第一篇:SPSS学习心得体会
应用统计分析学习报告
本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,spss也只是听说过,从来没有学过。一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水。老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了。结合软件和书上的例子,实战一下,发现spss的功能相当强大。最后总结出这篇报告,以巩固所学。spss,全称是statistical product and service solutions,即“统计产品与服务解决方案”软件,是ibm公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。spss具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。具体到管理方面,spss也是一个进行数据分析和预测的强大工具。这门课中也会用到amos软件。
关于spss的书,很多都是首先介绍软件的。这个软件易于安装,我装的是19.0的,虽然20.0有一些改变和优化,但是主体都是一样的,而且都是可视化界面,用起来很方面且容易上手。所以,我学习的重点是卡方检验和t检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用价值、计算方式、结果的解释和表述。
首先是t检验这一部分。由于参数检验的基础不牢固,这部分也是最初开始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么。结果出来后依然分不清楚是接受原假设还是拒绝原假设。不过现在弄懂了。这部分很有用的是t检验。t检验应用于当样本数较小时,且样本取自正态总体同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体。t检验分为单样本t检验、独立样本t检验、配对样本t检验。其中,单样本t 检验是样本均数与总体均数的比较的t检验,用于推断样本所代表的未知总体 均数μ与已知的总体均数uo有无差别;独立样本t检验主要用于检验两个样本是否来自具有相同均值的总体,即比较两个样本的均值是否相同,要求两个样本是相互独立的;配对样本t检验中,要正确理解“配对”的含义,主要用于检验两个有联系的正态总体的均值是否有显著差异,跟独立检验的区别就是样本是否是配对样本。这几个方法用软件操作起来都是相对简单的,关键是分清楚什么时候用这个什么时候用那个。
然后是方差分析。方差分析就是将索要处理的观测值作为一个整体,按照变异的不同来源把观测值总变异的平方和以及自由度分解为两个或多个部分,获得不同变异来源的均值与误差均方,通过比较不同变异来源的均方与误差均方,判断各样本所属总体方差是否相等。方差分析主要包括单因素方差分析、多因素方差分析和协方差分析等。这一部分在学习的过程中出现一些问题,就是用spss来操作的时候分不清观测变量和控制变量,如果反了的话会导致结果的不准确。其次,对bonferroni、tukey、scheffe等方法的使用目的不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。相关分析研究现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。主要有双变量相关分析、偏相关、距离相关几个方法。双变量相关分析是相关分析中最常使用的分析过程,主要用于分析两个变量之间的线性相关分析,可以根据不同的数据类型和条件,选用pearson积差相关、spearman等级相关和kendall的tau-b等级相关。当数据文件包括多个变量时,直接对两个变量进行相关分析往往不能真实反映二者之间的关系,此时就需要用到偏相关分析,从中剔除其他变量的线性影响。距离相关分析是对观测变量之间差异度或相似程度进行的测量,其中距离需要弄清楚,距离分析是对观测量之间相似或不相似程度的一种测度,是计算一对观测量之间的广义距离。这些相似性或距离测度可以用于其他分析过程,例如因子分析、聚类分析或多维定标分析,有助于分析复杂的数据集。接着是回归分析。相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。回归分析的目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。应用回归分析时应首先确定变量之间是否存在相关关系,如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。正确应用回归分析预测时应注意:①用定性分析判断现象之间的依存关系;②避免回归预测的任意外推;③应用合适的数据资料; 接下来是因子分析。因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家c.e.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接
测量到的隐性变量。从显性的变量中得到因子的方法有两类。一类是探索性因子分析,另一类是验证性因子分析。探索性因子分析不事先假定因子与测度项之间的关系,而让数据“自己说话”。而验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数。这一部分不能用spss来操作,要用amos,用起来也很方便。
最后一部分学习的是结构方程模型。结构方程模型是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,其大量应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。结构方程模型是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。结构方程模型与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。
这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程。甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的。spss是个很神奇的工具,结合amos和excel更是如虎添翼,相信学习了spss在以后的论文和数据分析中很有用。这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了。但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂。然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多。老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导。篇二:spss心得体会
学习spss在教育统计中的应用心得体会
一、什么是spss?为什么要学习spss?
新学期开始时,在信息化教育测量与评价的课程中第一次接触
到spss这个软件,作为本科是计算机专业出身的我,当时只知道spss是一套统计软件,就是一套根据统计学原理所编写出来的统计分析软件,至于统计什么?分析什么?我一无所知,尤其是看到老师推荐的《spss在教育统计中的应用》这本书的时候,就简单的把它理解为用spss软件来统计、分析与教育相关的数据,最终得出想要的结论而已,而现在看来,我当初的想法未免有点简单与无知。下面就来让我们了解一下spss。spss软件是一组专业的、通用的统计软件包,同时它也是一个组合式软件包,兼有数据管理、统计分析、统计绘图和统计报表功能。它广泛用于教育、心理、医学、市场、人口、保险等研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。spss软件对计算机硬件系统的要求较低;对运行的软件环境要求宽松,有各种版本可运行在windows xp、win7系统环境下,spss统计软件采用电子表格的方式输入与管理数据,能方便地从其他数据库中读入数据(如dbase,excel,lotus等)。
我为什么要学习spss呢?其实很简单,一方面,做为一名 研究生,要具备一定的科研能力,如今量化研究的方法大行其道,一切要以事实说话、要以数据说话,有了数据支持的研究才能更容易被认可、被推论。另一方面,根据对aect94定义的理解,教育技术
学研究的对象是学习过程和学习资源,包含大量的偶然现象和非精确现象。因此,要深入研究教育技术现象及其规律,必须运用统计描述、统计分析方法和模糊数学分析方法,才可能使这门学科达到真正完善的地步。教育技术学研究的现象多数是偶然的现象,其变化发展往往具有几种不同的可能性,究竟出现哪一种结果,那是带有偶然性的,是随机的。这类偶然现象是遵循统计规律的,当随机现象是由大量的成份组成,或者随机现象出现大量的次数时,就能体现统计平均规律。我们只有对数据资料作统计处理,才可能可以发现它们的内在规律,掌握现象的特征,检验研究的假设,才能得出准确的、可靠的研究结果。
二、对本spss各章节学习的心得
新课程老师带领下,采取一种新的学习方式,老师讲解了基础部分后,全班同学采取小组分工、协作学习,然后对全班同学进行讲解学习内容,教师进行当堂指导,这种方法改变了同学们的学习态度,同学们不再是课前不预习,课下不复习的状态,每组都有自己的任务,课前有一定的压力,同学间的讨论也明显的增多,例如:一次课下同学们在一起吃饭,有几位同学还在调侃说“两个菜之间用spss进行分析后得出的结果不接受h0假设,也就是两个菜之间不相关”,虽然这只是一个课下的玩笑,但是这也可以体现出对学习的态度的转变。下面就本学期的所学spss的各章节做一下归纳,这些归纳也是基于本人平时在课前预习,课上及课后的一些所思所想,也许会有一些理解上的偏颇在内,但这仅限于心得而已。本学期学习各个章节
及分工如下表: 章节名称
1.spss的认识
及数据文件的处理
2.数据清理与
基本统计及测
量质量分析 3.t检验 4.方差分析1、2人 3人 7.聚类分析 8.统计图形 2人 1人 2人 6.卡方检验 3人 2人 5.相关分析 3人 分工人数 章节名称 分工人数 spss的认识及数据文件的处理心得体会
可能是由于是同学们第一次讲,万事开头难,压力很大,在大家认为最为简单的内容讲解上,两位同学并没有完全展现出二人实际水平,大家在这一节课上都感觉到很压抑,总的感觉是这节内容很简单,但是内容又很松散,可讲的东西太多,讲的东西多就没有突出重点和难点,所以听过之后就有种无数的碎片漂浮在脑海中一样,很难将知识系统化,课后总结一下无非就是两块,一块是了解spss软件的历史及基本功能,还有一块就是spss软件当中一个模块叫做数据文件的处理,在认识spss软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,spss已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用
只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到spss当中即可,当然也可以在spss软件之外进行数据编制,可以通过execel等编辑后可以直接导入到spss中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。
