第一篇:关于学习数学方法个人心得体会范本
课堂阅读。在预览期间,您仅对要学习的教科书的内容有一个大致的了解,而不一定所有人都具有深刻的了解和理解。因此,有必要将预览过程中的标记和注释结合起来,结合老师的教学,进一步阅读课文以掌握焦点,重点,并解决预览中的难题。下面是由小编为大家整理的“关于学习数学方法个人心得体会范本”,仅供参考,欢迎大家阅读。
关于学习数学方法个人心得体会范本【一】
8月5日至8月7日为期三天的全县小学数学骨干教师培训圆满结束。短短的三天时间对我来说,是教育理念的一次全新、全方位的提升,受益颇深。这次培训内容丰富、形式多样。既有观念上的洗礼,也有理论上的提高,既有知识上的积淀,也有教学技艺的增长。
一、理论经验,促进教师发展。
8月5日张主任做了《如何搞好网络大集体备课》的精彩报告,他的讲解让我明确了什么是集体备课,在网络大背景下怎样搞好大集体备课,以及网络大集体备课的操作方法。张主任的报告既有理论的阐述,又有具体操作的演示,是一顿丰盛的精神大餐。
二、名师课堂,引领教学实践。
培训活动中,我们欣赏了徐长青老师执教的《“退”中的数学》。名师就是名师,听他的课是一种享受一种充实,无论是孩子还是老师都会被深深的感染,短短的一节课让学生既获得了收识,又锻炼了思维,提高了能力,更给了我们有益的启示,得到心灵的洗涤和情感的升华;另外学生还有充足的时间、空间展示自己的学习成果,在他们的课堂中教师的主导和学生的主体地位得到了很好的体现。
三、消化培训,激励自身成长。
培训是短暂的,但收获是充实的。让我站在了一个崭新的平台上审视了自己的教学,对今后的工作有了明确的方向。这一次培训活动后,我会把所学的教学理念,咀嚼、消化,内化为自己的教学思想,指导自己的教学实践。还要不断搜集教育信息,学习教育理论,增长专业知识,进一步提升自己。
非常感谢县教研室给我提供这样一个学习的平台,不仅提高了自身的教育理论水平和教学实践能力,还激励着自己,争取在以后的教学工作中做得更好。
关于学习数学方法个人心得体会范本【二】
1.细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学概念、公式的记忆。记忆是理解的基础。如果你不能将概念、公式烂熟于心,又怎能够在题目中熟练应用呢?
概念是数学的基石,对于每个定义、定理、公式法则,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的。将概念、公式与解题联系起来,以了解它们如何运用在题目中,从而将头脑中学来的概念具体化,加深对知识的理解,达到活学活用。
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2.看例题,做习题,要学会总结题型和方法
1)如何看例题、做习题?要想学好数学,必须多看例题,多做习题。我们看例题、做习题,目的是体会定义、定理、公式法则的运用,是学习数学的思想和方法。每一道题,都是针对一个或几个知识点,都会反映出一定的思维方法,即解题的思想方法。每看或做一道题目,都应体会如何应用数学知识,应理清它的思路,掌握它的思维方法。时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时再解这一类的题目时就易如反掌了。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小的变化就干瞪眼,无从下手。原因就在于不明白数学知识是怎么应用的,解题时是怎么思考的。
2)学会归纳和总结。题海无边,总也做不完。数学题目是无限的,但数学的思想和方法却是有限的。要想将题目越做越少,就要学会归纳和总结。
对做过的习题进行归纳和总结,再现思维活动经过,分析想法的产生及错因的由来。要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法。做了哪些习题?用到什么概念,定理或公式?用到什么解题方法?属于什么类型?哪些是自己能熟练解决的,哪些还有困难?会做的以后少做或不做,有困难的不会的要多做,重点做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
我们的建议是:看例题、做习题一是要体会定义、定理、公式法则的运用,从而记忆和巩固所学的定义、定理、法则、公式,二是要总结归纳解题的思路和方法,将题目越做越少。
3.收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。对于每次做错的题目,要分清楚是做错的还是不会做,对做错的,要分析原因,总结当时自己是怎么想的?错在哪里了?那么正确的思路又是什么?不会做的,要请教,然后把它记在本子上,并及时复习相关的内容。我们之所以建议大家收集自己的典型错误和不会的题目,一方面是可以查漏补缺,及时复习相关内容;另一方面,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。从而认清自己学习的状况。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4.就不懂的问题,积极提问、讨论
