    必修一英语知识点总结 Unit 1 1.add up 合计 add up to 加起来是„ add to 增加,促进 add„to„ 把„加到„上 add that 补充说 2.upset ①adj.心烦意乱的;不安的;不适的 ②vt.......

    高中化学必修一知识点总结

    必修1全册基本内容梳理 从实验学化学 一、化学实验安全 1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验......

    历史必修一知识点总结

    历史必修一知识点总结 第一单元:古代中国的政治制度 第一课考点 重点:西周的宗法制与分封制 1、夏是我国历史上第一个王朝,我国的早期国家政治制度始于:夏2、王位世袭制的确......