2、数据清理与基本统计及测量质量分析的心得体会
数据的清理与基本统计及测量质量分析由两名同学进行讲解,由于吸取了上节课两名同学的经验,本节讲授的明显好于上节课,这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里本人觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用spss软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些
理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在spss中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用spss对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。
3、t检验的心得体会 t检验由两名同学讲解,在学习t检验时,首先要明确什么样的数据适合t检验,t检验的结果要说明什么问题?经过学习可以知道,t检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,t检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种t检验称为配对t检验;另一种情况下的t检验是两组数据可以任意颠倒顺的检验称为独立样本的t检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过spss的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,本人的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信,篇三:spss学习总结
学习spss感想
以前学统计学的时候就听老师讲过spss有非常强大的统计功能,对我们学习、工作有很大的帮助,所以我一直认为spss很神秘。通过这个学期周老师的课让我对此清楚了许多,也学到了spss强大的统计功能,更加让我明白了spss与excel的区别。spss是“社会科学统计软件包”(statistical package for the social science)的简称,是一种集成化的计算机数据处理应用软件。1968年,美国斯坦福大学h.nie等三位大学生开发了最早的spss统计软件,并于1975年在芝加哥成立了spss公司,已有30余年的成长历史,全球约有25万家产品用户,广泛分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个领域和行业。spss是世界上公认的三大数据分析软件之一(sas、spss和systat)。
在学习spss期间,我主要遇到的问题是后面几章,spss的参数检验、方差分析、相关分析、线性回归分析、聚类分析、因子分析等。在参数检验中我不知道原假设是什么,导致分析的时候不知道该拒绝原假设还是接受原假设,不能分析出统计结果。不会区分单样本t检验和两配对样本t检验的区别,现在懂得了它们都要服从正态分布,基本思想是小概率反证法,反证法思想是先提出假设(检验假设h0),再用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,否则,还不能认为假设不成立。
在学习方差分析中,开始常常把观测变量和控制变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。其次,对lsd、bonferroni、tukey、scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。
在学习相关分析的过程中,在绘制散点图时,不知道哪个该做横坐标,哪个该做纵坐标,明白了横坐标是解释变量,纵坐标是被解释变量,还有对相关系数的种类分析不熟练等。在学习回归分析的过程中,对dw可检验的含义不理解,不记得对应的dw表示的残差序列的相关性。对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。
学习聚类分析中,变量的选择分不清,无关变量有时会引起严重的错分,应当只引入在不同类间有显著差别的变量,尽量只使用相同类型的变量进行分析。分类数不明确,从实用角度讲,2~8 类比较合适。掌握了k-means cluster 分析,样本量大于100时有必要考虑,只能使用连续性变量。
学习因子分析的过程中,对提取出来的因子的实际含义不清晰,不能使因子具有命名解释性。
学习了spss后,我不禁想到了spss与excel的区别,这一点是针对像我这样开始只懂得用excel的人来说。从个人的体会来说,二种软件有一定相似,操作都简便,同时又有一些可以互补的地方。但是spss又比excel更加强大:
一、图型的表现力是spss的主要优点之一
应该说,excel的图型表现主要是简便,对许多的人来说基本够用,但对于科学的表现,spss就更为详细和准确,这一点据说在所有统计软件中都突出。
二、通过spss检验方差齐性和数据分布
假设检验中,采用的t检验和方差检验都需要满足二个要求,即 1.样本方差齐性
2.样本总体呈正态分布
在excel中,提供了f检验来检验方差齐性问题,也就是可以先通过f检验确定方差齐性与否来选择下一步用哪个t检验或方差检验分析工具。但只要数据多于二组则无从下手;通过描述统计大约能从峰度和偏度来了解样本的分布实际工作中,只要分布单峰且近似对称分布,也可应用,但要具体确定样本的分布也有难度。这二个问题在spss就可以解决
最后,在感叹它的方便与快捷的同时,对软件开发人员的智慧到了肃然起敬的地步。一直觉得计算机语言是最难的一门外语。虽然本科时曾经对这种逻辑性很强的东西很感兴趣,并在编程课上取得不错的成绩,但一直觉得这似乎不是我能掌控的东西。spss的神奇之处在于,它省去了使用者巨大的计算量,并提高准确性。它开发了开发者的智慧,却弱化了使用者的大脑。篇四:spss学习心得
学院:传播学院 专业:10级广播电视新闻学 学号:129012010023 姓名:许咪咪
学习spss有感——与excel之比较
在学习spss软件的过程中,自己不敢有丝毫松懈,但同时感到学习压力很大,有一定的学习难度,软件的操作可以通过短时间内熟悉,但对数据的结果分析还需要很大很大的提高。在掌握了spss相关技能和熟知了spss之于excel的优越性之后,spss成了往后我进行数据分析、调查的首选软件,如若能自由地结合二者使用,便是更佳选择。excel的基本功能中包括了比较强大的数据处理功能,还提供了丰富的工作表函数,可以完成很多类型的数据处理和分析任务。除了工作表函数以外,excel还提供了一个称为“分析工具库”的加载宏。excel应用的普及性,许多人都把它作为最常用的统计软件来使用。excel提供的统计功能包括数据管理、描述统计、概率计算、假设检验、方差分析和回归分析等等,对于统计学原理所涉及的大部分内容已经足够了。然而,在学习excel的统计功能以前我们有必要先交待一下excel在统计分析方面的局限性。
1、就统计学原理所涉及的统计方法而言,excel没有直接提供的方法包括:箱线图(boxplot)、茎叶图、相关系数的p-值、无交互作用可重复的双因素方差分析、方差分析中的多重比较、非参数检验方法、质量控制图等。
2、按照优秀图形的标准,excel做出的很多图形都不合格。excel的有些图形可能适合于普通大众,但不适合用于科学报告中。例如二维图形的三维表示,圆柱图,圆锥图等等。excel提供的有些图形可能永远不应该使用。
3、excel不能很好的处理缺失值(missing data)问题。总体来说excel对缺失值的处理方式远不如专门的统计软件恰当。
4、虽然大部分情况下excel的计算结果都是可靠的,但在一些极端情况下excel的计算程序不够稳定和准确(特别是excel2003以前的版本中);有些自动功能可能会导致意想不到地结果。
总体来说,excel为我们输入和管理数据、描述数据特征、制作统计表和统计图都提供了强大的支持,但在处理复杂的计算时有时候误差相对较大,因而一些数据处理专家建议人们避免采用excel处理复杂的统计问题。spss能在简单操作基础上,解决excel存在的这些问题,甚至非统计学相关专业的人员也可以利用这个软件对复杂的统计问题进行处理、分析。平时我惯常使用的数据分析软件也是excel。虽然使用excel可以对数据进行透视、分类、筛选以及计算相关系数等,但是这些操作都需要自己每一步每一步的进行手动操作,而使用spss软件在对数据进行整理时,只需对软件某选项内设
置变量条件,系统便自动的进行整理。而且,在学习与应用spss过程中,我了解到应用spss软件只要了解统计分析的原理无需知晓统计方法的各种算法就能得到自己所需要的统计分析结果。另外对于常见的统计方法,spss的命令语句、子命令及选择项的选择绝大部分在软件内的对话框操作完成,我们无需花费大量的时间记忆大量的命令和选择项。在这方面,spss软件的应用可以使我们节省大量时间,而且软件操作比较容易上手,在当今这个时间就是金钱的社会上,我们掌握spss软件的应用,也就是为自己赚取了不少金钱。
另外在与spss的接触中,我逐渐了解到spss软件的强大与方便。spss提供了从简单的统计描述到复杂的多因素统计分析方法,其中有数据的统计分析、统计描述、交叉表分析、二维相关、方差分析、多元回归、因子分析、聚类分析、降维等分析方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。虽然,这些方法大部分我还是不会使用,能够让我利用并成功分析的方法只有寥寥几种,但是这种简单便捷的操作让我对spss的兴趣却是越来越浓。spss 像手枪,对于社会统计应用spss,足够精度了。exce对初级统计技术也差不多了,里面有很多类型的图,配之以数据透视表,模拟运算表,宏,高级筛选,窗体,而且方便的单元格和变量操作这些优点都使得excel 更利于小规模,低精度,逻辑关系简单的数据,但是简单的图和表,有时不需要通过假设检验,也能看出很多关系或结论,这些直观的现象有的时候比spss的假设检验更有说服力(spss的假设检验虽然精确,但是成本是很多模型假定)其统计思想易于被日常生活所接受,所以execl用得好,更能显出使用者谙熟研究背景和统计思想,这个修炼层次更高,就像武功最高深的人更最简单的工具,最简洁的招式,实而不华一样。
了解了excel和spss的这个比较后,可以看出spss的统计思想体现了更多数理统计的味道,而excel 则更多体现了描述统计的味道,所以了解spss更重要的是了解不同模型背后的统计想法,当然这些在使用spss的过程中会慢慢的积累的。一个和学习统计思想无关的,但是在学习spss中必须学会的是“数据组织方式和数据测度”,这个对于那些学习信息的人容易理解,对文科出身的人不容易理解。但是这个问题对于初学者很重要。在实际使用spss时,就得按部就班地按照先定义变量,调测度,在录入(导入数据),再分析。分析并不是整个流程。不注意数据的组织方式和数据测度会使很多统计模型误用(实际上不能用,但是软件输出了统计结果),这种误用不是统计模型用得好不好的问题,而是能不能用的问题!