不提倡不懂就问,一发现现问题不经思考就问,不是好习惯。经过自己反复思考仍不能理解或解决的问题,应积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
5.注重实战(考试)经验的培养
考试是一种能力,也可以通过平时训练来获得。把“做作业”当成考试,平时做作业时,要不看书,不请教,在规定时间内独立完成;解题要规范,有条理,演算要清楚,整齐,避免出现计算错误。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
良好的学习方法的掌握,学习习惯的养成,都必须在平时每天的学习实践中加以训练和坚持。我们建议:家长应该变对考试成绩的期待为对整个学习过程(预习,听课,复习,做作业)具体的指导、监督和管理,逐步让学生掌握有效的学习方法,养成良好的学习习惯。从而提升学习能力,获得优良的成绩。
关于学习数学方法个人心得体会范本【三】
通过这次学习,我认识自己以往教学上的很多不足,现在将我个人的体会稍作总结:
一、在数学的教学中,要培养学生提出问题的能力。数学问题可以在数学情境中直接提出,也可以让学生围绕教师创设的情境提出情境问题。问题的产生可以给我们的教学起到导航的作用,我们有时可以根据学生提出的问题,确定本节课需要解决的知识重点。这样一来,学生自主探究的动机和欲望便产生出来,同时,也让学生真正感受到学习数学是有用的。
二、不能“满堂灌”,但也不能“不敢讲”。根据《高中数学新课程标准》,自主探索、合作交流、动手操作是学生学习数学的重要方式。但这并没有排除教师必要的讲解和学生有意义的接受。我们不应该从“满堂灌”这一极端走向“不敢讲”另一极端,要想倡导“自主探究”的学习方式,自主学习是探究的前提、基础。在学生探究活动中,只有当学生的学习有一种“山穷水尽疑无路”情况出现时,教师要即时点拨,给他一个“柳暗花明又一村”的感觉。
三、加强学生对知识系统化、整体化。上课开始,教师出示复习内容的结构框架或由学生通过自行阅读已学内容找出其中的知识点,具体到数学上就是单元(或章节)中已认知过的定理、定义、法则、公式、概念等。学生可在教师指导下重新认识教材内容体系,使所认知知识系统化、整体化。学生不仅能较好地完成识记任务,而且能将平日学习时零碎的知识重新联缀成一个网络,形成知识结构化的整体轮廓,明确单元复习或章节复习的重点目标。
四、做好学生的复习工作。复习课的主要任务是培养学生综合运用所学知识和灵活掌握数学思想方法的能力。因此,在学生从整体上把握了单元或章节知识之后,教师可出示已选的具有代表性的题目,示范讲解。引导学生通过对题目的集中思维,揭示出题目中所蕴含的基本规律。
例题必须对应本部分内容学习的高层次目标,尽量使之牵扯到多个知识点,体现知识的综合运用。同时要设计渗透体现某一典型思维过程或代表某一种类型性题目。示范讲解要注重于引导思维,开动学生脑筋,通过双边活动提出示例题目中存在的规律,进而培养学生分析问题、解决问题的能力。在示例中还要引导学生去进一步发现合理的解题角度及的解题方案。
教师把与复习目标相对应的、对复习知识覆盖面较广的达标检测题发给学生,由学生在规定时间内独立完成。安排适当时间公布答案,由学生交换批阅或收齐集中批阅,部分题亦可由学生自行批阅。
总之,我们教师应该正确认识素质教育的真正目的,明确素质教育的方向,正确引导学生学习,培养学生自主创新的能力和实践能力,进一步提高作为未来公民多必须的数学素养,以满足个人发展与社会进步的需要,培养学生“真、善、美”的数学修养。
关于学习数学方法个人心得体会范本【四】
转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。
记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。
对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。
在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。
关于学习数学方法个人心得体会范本【五】
度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二,对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识问题还要多。如今到了高二,是不是知识更多更难了呢?