现在,学期即将结束,同样的这门课程也到了尾期,在这学期学到了很多,并且还有很多没有学到。我们学习时所操作的软件是英文版,这对英语基础不好的我来说是个考验。同时,由于我们所学专业并非必须拥有计算机,导致我们平时能够练习的机会比较少,造成了掌握不牢固,前学后忘现象比较严重。现在呢,很是希望能够把spss的应用熟练操作,并且能把它变为自己的一种本能,使自己在今后的工作与学习中,可以轻松运用。篇五:spss学习总结
随着速度越来越快,计算机的功能越来越多,计算统计功能反而已经成为了计 算机的一个次要部分。不过,对于我们这些从事社会学学习和研究的人来说,快速 的计算和统计仍旧是我们使用计算机的主要功能,所以我们平日的工作总是离不开 spss(statistical package for the social science社会科学统计软件)。s pss虽然好用,但是学起来并不容易,特别是在目前高校的教育体制下,教材的过时 以及课程设置的不合理,使得spss的学习成为了社会学、统计学以及其他社会科学 学科学生极为头痛的一件事情。更为棘手的是:往往在学生还没有学会spss之前,一些调查研究任务却又强迫他们使用spss进行分析工作,使得他们十分苦恼。
本教程就是为那些已经学习过统计学,并且粗通计算机,但尚未学习过spss的 社会科学学科的学生准备的,运用面向问题的教学方法,通过一个调查问卷的具体 分析过程使学生们对spss有一个感性认识,并能够再没有完全掌握spss的前提下利 用spss完成一些分析任务。因此,本文不强调面面俱到只强调读者能够完成调查分 析的任务,所以会故意忽略spss一些十分重要但未必会用到的功能,还请读者 见谅。如果读者确实需要使用这些功能,建议参考一本好一点的辅导书。
相信大家知道:依次完整的利用计算机辅助的问卷调查包括问卷设计、问卷访 问、数据输入、数据分析、数据输出、调查报告的撰写六大部分。spss软件参与的 主要是数据输入、数据分析和数据输出这三个部分。接着,本文就将分成这三块,分别介绍spss的使用以及一些技巧、经验。
1、数据输入
在完成了问卷访问这个部分之后,我们手中便拥有了数百至上万份调查问卷,这些问卷计算机是无法直接识别处理的,我们必须将它们进行适当的编码。由于采 用计算机分析,问卷在设计阶段就应该考虑到今后的编码问题,所以应该将问卷设 计地以客观题为主,被访问者填写的应该只是注入数字、选项这些计算机能够处理 的信息。我们首先要为问卷的每一个填写项都起一个代号,并决定它的数据属性(主要是区分为字符串、逻辑串还是数字)。笔者的习惯是首先用英文字母表示填写 项的大题号,接着用阿拉伯数字表示填写项的小题号,然后再用英文字母表示填写 项是本小题的第几项,最后再加上表示数据属性的后缀,比如说第二大题第三小题 的第四个字符串填写项的代号便为b3d_s。在以后的所有分析过程中便利用这个代号 来表示数据的具体内容。接下来,便是具体的输入过程了。首先,我们要对spss的数据文件有一个大致的 了解,这对以后的学习十分关键。打开spss之后,我们便会看到一个类似excel电子 表格的东西,但如果你因此便把spss的数据文件理解为是类似于excel的东西那么就 错了,虽然spss数据的表现形式酷似excel,但就实质而言它更接近于一个数据库文 件,每一个数据列都有它的列名称(也就是我们刚刚起的代号)、列属性(也就是 刚刚我们决定的数据属性),这些都类似于数据库中的字段名称、字段属性,如果 读者以前学习过数据库的相关知识,那里理解起来就十分简单了。由于数据繁多,所以我们的输入过程往往不是由本人进行,而是请专业的数据 录入人员代劳,而那些人员往往是不会使用spss的,所以我们在实际使用过程中数
2、数据分析
对于外行人来说。spss最为难学的部分便是它analyze菜单下十多项子菜单以及 这之下四五十项孙菜单的统计功能,每一项统计功能的用法和功能对于外行人来说 就像是天书一般。但是对于学习过统计学的读者来说,这应该不是问题。再加上sp ss在操作的简易性上还是十分优秀的,每一项统计功能一般只需要在窗口下选择统 计用的变量,然后设置一下必要的选项,最后按下ok便可以了。所以在这里,具体 的操作就不再介绍了。在这里,笔者觉得有必要先介绍一下spss的viewer。在下面 的数据分析和数据输出过程中,我们调用spss的数据分析和制图模块所得到的结果 都会由spss自动输出到一个名为viewer的程序中,并且可以以spo为后缀名保存成为 专门的文件。这样做的好处是如果你的分析和制图工作一次没有完成,那么利用保 存的spo文件,就不必下一次重新作过了。同时,将所有的分析和制图的结果都保存 在一个spo文件中,并随调查报告作为电子附件一起陈送给客户,一来有利于客户检 验分析的可靠性,二来也适合于今后电子化、网络化的趋势。
根据笔者的经验,spss的学习者在这一阶段(数据分析阶段)最主要的问题在于以往 学习的统计指标总是中文的,而spss中的统计指标是英文的,指标的中文和英文往 往无法一一对应,因此,在这一部分中,笔者主要是附上一张统计指标的中英文对 照表,如下: summarize菜单项 数值分析过程
„„frequencies子菜单项 单变量的频数分布统计
„„descriptives子菜单项 单变量的描述统计
„„explore子菜单项 指定变量的综合描述统计
„„crosstabs子菜单项 双变量或多变量的各水平组合的频数分布统计
„„means子菜单项 单变量的综合描述统计
„„independent sample t test子菜单项 独立样本的t检验
„„paired sample t test子菜单项 配对样本的t检验
„„one-way anova子菜单项 一维方差分析(单变量方差分析)anova models菜单项 多元方差分析过程
„„simple factorial子菜单项 因子设计的方差分析
„„general factorial子菜单项 一般方差分析
„„multivariate子菜单项 双因变量或多因变量的方差分析
„„repeated factorial子菜单项 因变量均值校验 correlate菜单项 相关分析
„„bivariate子菜单项 pearson积矩相关矩阵
和kendall、spearman非参数相关分析
„„partial子菜单项 双变量相关分析
„„distance子菜单项 相似性、非相似性分析 regression菜单项 回归分析
„„liner子菜单项 线性回归分析
„„logistic子菜单项 二分变量回归分析(逻辑回归分析)
„„probit子菜单项 概率分析
„„nonlinear子菜单项 非线性回归分析
„„weight estimation子菜单项 不同权数的线性回归分析
„„2-stage least squares子菜单项 二阶最小平方回归分析 loglinear菜单项 对数线性回归分析
„„general子菜单项 一般对数线性回归分析
„„hierarchical子菜单项 多维交叉变量对数回归分析
„„logit子菜单项 单因变量多自变量回归分析 classify菜单项 聚类和判别分析
„„k-means cluster子菜单项 指定分类数聚类分析
„„hierarchical cluster子菜单项 未知分类数聚类分析 „„discriminent子菜单项 聚类判别函数分析 data reduction菜单项 降维、简化数据过程
„„factor子菜单项 因子分析
„„correspondence analysis子菜单项 对应表(交叉表)分析
„„homogeneity analysis子菜单项 多重对应分析
„„overals子菜单项 非线性典则相关分析 scale菜单项
„„reliability ananlysis子菜单项 加性等级的项目分析
„„multidimensional scaling子菜单项 多维等级分析 nonparametric tests菜单项
„„chi-square子菜单项 相对比例假设检验
„„binomial子菜单项 特定时间发生概率检验
„„run子菜单项 随即序列检验
„„1-sample kolmogorov smirnov子菜单项 样本分布检验
„„2-independent samples子菜单项 双不相关组分布分析(转载于:spss学习心得体会)„„k independent samples子菜单项 多不相关组分布分析
„„2 related samples子菜单项
双相关变量分布分析
„„mcnemar test子菜单项 相关样本比例变化分析
„„k related samples子菜单项 相关变量分布分析
„„cocharns q test子菜单项 二分变量均数检验
„„kendalls w子菜单项 一致性判定 time series菜单项
„„exponential smoothing子菜单项平衡序列的随机分量
„„curve estimation子菜单项 数据拟合„„autoregression子菜单项 一阶自回归误差线性方差检验
„„arima子菜单项 综合自回归移动平均分析
„„xii arima子菜单项 增倍和加性季节因子分析 survival菜单项
„„life tables 生命表分析
„„kaplan-meier 双事件分布检验
„„cox regression 事件与时间变量相互分析
„„cox w/time deep cov 时间函数cox分析
有了这一张表,相信读者便可以很容易的利用spss进行各类分析了。实际 上,数据分析这一阶段,就使用spss上没有什么难度,关键是在于究竟你能够怎样 最好的利用spss提供的分析模块从数据中挖掘出更多的东西来,这可就要依靠你的 不断摸索了。最后,还要介绍一个小技巧:
如果读者所在学校今后学习的spss软件为dos版本的话,那么今后你就必 须利用命令行来驾驭spss,所以你在利用spss的windows版本进行数据分析 的过程中,可以利用每一项统计功能窗口ok按钮下的paster按钮将本统计功能的命 令行复制到剪贴板,然后再仔细研究。
第二篇:SPSS学习心得体会
篇一:spss学习报告总结心得
应用统计分析学习报告
本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,spss也只是听说过,从来没有学过。一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水。老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了。结合软件和书上的例子,实战一下,发现spss的功能相当强大。最后总结出这篇报告,以巩固所学。
spss,全称是statistical product and service solutions,即“统计产品与服务解决方案”软件,是ibm公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。spss具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。具体到管理方面,spss也是一个进行数据分析和预测的强大工具。这门课中也会用到amos软件。关于spss的书,很多都是首先介绍软件的。这个软件易于安装,我装的是19.0的,虽然20.0有一些改变和优化,但是主体都是一样的,而且都是可视化界面,用起来很方面且容易上手。所以,我学习的重点是卡方检验和t检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用价值、计算方式、结果的解释和表述。
首先是t检验这一部分。由于参数检验的基础不牢固,这部分也是最初开始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么。结果出来后依然分不清楚是接受原假设还是拒绝原假设。不过现在弄懂了。这部分很有用的是t检验。t检验应用于当样本数较小时,且样本取自正态总体同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体。t检验分为单样本t检验、独立样本t检验、配对样本t检验。其中,单样本t 检验是样本均数与总体均数的比较的t检验,用于推断样本所代表的未知总体均数μ与已知的总体均数uo有无差别;独立样本t检验主要用于检验两个样本是否来自具有相同均值的总体,即比较两个样本的均值是否相同,要求两个样本是相互独立的;配对样本t检验中,要正确理解“配对”的含义,主要用于检验两个有联系的正态总体的均值是否有显著差异,跟独立检验的区别就是样本是否是配对样本。这几个方法用软件操作起来都是相对简单的,关键是分清楚什么时候用这个什么时候用那个。
然后是方差分析。方差分析就是将索要处理的观测值作为一个整体,按照变异的不同来源把观测值总变异的平方和以及自由度分解为两个或多个部分,获得不同变异来源的均值与误差均方,通过比较不同变异来源的均方与误差均方,判断各样本所属总体方差是否相等。方差分析主要包括单因素方差分析、多因素方差分析和协方差分析等。这一部分在学习的过程中出现一些问题,就是用spss来操作的时候分不清观测变量和控制变量,如果反了的话会导致结果的不准确。其次,对bonferroni、tukey、scheffe等方法的使用目的不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。
相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。相关分析研究现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。主要有双变量相关分析、偏相关、距离相关几个方法。双变量相关分析是相关分析中最常使用的分析过程,主要用于分析两个变量之间的线性相关分析,可以根据不同的数据类型和条件,选用pearson积差相关、spearman等级相关和kendall的tau-b等级相关。当数据文件包括多个变量时,直接对两个变量进行相关分析往往不能真实反映二者之间的关系,此时就需要用到偏相关分析,从中剔除其他变量的线性影响。距离相关分析是对观测变量之间差异度或相似程度进行的测量,其中距离需要弄清楚,距离分析是对观测量之间相似或不相似程度的一种测度,是计算一对观测量之间的广义距离。这些相似性或距离测度可以用于其他分析过程,例如因子分析、聚类分析或多维定标分析,有助于分析复杂的数据集。
接着是回归分析。相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。回归分析的目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。应用回归分析时应首先确定变量之间是否存在相关关系,如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。正确应用回归分析预测时应注意:①用定性分析判断现象之间的依存关系;②避免回归预测的任意外推;③应用合适的数据资料;
接下来是因子分析。因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家c.e.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。从显性的变量中得到因子的方法有两类。一类是探索性因子分析,另一类是验证性因子分析。探索性因子分析不事先假定因子与测度项之间的关系,而让数据“自己说话”。而验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数。这一部分不能用spss来操作,要用amos,用起来也很方便。
最后一部分学习的是结构方程模型。结构方程模型是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,其大量应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。结构方程模型是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。结构方程模型与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程。甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的。spss是个很神奇的工具,结合amos和excel更是如虎添翼,相信学习了spss在以后的论文和数据分析中很有用。这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了。但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂。然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多。老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导。篇二:spss学习总结 学习spss感想
以前学统计学的时候就听老师讲过spss有非常强大的统计功能,对我们学习、工作有很大的帮助,所以我一直认为spss很神秘。通过这个学期周老师的课让我对此清楚了许多,也学到了spss强大的统计功能,更加让我明白了spss与excel的区别。spss是“社会科学统计软件包”(statistical package for the social science)的简称,是一种集成化的计算机数据处理应用软件。1968年,美国斯坦福大学h.nie等三位大学生开发了最早的spss统计软件,并于1975年在芝加哥成立了spss公司,已有30余年的成长历史,全球约有25万家产品用户,广泛分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个领域和行业。spss是世界上公认的三大数据分析软件之一(sas、spss和systat)。
在学习spss期间,我主要遇到的问题是后面几章,spss的参数检验、方差分析、相关分析、线性回归分析、聚类分析、因子分析等。在参数检验中我不知道原假设是什么,导致分析的时候不知道该拒绝原假设还是接受原假设,不能分析出统计结果。不会区分单样本t检验和两配对样本t检验的区别,现在懂得了它们都要服从正态分布,基本思想是小概率反证法,反证法思想是先提出假设(检验假设h0),再用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,否则,还不能认为假设不成立。
在学习方差分析中,开始常常把观测变量和控制变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。其次,对lsd、bonferroni、tukey、scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。
在学习相关分析的过程中,在绘制散点图时,不知道哪个该做横坐标,哪个该做纵坐标,明白了横坐标是解释变量,纵坐标是被解释变量,还有对相关系数的种类分析不熟练等。在学习回归分析的过程中,对dw可检验的含义不理解,不记得对应的dw表示的残差序列的相关性。对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。
学习聚类分析中,变量的选择分不清,无关变量有时会引起严重的错分,应当只引入在不同类间有显著差别的变量,尽量只使用相同类型的变量进行分析。分类数不明确,从实用角度讲,2~8 类比较合适。掌握了k-means cluster 分析,样本量大于100时有必要考虑,只能使用连续性变量。学习因子分析的过程中,对提取出来的因子的实际含义不清晰,不能使因子具有命名解释性。学习了spss后,我不禁想到了spss与excel的区别,这一点是针对像我这样开始只懂得用excel的人来说。从个人的体会来说,二种软件有一定相似,操作都简便,同时又有一些可以互补的地方。但是spss又比excel更加强大:
一、图型的表现力是spss的主要优点之一
应该说,excel的图型表现主要是简便,对许多的人来说基本够用,但对于科学的表现,spss就更为详细和准确,这一点据说在所有统计软件中都突出。
二、通过spss检验方差齐性和数据分布
假设检验中,采用的t检验和方差检验都需要满足二个要求,即 1.样本方差齐性
2.样本总体呈正态分布
在excel中,提供了f检验来检验方差齐性问题,也就是可以先通过f检验确定方差齐性与否来选择下一步用哪个t检验或方差检验分析工具。但只要数据多于二组则无从下手;通过描述统计大约能从峰度和偏度来了解样本的分布实际工作中,只要分布单峰且近似对称分布,也可应用,但要具体确定样本的分布也有难度。这二个问题在spss就可以解决
最后,在感叹它的方便与快捷的同时,对软件开发人员的智慧到了肃然起敬的地步。一直觉得计算机语言是最难的一门外语。虽然本科时曾经对这种逻辑性很强的东西很感兴趣,并在编程课上取得不错的成绩,但一直觉得这似乎不是我能掌控的东西。spss的神奇之处在于,它省去了使用者巨大的计算量,并提高准确性。它开发了开发者的智慧,却弱化了使用者的大脑。篇三:spss心得体会
学习spss在教育统计中的应用心得体会
一、什么是spss?为什么要学习spss?