个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别莘不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都昌对函数单调性的理解。到了高二阶段,文科和理科学生都要学习一样新的工具——导数,也就是我们庆不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。
还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”。那么到了高二阶段,我们将要学习更加复杂的三类曲线——椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。
最后在一些小知识上也有所深化,还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上,在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理,到时候同学业们就会知道“乘法”比“加法”究竟能快多少。也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。
总体来说,高二数学的难度比高一要大,但是如果同学们在高一的时候对知识有深入的理解的话,高二阶段的知识也就只是个深化练习的过程了,这就要求同学们在高二的时候造成不要放松,这个时期是最需要大量做题,大量练习的时期,错过了这个时期就再也没有机会超越别人了。有人会想高三再努力也不迟,殊不知高三的时候所有好好学习的人都会拼命的做题,拼命地练习,在那时想赶超别人几乎是不可能完成的任务。高三环境是不努力的人必然跌入谷底。努力的人也只可以保证不下降。也就是说想超过别人,走在别人前面,高二已经是最后的机会了。
对于高一阶段知识掌握的不够扎实的同学,高二也是唯一可能提高的机会了,正像上文所说,高二的知识很多是高一知识的扩展和深化,也就是说如果之前学习的时候没有掌握好,那么高二的学习就既是学习过程又是复习过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。比如说如果有同学函数没有学好,没关系,高二学习导数的时候会再回来研究函数问题:平面向量没学好,没关系,学习空间向量的进修也可以顺带复习;直线和圆没学好,没关系,圆锥曲线比圆难多了,学好圆锥曲线之后再回去看圆就轻松多了。
总之,在数学学科,如果你想超越别人,高二是最好的机会,如果你想追上别人,高二是最后的机会。我们将迎来高中整个三年中最困难,最有挑战,也是收益最大的一年。高考中数学的重要性无庸赘述,希望同学们能在高二的时候抓住机会,为了能有一个轻松的高三,也为了能有一个满意的高考而努力
第二篇:数学方法
高考数学解题思想一:函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高考数学解题思想三:特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
高考数学解题思想四:极限思想解题步骤
极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题思想五:分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
第三篇:初三学生学习数学方法谈
初三学生学习数学方法谈
如何学好初三数学,是摆在即将升入初三学生面前的一个难题。其实,学好数学并不难!初三学生要想学好数学要掌握下面几招:
一、课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
二、上课要“听、记、练”。把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。
三、作业要“思、问、集”。作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想,如:方程的思想、函数的思想、数形结合的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。
另附:
与以往课程相比,初三数学不但增加知识量,而且有质的飞跃——要求同学在深刻理解概念的基础上,掌握数学思想方法,能综合运用学到的知识来解决问题。因此,初三的同学现在就要学会用更好的方式学习数学,才能顺利挑起新的学习重任。
一、编织知识网络
我们学过不少知识点,做了不少题目,但是脑子里的印象却往往是模糊、孤立的,必须经过比较和整理,找出其中的联系和区别,把知识编织成网络,解题时就能胸有成竹,运用自如,形成解决问题的能力。
例如,怎样的四边形可以判定它是平行四边形、矩形、菱形、正方形?分别有几条可以考虑的思路?它们的边、角、对角线各有什么性质?对称性怎样?不妨总结一下。
二、挑战特色例题
我们平时的作业往往紧跟当天所学的知识,并不难解;但是,看看近几年的中考和各区县模拟考,你就会发现:现在对同学思维能力的要求已经大大提高,因此要认真研究一下,其中哪些知识学过了?我会解吗?有什么诀窍?例如,已知关于x的方程x2+mx+2m-n=0根的判别式的值为零,且x=1是方程的根,求m、n的值。
如果分别看两个条件,能列出关于m、n的方程组,但运算很烦。如果从整体上分析题意,就发现x1=x2=1。1+1=-m,且1×1=2m-n;∴m=-2,n=-5。
三、补救解题失误
我们不要笼统地埋怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。只要找到根源,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能取得优良成绩。
四、精选参考资料
为了提高解题能力,我们需要一二本适合自己情况的数学参考书,掌握以下要求,能帮助你进行选择:所选的题目具有典型性,不搞题海战术;内容富有启发性,解一道题就懂一点数学思想方法;难度适合本人接受能力,不要高不可攀;题目分层配置,由浅入深,循序渐进。
第四篇:考研数学方法
本人关注了其他人讲的复习经验以及不少人关于陈文灯和李永乐的书大辩论,现希望写一篇文章在把其中部分观点纠正、升华一下。归纳为几个问题。
一、去个陌生的地方要先看地图。
考研科目比较多,时间比较紧。任何复习都要付出成本的,因为时间就是你最大的成本。有人说做上万道题甚至更多,数学应该就能考好。这个问题也许是正确的,即使题海战术也有它的特殊优势。但你要知道,考研考的不只是看你的数学成绩,你的复习还要包括其他几科,你追求的应该是综合的提高,也就是一个整体观念,是一个协调过程。所以既然在有限的时间约束条件下求得复习的条件极值,就必须要找准你的方向,少走弯路,花的时间都应该是“值得”的时间。那么做什么题目才能代表正确的方向呢?我认为是历年真题,尤其是近几年的真题。也就是,只有先和历年真题“过招”之后,你才能有个正确的方向感,在以后的的大量做题中,包括对做什么样的模拟题的选择当中,才能心里有数,才能知道哪些题是好题,要多做几遍,哪些题确实技巧性太强,有些偏了。
有种观点就是历年真题要放到最后才去做以检查自己复习的情况。这种观点对于数学基础超级好的人也许适用,但对于大多数基础一般或者说不好的人,又是第一次接触考研数学的人来说,也许并不合适。道理很明显,做个形象的比喻:如果让你去个陌生的地方,你是先看地图再按照地图指引的方向再去找地方好呢?还是直接就去走,然后走走发现不对,再去看地图,不断纠正自己的方向好呢?显然前者要比后者明智一些,就算采取两种办法的人通过努力得的分数是一样的,那前者花的时间可能也要比后者少,无疑在其他科目中获得了相对的时间优势。这里呢,我们假设把数学基础好的比作一个熟悉路的人,由于他很熟悉,即使走错了,也不会错太多,也能马上纠正方向,就算方向最后不对,也许靠他的数学底子也能够考的很好,但对于一般数学基础不好的呢?就没这个时间了。
二、好多数学方法和思想都来源于教材。
对于教材的作用,好多人只是理解在是打基础的层面上,其实还一个层面就是,教材体现了很强的数学思想。其实好多人觉得教材只能给他们提供基础,然后真正的数学方法和思想要靠看辅导书来学到。其实也不然。这里我想说的就是教材里定理和推论的证明,好多人也许并不太关注这些,然后又老说自己证明题老做不好。其实教材里面的定理和推论的证明体现了很强的数学方法和思想,而且实用性很强。
第一,教材里的证明很能加深你对定理理解的精度和准确度。好多人对于定理和推论理解的失误,并非源于他们的记忆和理解能力。而是不熟悉这个定理是怎么来的,有什么假设条件。熟悉定理和推论的证明过程有助于更好的理解定理的条件,适用性和准确性。比如说,函数极限有个性质叫保号性,好多人随口就说,极限大于0,f(x)就大于0,而往往忘记这只是在自变量趋于某个数的过程中某个邻域内才成立的,所以在用到保号性的时候,不说邻域的概念就是对这个性质的误解,考试的时候就有可能丢步骤分。而如果很熟悉这个定理的证明,就会对这些性质的精确度了如指掌了,所以可以看到,加深对定理证明的理解也有助于加强我们数学表达的严谨性,这样可以少丢点步骤分。
第二,定理的证明本身有助于加强一些数学概念的进一步理解。有些定理的证明很简单,但有些定理的证明却是很长的一大串,在一大串中用到了很多的数学概念,这些概念有时我们平时可能理解的不透,通过这些证明过程就更能加深对概念的理解和运用。
第三,证明的方法值得回味。好多定理的证明都体现了一定的数学思想,包括好多证明的思想和方法直接体现在好多我们做过的题目中,包括一些历年真题中的题目。所以呢,先不要抱怨自己证明题不会做,也别老抱怨自己缺乏数学思想,先把书上的定理先证一遍再说!