新学期开始时,在信息化教育测量与评价的课程中第一次接触
到spss这个软件,作为本科是计算机专业出身的我,当时只知道spss是一套统计软件,就是一套根据统计学原理所编写出来的统计分析软件,至于统计什么?分析什么?我一无所知,尤其是看到老师推荐的《spss在教育统计中的应用》这本书的时候,就简单的把它理解为用spss软件来统计、分析与教育相关的数据,最终得出想要的结论而已,而现在看来,我当初的想法未免有点简单与无知。下面就来让我们了解一下spss。spss软件是一组专业的、通用的统计软件包,同时它也是一个组合式软件包,兼有数据管理、统计分析、统计绘图和统计报表功能。它广泛用于教育、心理、医学、市场、人口、保险等研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。spss软件对计算机硬件系统的要求较低;对运行的软件环境要求宽松,有各种版本可运行在windows xp、win7系统环境下,spss统计软件采用电子表格的方式输入与管理数据,能方便地从其他数据库中读入数据(如dbase,excel,lotus等)。
我为什么要学习spss呢?其实很简单,一方面,做为一名
二、对本spss各章节学习的心得
新课程老师带领下,采取一种新的学习方式,老师讲解了基础部分后,全班同学采取小组分工、协作学习,然后对全班同学进行讲解学习内容,教师进行当堂指导,这种方法改变了同学们的学习态度,同学们不再是课前不预习,课下不复习的状态,每组都有自己的任务,课前有一定的压力,同学间的讨论也明显的增多,例如:一次课下同学们在一起吃饭,有几位同学还在调侃说“两个菜之间用spss进行分析后得出的结果不接受h0假设,也就是两个菜之间不相关”,虽然这只是一个课下的玩笑,但是这也可以体现出对学习的态度的转变。下面就本学期的所学spss的各章节做一下归纳,这些归纳也是基于本人平时在课前预习,课上及课后的一些所思所想,也许会有一些理解上的偏颇在内,但这仅限于心得而已。本学期学习各个章节及分工如下表: 章节名称
1.spss的认识 及数据文件的 处理
2.数据清理与 基本统计及测 量质量分析 3.t检验 4.方差分析1、2人 3人 7.聚类分析 8.统计图形 2人 1人 2人 6.卡方检验 3人 2人 5.相关分析 3人 分工人数 章节名称 分工人数 spss的认识及数据文件的处理心得体会 可能是由于是同学们第一次讲,万事开头难,压力很大,在大家认为最为简单的内容讲解上,两位同学并没有完全展现出二人实际水平,大家在这一节课上都感觉到很压抑,总的感觉是这节内容很简单,但是内容又很松散,可讲的东西太多,讲的东西多就没有突出重点和难点,所以听过之后就有种无数的碎片漂浮在脑海中一样,很难将知识系统化,课后总结一下无非就是两块,一块是了解spss软件的历史及基本功能,还有一块就是spss软件当中一个模块叫做数据文件的处理,在认识spss软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,spss已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到spss当中即可,当然也可以在spss软件之外进行数据编制,可以通过execel等编辑后可以直接导入到spss中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。
2、数据清理与基本统计及测量质量分析的心得体会
数据的清理与基本统计及测量质量分析由两名同学进行讲解,由于吸取了上节课两名同学的经验,本节讲授的明显好于上节课,这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里本人觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用spss软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在spss中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用spss对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。
3、t检验的心得体会
t检验由两名同学讲解,在学习t检验时,首先要明确什么样的数据适合t检验,t检验的结果要说明什么问题?经过学习可以知道,t检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,t检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种t检验称为配对t检验;另一种情况下的t检验是两组数据可以任意颠倒顺的检验称为独立样本的t检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过spss的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,本人的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信,
第三篇:SPSS课程学习心得体会
应用统计分析学习报告
本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,spss也只是听说过,从来没有学过。一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看老师给的英文教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水。老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了。结合软件和书上的例子,实战一下,发现spss的功能相当强大。最后总结出这篇报告,以巩固所学。spss,全称是statistical product and service solutions,即“统计产品与服务解决方案”软件,是ibm公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,也是世界上公认的三大数据分析软件之一。spss具有统计分析功能强大、操作界面友好、与其他软件交互性好等特点,被广泛应用于经济管理、医疗卫生、自然科学等各个领域。具体到管理方面,spss也是一个进行数据分析和预测的强大工具。这门课中也会用到amos软件。
关于spss的书,很多都是首先介绍软件的。这个软件易于安装,我装的是19.0的,虽然20.0有一些改变和优化,但是主体都是一样的,而且都是可视化界面,用起来很方面且容易上手。所以,我学习的重点是卡方检验和t检验、方差分析、相关分析、回归分析、因子分析、结构方程模型等方法的适用范围、应用价值、计算方式、结果的解释和表述。
首先是t检验这一部分。由于参数检验的基础不牢固,这部分也是最初开始接触应用统计的东西,学起来很多东西拿不准,比如说原假设默认的是什么。结果出来后依然分不清楚是接受原假设还是拒绝原假设。不过现在弄懂了。这部分很有用的是t检验。t检验应用于当样本数较小时,且样本取自正态总体同时做两样本均数比较时,还要求两样本的总体方差相等时,已知一个总体均数u,可得到一个样本均数及该样本标准差,样本来自正态或近似正态总体。t检验分为单样本t检验、独立样本t检验、配对样本t检验。其中,单样本t 检验是样本均数与总体均数的比较的t检验,用于推断样本所代表的未知总体 均数μ与已知的总体均数uo有无差别;独立样本t检验主要用于检验两个样本是否来自具有相同均值的总体,即比较两个样本的均值是否相同,要求两个样本是相互独立的;配对样本t检验中,要正确理解“配对”的含义,主要用于检验两个有联系的正态总体的均值是否有显著差异,跟独立检验的区别就是样本是否是配对样本。这几个方法用软件操作起来都是相对简单的,关键是分清楚什么时候用这个什么时候用那个。
然后是方差分析。方差分析就是将索要处理的观测值作为一个整体,按照变异的不同来源把观测值总变异的平方和以及自由度分解为两个或多个部分,获得不同变异来源的均值与误差均方,通过比较不同变异来源的均方与误差均方,判断各样本所属总体方差是否相等。方差分析主要包括单因素方差分析、多因素方差分析和协方差分析等。这一部分在学习的过程中出现一些问题,就是用spss来操作的时候分不清观测变量和控制变量,如果反了的话会导致结果的不准确。其次,对bonferroni、tukey、scheffe等方法的使用目的不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨(转载于:spss课程学习心得体会)其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。相关分析研究现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。主要有双变量相关分析、偏相关、距离相关几个方法。双变量相关分析是相关分析中最常使用的分析过程,主要用于分析两个变量之间的线性相关分析,可以根据不同的数据类型和条件,选用pearson积差相关、spearman等级相关和kendall的tau-b等级相关。当数据文件包括多个变量时,直接对两个变量进行相关分析往往不能真实反映二者之间的关系,此时就需要用到偏相关分析,从中剔除其他变量的线性影响。距离相关分析是对观测变量之间差异度或相似程度进行的测量,其中距离需要弄清楚,距离分析是对观测量之间相似或不相似程度的一种测度,是计算一对观测量之间的广义距离。这些相似性或距离测度可以用于其他分析过程,例如因子分析、聚类分析或多维定标分析,有助于分析复杂的数据集。接着是回归分析。相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。回归分析的目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。应用回归分析时应首先确定变量之间是否存在相关关系,如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。正确应用回归分析预测时应注意:①用定性分析判断现象之间的依存关系;②避免回归预测的任意外推;③应用合适的数据资料; 接下来是因子分析。因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家c.e.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接
测量到的隐性变量。从显性的变量中得到因子的方法有两类。一类是探索性因子分析,另一类是验证性因子分析。探索性因子分析不事先假定因子与测度项之间的关系,而让数据“自己说话”。而验证性因子分析假定因子与测度项的关系是部分知道的,即哪个测度项对应于哪个因子,虽然我们尚且不知道具体的系数。这一部分不能用spss来操作,要用amos,用起来也很方便。
最后一部分学习的是结构方程模型。结构方程模型是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,其大量应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。结构方程模型是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。结构方程模型与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程。甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的。spss是个很神奇的工具,结合amos和excel更是如虎添翼,相信学习了spss在以后的论文和数据分析中很有用。这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了。但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂。然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多。老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导。篇二:spss心得体会
学习spss在教育统计中的应用心得体会
一、什么是spss?为什么要学习spss?
新学期开始时,在信息化教育测量与评价的课程中第一次接触
到spss这个软件,作为本科是计算机专业出身的我,当时只知道spss是一套统计软件,就是一套根据统计学原理所编写出来的统计分析软件,至于统计什么?分析什么?我一无所知,尤其是看到老师推荐的《spss在教育统计中的应用》这本书的时候,就简单的把它理解为用spss软件来统计、分析与教育相关的数据,最终得出想要的结论而已,而现在看来,我当初的想法未免有点简单与无知。下面就来让我们了解一下spss。spss软件是一组专业的、通用的统计软件包,同时它也是一个组合式软件包,兼有数据管理、统计分析、统计绘图和统计报表功能。它广泛用于教育、心理、医学、市场、人口、保险等研究领域,也用于产品质量控制、人事档案管理和日常统计报表等。spss软件对计算机硬件系统的要求较低;对运行的软件环境要求宽松,有各种版本可运行在windows xp、win7系统环境下,spss统计软件采用电子表格的方式输入与管理数据,能方便地从其他数据库中读入数据(如dbase,excel,lotus等)。
我为什么要学习spss呢?其实很简单,一方面,做为一名 研究生,要具备一定的科研能力,如今量化研究的方法大行其道,一切要以事实说话、要以数据说话,有了数据支持的研究才能更容易被认可、被推论。另一方面,根据对aect94定义的理解,教育技术
学研究的对象是学习过程和学习资源,包含大量的偶然现象和非精确现象。因此,要深入研究教育技术现象及其规律,必须运用统计描述、统计分析方法和模糊数学分析方法,才可能使这门学科达到真正完善的地步。教育技术学研究的现象多数是偶然的现象,其变化发展往往具有几种不同的可能性,究竟出现哪一种结果,那是带有偶然性的,是随机的。这类偶然现象是遵循统计规律的,当随机现象是由大量的成份组成,或者随机现象出现大量的次数时,就能体现统计平均规律。我们只有对数据资料作统计处理,才可能可以发现它们的内在规律,掌握现象的特征,检验研究的假设,才能得出准确的、可靠的研究结果。
二、对本spss各章节学习的心得
新课程老师带领下,采取一种新的学习方式,老师讲解了基础部分后,全班同学采取小组分工、协作学习,然后对全班同学进行讲解学习内容,教师进行当堂指导,这种方法改变了同学们的学习态度,同学们不再是课前不预习,课下不复习的状态,每组都有自己的任务,课前有一定的压力,同学间的讨论也明显的增多,例如:一次课下同学们在一起吃饭,有几位同学还在调侃说“两个菜之间用spss进行分析后得出的结果不接受h0假设,也就是两个菜之间不相关”,虽然这只是一个课下的玩笑,但是这也可以体现出对学习的态度的转变。下面就本学期的所学spss的各章节做一下归纳,这些归纳也是基于本人平时在课前预习,课上及课后的一些所思所想,也许会有一些理解上的偏颇在内,但这仅限于心得而已。本学期学习各个章节 及分工如下表:
章节名称
1.spss的认识
及数据文件的处理
2.数据清理与
基本统计及测
量质量分析 3.t检验 4.方差分析1、2人 3人 7.聚类分析 8.统计图形 2人 1人 2人 6.卡方检验 3人 2人 5.相关分析 3人 分工人数 章节名称 分工人数 spss的认识及数据文件的处理心得体会
可能是由于是同学们第一次讲,万事开头难,压力很大,在大家认为最为简单的内容讲解上,两位同学并没有完全展现出二人实际水平,大家在这一节课上都感觉到很压抑,总的感觉是这节内容很简单,但是内容又很松散,可讲的东西太多,讲的东西多就没有突出重点和难点,所以听过之后就有种无数的碎片漂浮在脑海中一样,很难将知识系统化,课后总结一下无非就是两块,一块是了解spss软件的历史及基本功能,还有一块就是spss软件当中一个模块叫做数据文件的处理,在认识spss软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,spss已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用
只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到spss当中即可,当然也可以在spss软件之外进行数据编制,可以通过execel等编辑后可以直接导入到spss中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。
2、数据清理与基本统计及测量质量分析的心得体会
数据的清理与基本统计及测量质量分析由两名同学进行讲解,由于吸取了上节课两名同学的经验,本节讲授的明显好于上节课,这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里本人觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用spss软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些
理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在spss中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用spss对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。
3、t检验的心得体会 t检验由两名同学讲解,在学习t检验时,首先要明确什么样的数据适合t检验,t检验的结果要说明什么问题?经过学习可以知道,t检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,t检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种t检验称为配对t检验;另一种情况下的t检验是两组数据可以任意颠倒顺的检验称为独立样本的t检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过spss的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,本人的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信,篇三:spss课程学习感悟(交)spss学习总结与反思 财管132 1330443233 王天茜 在这学期以前我并没有学过统计学,甚至没有接触过它,因此对它的认识可谓是从零开始的,但经过这一段的学习,也算是受益良多,下面我就简单说下感想吧。
第一节课老师简单讲述了下这门课的概况,当时只觉得毫无头绪,对于没接触过的事物人总有莫名的恐惧,这门课看似还很难,就比较担忧。
接着说说学习过后对spss的整体认识吧,我专门去百度了下它的全称,定义为spss是“社会科学统计软件包”(statistical package for the social science)的简称,是一种集成化的计算机数据处理应用软件。之前看论文的时候会经常看到各种表格图形,各种结果输出,当时并不明白,以前也没见过,因此总会跳过实验整个设计直接看结果。在学了这门课后总算对其有了初步的认识。
1、spss的认识及数据文件的处理心得体会
一块是了解spss软件的历史及基本功能,还有一块就是spss软件当中一个模块叫做数据文件的处理,在认识spss软件当中了解到它是一组社会科学统计软件包,诞生于1968年,当时美国的3位大学生开发出了它,经过这么多年的后续开发,spss已经有了很多的版本,具有了更的兼容性、和更友好的操作界面,也在很多的学科领域得到了应用,而在教育中的应用只是它的一个分支。此外它对硬件的要求也很低,当前一般的电脑
都能安装它,安装的过程中也没有什么特殊的方法,傻瓜式的安装方式完全就可以满足。在数据文件的处理方面,主要是要学会定义变量、处理变量两方面;定义变量是要注意根据自己实际采集的数据来定义变量,例如是数值型的变量还是文本型的变量及变量的长度,小数点保留尾数等,总之就是一句话,根据实际调查的数据要求来定义相应变量。变量定义只有只要细心的将实际调查的数据录入到spss当中即可,当然也可以在spss软件之外进行数据编制,可以通过execel等编辑后可以直接导入到spss中。在处理变量模块当中,可以对变量进行添加、删除、拆分与合并等操作,只要根据实际调查数据,细心调整变量,使操作更加简便和明了。
2、数据清理与基本统计及测量质量分析的心得体会
这里我也是把它分为两块进行学习,一块是数据的清理,另一块是相关统计理论的学习。在数据清理方面主要学习了奇异数据的检查与清理,在这里我觉得非常有必要进行数据清理,在实际的调查数据时难免会出现错误或者碰到极为特殊的典型案例,所以这些数据很难符合大众规律,在统计、分析过程中可能会造成分析结果异常,从而直接影响最终的结论。所以觉得非常有必要进行数据检查与清理。而我认为本节的难点不是怎样熟练运用spss软件,而是在第二块中的,相关统计理论的学习,学习这些理论需要一定的数学基础,只有明确这些理(论如均值、标准误差、中数、众数、全距、四分位等)原理,知其然,知其所以然,这才是关键,在spss中想要实现对数据进行以上分析只需要轻轻点击一下按钮就可以是轻松实现,但是如果不清楚到底用它们来做什么就无从谈起做数据分析了,所以本节内容知道分析原理的重要性要远远大用spss对数据做出相关分析的重要性。总结为一句话“知道它们是做什么的后才会让它们去做该做的工作”。
3、t检验的心得体会
在学习t检验时,首先要明确什么样的数据适合t检验,t检验的结果要说明什么问题?经过学习可以知道,t检验是对两组数据间的平均水平或均数的比较,通过比较可以得出两组数据间的显著性水平,而这两组数据都要符合正态分布,方差具有齐同性,t检验由两种情况,一种配对提检验,要求两组数据不可以独立颠倒顺序,如果颠倒顺序就会改变问题的性质,这种t检验称为配对t检验;另一种情况下的t检验是两组数据可以任意颠倒顺的检验称为独立样本的t检验。但是这两种情况都必须符合最先的要求,即都是符合正态分布,方差都具有齐同性。通过spss的相关操作可以轻松完成检验,但是在检验的过程中必须设置置信区间,一般设置为95%,在设置置信区间时必须要考虑到所做分析的数据,如果像要得到显著性差异的结果则可尽量将置信区间设置小些,如果想要得到不显著差异就要将置信区间甚至大些,我的理解为若置信区间小,则可以理解为在小范围内是可以相信的,但如果将分析结果的置信区间值调大则说明在很大的范围内这个结果可信,反之则不可信,也就是说范围越大,不可