这里我再举个例子来说明一下,我记得98年数学一有一道证明题,第一小问好像是。那道题是道中值的证明题,证那个中值是在开区间取得到的,那道题出的特别好,好就好在用零点定理也能“摸索”出来,能“摸索”出来两端的函数值相乘小于等于0,于是好多人就兴奋的就用零点定理证了。结果一分没拿到。理由就在对定理的精确性的理解,函数两端的函数值只有小于0,中值才能在开区间取到,而题目的条件只能推出函数值乘积小于等于0,那么这个中值就有可能在闭区间取到而不是开区间了。所以那道题只能用微分中值定理来证了。而且证起来也不是特复
杂。说这道题特别好,就好在这道题你说难也不难,就看你对定理的理解的精确度,理解准了就能拿分,理解不准就拿不到分,所以就很巧妙的把这两类考生给区分开了。区分的是他们的基础,而并非区分他们的数学技巧。
三、复习用书大辩论的升华。
我主要谈谈关于陈文灯的书和李永乐的书的看法。论坛上的回答我也看了,总结起来就一句话:基础好的看陈文灯的,基础不好的看李永乐的。我觉得这个回答太笼统了。因为没有回答清楚什么叫基础好的,什么叫基础不好的。那么我现在就再给大家做一个明确的阐释。
适用做陈文灯的复习指南的人群应该是:基本概念,基本定理理解透澈精确并运用熟练的、对数学有兴趣的、对数学思考方式和思维方式有一定训练的、善于分析,刨根问底的、有很强的分析数学问题能力的。这类人做陈文灯的复习指南提高会很迅速。
适用做李永乐的复习全书的人群应该是:基本概念,基本定理理解透澈精确并运用熟练的、重视基本概念,基本定理,基本题型理解的、对技巧性很强的偏题有一定的厌烦或抵触或惧怕情绪的、希望始终保持正确方向的、对考研数学了解甚少的、大学学习中数学学的比较少的包括所学的专业很少运用数学知识和方法的、稳中求胜的。这类人用李永乐的复习全书可以达到迅速找准方向,迅速提高的效果。所以由此可见,大家说李永乐的书适用性很强,适合面比较广,也是有一定道理的。
这两本书的特点和提高模式也是不一样的,下面我来谈谈。
陈文灯的复习指南:数学思想体现的很强,好多题目部分来源于大学数学竞赛的题目,历年真题不太多。所以真正能用好陈文灯书的绝不是“不管三七二十一”的那么套,而是吃透技巧背后数学思想的。没这个本事,那么你也就没法真正理解陈文灯书的精华。只能去套了.本人的看法是,学数学并非靠套,套是很有风险的。比如说陈文灯书上的定积分那块内容,好多都是这样,比如说书上给了好多方法:遇到这样的函数就用这样的代换来变换积分区间和积分表达式,的确底下的例题也是那么做出来的,那是因为他给的例题必须为他所给的方法服务的,所以肯定那么做能算出来。但并非是所有题目都这样代换才能出来的。真正的理解应该是去分析做
这样的代换到底能起到什么作用,为什么想到这样的代换。所以说,没点数学分析能力的人是无法理解这些精华内容的。所以陈教授也曾说过,那本复习指南写的很深,但吃透了,数学肯定是大幅度提高。我现在特别同意这句话,好多人就是按照陈文灯给的方法好好去吃透而不是盲目记忆而成功的。那些看他的书考很高分数的,我觉得绝大多数不是套出来的,而是真正理解了陈文灯写的书里面的数学思想精华的。所以,对于很想拿特别高的分数,又有很强的分析能力和数学思维的人,做陈文灯的书提高就不只是提高一点,也许是大幅度地从方法到思想的全面提高。但如果你只会套的话,不能说你就提高不了,只是你自己会很缓慢的提高,且提高的质量不如数学基础好的人。