信的因素就会越多,做出可信的结果的可能性就会越小,所以在用spss的进行t检验时,一定要提前考虑想要得到的检验结果,尽可能将预想结果与实际结果吻合。本节课最主要的是学会进行t检验,根据数据选择适合的t检验,值得思考的是,两组数据是否符合正态分布、方差的齐同性都需要在t检验前明确,不然无法进行t检验,但是在t检验的过程中spss也提供了一项进行是否符合正态分布的选项,是否也可以理解为在未知两组数据的分布情况时也可以进行t检验?只要先证明两组数据方差具有齐同性后,就进行t检验,检验后spss会输出两组数据是否符合正态分布,如果符合则结果可取,否则结果不可取。
4、方差分析的心得与体会 t检验和方差分析是有很大关联的,t检验是分析两组间数据的关系,而方差分析则是分析两组以上的组间的关系,两组方法都是要求数据符合正态分布,方差具有齐同性。其各组间要同质,组内异质,这样数据才具有说服力。本节课方差分析包括四部分,分别为单因素方差分析、无重复实验的双因素方差分析、重复试验的双因素方差分析及协方差分析。分为以上四种主要是基于分析的问题所包含的变量个数和各变量间有无相互影响,还有就是排除无法控制的协变量的影响的分析来区分分析方法。例如,只有一个变量的分析就用单因素分析;基于问题中的两个变量间没有相互影响的分析就用无重复实验的双因素方差分析,两个变量有影响就用重复试验的双因素方差分析,要排除无法控制 的因素进行分析就用协方差分析。以上各种方差分析情况都基于不同的统计公式,要是学习这些理论则需要很好的数学基础。对最终分析结果的解读则需要t检验的解读结果知识。归结为一点:最终想得到差异性显著的结果还是差异不明显的结果则要再分析前就有预设。以此来证明自己的结果分析。
5、相关分析的心得与体会
事物间的相互联系与影响大致分为两种,一种是函数关系即一一对应关系,而另一种是统计关系。函数关系比较容易分析和测量,而实际数据并不都像函数关系那样简单,这时则需要另一种测量方法----相关分析,衡量事物之间或变量间的线性相关程度的强弱,并用适当的统计指标表示出来,这个过程就是相关分析。相关分析分多种情况,分为联系变量的相关分析、等级变量的相关分析、偏相关分析和距离相关分析,之所以分为几种也是根据要分析的对象的变化而定,如连续变量的相关分析主要是只变量不是函数关系,而是统计关系且变量数据间可以比较大小,可以加减来计算差异的数据,此外其依据的是pearson相关系数,还有就是因为数据小于30次分析无意义,所以就要求分析数据要大于30个。如果数据小于30则用等级相关分析,且两种方法分析的数据都要符合正态分布。当数据小于30且符合正态分布且又是表达为有序或顺序(等级、方位、大小等)时则用等级变量的相关分析。与协方差分析类似,二元变量无法有效真实反映事物间的相关关系时,且数据都符合以上要求是则用偏相关分篇四:spss学习心得 spss学习心得
本学期是我在大学学习的最后一个学期。在这个学期里,学校根据我系专业特点开设了一些专业应用性课程,其中有一门课程便是spss。spss的中文名称是社会科学统计软件包,是世界上最早的统计软件。我们学期学习所使用的软件为英文版,起初接触时由于我英语水平问题,spss软件的操作让我很是头疼。但是通过对这门课程的学习,我了解到spss具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。在日常的工作与学习中,我所接触到的数据比较多,但是我想从中获得有用的数据却很难,通过spss软件应用,使我处理数据的时间大幅度的缩短,另外也能客观直接的对我所需要的数据进行简单分析。
在我平日课下进行统计调查技能培训的时候,我起初分析数据所用的软件是excel。虽然使用excel可以对数据进行透视、分类、筛选以及计算相关系数等,但是这些操作都需要自己每一步每一步的进行手动操作,而使用spss软件在对数据进行整理时,只需对软件某选项内设置变量条件,系统便自动的进行整理。而且,在学习与应用spss过程中,我了解到应用spss软件只要了解统计分析的原理无需知晓统计方法的各种算法就能得到自己所需要的统计分析结果。另外对于常见的统计方法,spss的命令语句、子命令及选择项的选择绝大部分在软件内的对话框操作完成,我们无需花费大量的时间记忆大量的命令和选择项。在这方面,spss软件的应用可以使我们节省大量时间,而且软件操作比较容易上手,在当今这个时间就是金钱的社会上,我们掌握spss软件的应用,也就是为自己赚取了不少金钱。
另外在与spss的接触中,我逐渐了解到spss软件的强大与方便。spss提供了从简单的统计描述到复杂的多因素统计分析方法,其中有数据的统计分析、统计描述、交叉表分析、二维相关、方差分析、多元回归、因子分析、聚类分析、降维等分析方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。虽然,这些方法大部分我还是不会使用,能够让我利用并成功分析的方法只有寥寥几种,但是这种简单便捷的操作让我对spss的兴趣却是越来越浓。
这门课程是我们这学期从始至终一直开设的课程,在课堂上我们的导师马杰老师针对各种案例对我们进行讲解,让我们了解spss的各种应用,在课下系内陈主任对我进行指点,让我能够利用多种spss的方法进行数据处理与数据分析。
现在,学期即将结束,同样的这门课程也到了尾期,在这学期学到了很多,并且还有很多没有学到。我们学习时所操作的软件是英文版,这对英语基础不好的我来说是个考验。同时,由于我们所学专业并非必须拥有计算机,导致我们平时能够练习的机会比较少,造成了掌握不牢固,前学后忘现象比较严重。现在呢,很是希望能够把spss的应用熟练操作,并且能把它变为自己的一种本能,使自己在今后的工作与学习中,可以轻松运用。篇五:spss学习总结
学习spss感想
以前学统计学的时候就听老师讲过spss有非常强大的统计功能,对我们学习、工作有很大的帮助,所以我一直认为spss很神秘。通过这个学期周老师的课让我对此清楚了许多,也学到了spss强大的统计功能,更加让我明白了spss与excel的区别。spss是“社会科学统计软件包”(statistical package for the social science)的简称,是一种集成化的计算机数据处理应用软件。1968年,美国斯坦福大学h.nie等三位大学生开发了最早的spss统计软件,并于1975年在芝加哥成立了spss公司,已有30余年的成长历史,全球约有25万家产品用户,广泛分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个领域和行业。spss是世界上公认的三大数据分析软件之一(sas、spss和systat)。
在学习spss期间,我主要遇到的问题是后面几章,spss的参数检验、方差分析、相关分析、线性回归分析、聚类分析、因子分析等。
在参数检验中我不知道原假设是什么,导致分析的时候不知道该拒绝原假设还是接受原假设,不能分析出统计结果。不会区分单样本t检验和两配对样本t检验的区别,现在懂得了它们都要服从正态分布,基本思想是小概率反证法,反证法思想是先提出假设(检验假设h0),再用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,否则,还不能认为假设不成立。
在学习方差分析中,开始常常把观测变量和控制变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。其次,对lsd、bonferroni、tukey、scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较。宜用bonferroni(lsd)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用tukey法;其他情况宜用scheffe法。最后,对方差齐性检验、多重比较检验、趋势检验理解不够透彻,在方差检验中,post hoc键有lsd的选项:当方差分析f检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。lsd即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验。
在学习相关分析的过程中,在绘制散点图时,不知道哪个该做横坐标,哪个该做纵坐标,明白了横坐标是解释变量,纵坐标是被解释变量,还有对相关系数的种类分析不熟练等。在学习回归分析的过程中,对dw可检验的含义不理解,不记得对应的dw表示的残差序列的相关性。对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。
学习聚类分析中,变量的选择分不清,无关变量有时会引起严重的错分,应当只引入在不同类间有显著差别的变量,尽量只使用相同类型的变量进行分析。分类数不明确,从实用角度讲,2~8 类比较合适。掌握了k-means cluster 分析,样本量大于100时有必要考虑,只能使用连续性变量。
学习因子分析的过程中,对提取出来的因子的实际含义不清晰,不能使因子具有命名解释性。
学习了spss后,我不禁想到了spss与excel的区别,这一点是针对像我这样开始只懂得用excel的人来说。从个人的体会来说,二种软件有一定相似,操作都简便,同时又有一些可以互补的地方。但是spss又比excel更加强大:
一、图型的表现力是spss的主要优点之一
应该说,excel的图型表现主要是简便,对许多的人来说基本够用,但对于科学的表现,spss就更为详细和准确,这一点据说在所有统计软件中都突出。
二、通过spss检验方差齐性和数据分布
假设检验中,采用的t检验和方差检验都需要满足二个要求,即 1.样本方差齐性 2.样本总体呈正态分布 在excel中,提供了f检验来检验方差齐性问题,也就是可以先通过f检验确定方差齐性与否来选择下一步用哪个t检验或方差检验分析工具。但只要数据多于二组则无从下手;通过描述统计大约能从峰度和偏度来了解样本的分布实际工作中,只要分布单峰且近似对称分布,也可应用,但要具体确定样本的分布也有难度。这二个问题在spss就可以解决 最后,在感叹它的方便与快捷的同时,对软件开发人员的智慧到了肃然起敬的地步。一直觉得计算机语言是最难的一门外语。虽然本科时曾经对这种逻辑性很强的东西很感兴趣,并在编程课上取得不错的成绩,但一直觉得这似乎不是我能掌控的东西。spss的神奇之处在于,它省去了使用者巨大的计算量,并提高准确性。它开发了开发者的智慧,却弱化了使用者的大脑。
第四篇:SPSS学习感想范文
SPSS学习感想
在这学期以前我并没有学过统计学,甚至没有接触过它,因此对它的认识可谓是从零开始的,但经过这一段的学习,也算是受益良多,下面我就简单说下感想吧。
第一节课老师简单讲述了下这门课的概况,给了我们英文版和中文版教材便让我们开始分组讲授各个部分,当时只觉得毫无头绪,对于没接触过的事物人总有莫名的恐惧,这门课看似还很难,就比较担忧。但看了分到的关于方差分析部分的英文版书后,觉得老师推荐的这本书真的很好,虽然看英文比较痛苦,但胜在通俗对于我这种从未接触过的人来说也是读的懂得,这大概也是许多外国教材的优点,会有很实际的举例帮助理解,语言读起来也是简单易懂,不像许多中国教材那么晦涩。后期在看英文文献的时候看到不懂得SPSS模型便会再翻出这本书来看,许多的中文版的教材也看了但总是较难迅速找到想看的知识点,且理解起来也很困难。
说完对于教材的整体心得,就来说说讲课方面的心得吧,起初大家对于老师让学生讲授的方式不是很认同,觉得自己能力有限,问题太难,不一定能看得明白更勿论讲了。但经过后来自己看教材做PPT,发现其实做起来并没有看起来那么难,虽然花了不少时间但最后也算是基本了解大意及步骤,并且自己花了时间做出来的东西会特别记忆深刻,因此做完后对于方差分析这一块也算是有了整体的认识和了解,之后在看论文中这部分的模型来也轻松许多。所以这种讲课方式其实也确实能帮助同学们更积极的学习这门课程。
接着说说学习过后对SPSS的整体认识吧,我专门去百度了下它的全称,定义为SPSS是“社会科学统计软件包”(Statistical Package for the Social Science)的简称,是一种集成化的计算机数据处理应用软件。之前看论文的时候会经常看到各种表格图形,各种结果输出,当时并不明白,以前也没见过,因此总会跳过实验整个设计直接看结果。在学了这门课后总算对其有了初步的认识。它其实大致分为两个大部分,一是简要介绍描述性和推断性统计,包括描述性统计、推断性统计原理与推断性统计机制;二是统计分析方法,包括卡方检验、独立样本t检验、配对样本t检验、方差分析等检验差异的统计方法,和多元回归分析、因子分析和结构方程模型等检验联系的统计方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。统计分析也主要有两大类,一类是验证差异的,另一类是验证相关性的。验证差异的主要有t检验和方差分析,验证相关性的主要有回归分析、因子分析和结构方程模型。通过课程的学习我基本知道了他们的区别和应用场景,如t检验适合两个变量之间的差异比较,而方差分析则在变量较多时使用,从而达到便捷的效果。
在学习方差分析时,我刚开始常常把因变量和自变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导致结果的不准确。接着,对LSD、Bonferroni、Tukey、Scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferroni(LSD)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用Tukey法;其他情况宜用Scheffe法。因为经常混淆,所以这些都被我记录在PPT中,好让自己以后方便查看。还有,当时对方差齐性检验、多重比较检验的理解也存在困难,但经过小组讨论对他们也基本有了了解。当方差分析F检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。LSD即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验,最灵敏,但会较易犯假阳性的错误。在听别的小组讲述相关分析时,对于在绘制散点图时的横坐标和纵坐标的区分刚开始不太明白,但经过同学的讲授明白了横坐标是解释变量,纵坐标是被解释变量。在学习回归分析的过程中,对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。在学习因子分析的时,刚开始对提取出来的因子的实际含义不清晰,但这些问题都都一一在讲授和之后的讨论中得到了解析,从而对于他们都算是有了大致的了解。
虽然整个学习过程经历了很多困难,但小组成员在一起,大家一起克服困难,集思广益,最后的结果还算是成功的,每个人对于自己的部分都很认真在准备希望能给大家讲的清楚明晰,这个学习的过程对我们都意义非凡。现在这门课要结束了,但对于SPSS的学习却没有,现有的知识感觉只是对他有个初步的了解,离熟练运用还有些距离,论文中的模型分析的结果还不能很快的看出,因此还需要不断地看书看文献运用。但这门课显然给我们打下了很好的基础,在这结束的时刻,我希望谢谢这些陪我一起走过这个历程的人,我的老师,小组的成员以及其他组的成员们,感谢你们同我一起成长。
第五篇:spss学习第四天
Spss Spss学习第四天
我主要以课上的顺序来一步步操作
一元回归
两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。
(2)回归方程的显著性检验(F检验)
多元线性回归方程的显著性检验一般采用F检验,利用方差分析的方法进行。
(3)回归系数的显著性检验(t检验)
回归系数的显著性检验是检验各自变量x1,x2,…,对因变量y的影响是否显著,从而找出哪些自变量对y的影响是重要的,哪些是不重要的。
与一元线性回归一样,要检验解释变量对因变量y的线性作用是否显著,要使用t检验。
课上实例:
Next 在这里可以针对不同的自变量设置不同的筛选引入方法。Options 下一步:设置变量引入剔除的标准规则 Methot
自变量筛选的方法: Enter:所选变量全部引入模型 Stepwise:逐步引入法 Remove:剔除变量 Backward:向后消去法 Forward:向前消去法
结果:
第一个表格是
描述统计量 第二个表格是 相关系数矩阵
第三个表格是 列出模型引入以及剔除的变量,这里是强制引入法,所有变量引入模型 第四个表格是 模型拟合优度统计量 第五个表格是 模型显著性F检验
第六个表格是 每个回归系数显著性的t检验
第七个表格是 共线性诊断特征根有些接近0,有个别值特别大有严重共线性。条件指数如有个别维度值大于30,也说明有严重共线性!第八个表格是 关于残差的描述统计量 第九个表格是 残差的正态性诊断
多元回归
虚拟变量
前面几节所讨论的回归模型中,因变量和自变量都是可以直接用数字计量的,即可以获得其实际观测值(如收入、支出、产量、国内生产总值等),这类变量称作数值型变量。然而,在实际问题的研究中,经常会碰到一些非数值型的变量,如性别、民族、职业、文化程度、地区、正常年份与干旱年份、改革前与改革后等定性变量。
在回归分析中,对一些自变量是定性变量的先作数量化处理,处理的方法是引进只取“0”和“1”两个值的0−1型虚拟(dummy)自变量。当某一属性出现时,虚拟变量取值为“1”,否则取值为“0”。例如,令“1”表示改革开放以后的时期,“0”则表示改革开放以前的时期。再如,用“l”表示某人是男性,“0”则表示某人是女性。虚拟变量也称为哑变量。需要指出的是,虽然虚拟变量取某一数值,但这一数值没有任何数量大小的意义,它仅仅用来说明观察单位的性质和属性。
课上实列:
建立虚拟变量DU。设置逻辑运算,如果AREA==1时,DU=1,否则DU=0.结果:
逻辑回归
称为logistic模型(逻辑回归模型)。
我们的逻辑回归模型得到的只是关于P{Y=1|x}的预测。
但是,我们可以根据模型给出的Y=1的概率(可能性)的大小来判断预测Y的取值。一般,以0.5为界限,预测p大于0.5时,我们判断此时Y更可能为1,否则认为Y=0。如果该p值小于给定的显著性水平(如=0.05),则拒绝因变量的观测值与模型预测值不存在差异的零假设,表明模型的预测值与观测值存在显著差异。如果值大于,我们没有充分的理由拒绝零假设,表明在可接受的水平上模型的估计拟合了数据
课上实例:
将因变量放入dependent栏,自变量放入covariates栏中 可以把几个变量的乘积作为自变量引入模型作为交互影响项
线性回归一样,我们可以通过next按钮把自变量分成不同的组块,使不同的组块按顺序以不同的方式分步进入模型
Classification plots:制作分类图,通过比较因变量的观测值与预测值的关系,反映回归模型的拟合效果。
Hosmer-Lemeshow goodness-of-fit: H-L检验。
Casewise listing of residuals:显示个案的残差值(显示标准化残差超过两倍标准方差的个案或显示所有个案)
Correlations of estimates:输出模型中各参数估计的相关矩阵。
Iteration history:输出最大似然估计迭代过程中的系数以及log似然值。CI for exp(B):输出exp(beta)的置信区间,默认置信度为95% 在save选项中,我们可以选择需要保存的数据文件中的统计量。包括残差值、个案影响度统计量、预测概率值等等
结果:
第一部分有两个表格,第一个表格说明所有个案(28个)都被选入作为回归分析的个案。
第二个表格说明初始的因变量值(0,1)已经转换为逻辑回归分析中常用的0、1数值。
(2)第二部分(Block 0)输出结果有4个表格。(组块0里只有常数项,没有自变量)
(3)Omnibus Tests of Model Coefficients表格列出了模型系数的Omnibus Tests结果。
(4)Model Summary表给出了-2 对数似然值、Cox和Snell的R2以及Nagelkerke的R2检验统计结果。
(5)Hosmer and Lemeshow Test P值大于0.05,说明模型有一定的解释能力(6)Classification Table分类表说明第一次迭代结果的拟合效果,从该表格可以看出对于y=0,有86.7%的准确性;对于y=1,有76.9%准确性,因此对于所有个案总共有82.1%的准确性。
(7)Variables in the Equation表格列出了Step 1中各个变量对应的系数,以及该变量对应的Wald 统计量值和它对应的相伴概率。从该表格中可以看出x3相伴概率最小,Wald统计量最大,可见该变量在模型中很重要。B是回归系数的估计值 Wald系数的wald检验
Exp(beta)的估计值以及区间估计
(8)Correlation Matrix表格列出了常数Constant、系数之间的相关矩阵。常数与x2之间的相关性最大,x1和x3之间的相关性最小。
(9)图7-26所示是观测值和预测概率分布图。该图以0和1为符号,每四个符号代表一个个案。横坐标是个案属于1的录属度,这里称为预测概率(Predicted Probability)。纵坐标是个案分布频数,反映个案的分布。
(10)逻辑回归的最后一个输出表格是Casewise List,列出了残差大于2的个案。