李永乐的复习全书:我的印象就是一个字:稳。概念、定理、公式解释的清楚,题目多来源于历年真题,方向感很明确,体现的数学方法和思想都是直接和考研数学相关的方法,实用性极强,对考试的指导意义很大。题目数量合理,难易适度,避开了偏怪题的讨论,直接指向考研数学最常见方法的讨论。对于刚才我所定义的基础不好的人来说,可以迅速进入考研数学的复习模式和状态,由于现在的考研数学很重视基础能力和基本功的考查,所以李永乐的复习全书所带来的复习效果我认为效率会更高。所以对于一个基础不太好的人来说,陈文灯的复习指南是螺旋式全方位提高,李永乐的复习全书则就是快速的迅速提高。如果对一个想考一个很不错分数但并非超级高的分数(135以上)的人来说,做李永乐的书也就够了。而对于数学必须135以上的人来说,也许陈文灯的复习指南带给你的数学思想和思考数学问题的方式更能给你带来数学考高分的“灵感”。
还一个问题我要强调的是,任何辅导书都要自己做,遍数越多,理解越透,但不要遍数太多,太多了有时候后几遍的边际效果就不太明显了。我刚才说的所谓基础好的,和基础不好的,前提条件都是看完教材,对于概念定理公式熟练掌握的,然后我才做的界定。所以对于基础好的就是看遍教材,基础不好的就是还没看教材的这种界定还不是很科学的。你没看教材直接看李永乐的复习全书仍然会出现有的地方很模糊,理解起来很困难,影响了你的提高质量。就算看遍教材,概念定理公式也很熟,你也未必能被归到刚才我定义的那种基础好的行列。所以科学定位自己,是选择复习模式的关键。
好了,今天就谈到这,以上的讨论都是基础强化阶段的一些讨论,供大家参考。到了冲刺阶段,我还会给大家一些冲刺阶段的建议的。
第五篇:数学方法归纳
高等数学部分
第一章 极限、连续与求极限
极限概念:
基本性质:极限的不等式性质,局部有界,极限保号定理(在证明题中时常用到);两个重要极限。
极限存在的判别:可用两个准则(夹逼准则和单调有界数列必收敛定理);双侧极限(左右极限相等)
证明极限不存在:在其定义域内取特殊值法
无穷小的概念及其应用:无穷小与极限的关系(可对难求的极限进行转换);高阶无穷小、低阶无穷小、等级无穷小、同阶无穷小、k阶无穷小的概念;牢记常见的等价无穷小替换;熟悉无穷小重要性质;无穷小确定方法(等价无穷小、洛必达法则、泰勒公式、无穷小的运算性质)
求极限的方法:
利用连续函数,利用函数极限求数列极限,利用导数定义求极限,分别求左右极限。(以下重点掌握)利用幂指数和极限的四则运算,变量代换为两个重要极限,等价无穷小,洛必达法则,夹逼准则(放缩法),递归数列求极限(实际应用单调有界数列必收敛定理),定积分在定义的应用(有两种形式,可先用放缩法再用定积分定义),泰勒公式(记住几种常用泰勒公式)。
求极限首先看清楚是什么型的极限,如0*无穷、无穷减无穷等,都化为0/0型或无穷比无穷型。之后考虑化简(重点要先化简)再运算。如指数形式的极限一般先用指数换底公式后转换为0/0型或无穷比无穷型再进行运算。对于含有积分限的极限,先化简,再化为0/0型或无穷比无穷型,再用洛必达法则去掉积分号。
(总之求极限显审题再化简最后应用求极限方法)
化简方法:
换元法、放缩法、分子或分母有理化、通分、同时除以一个x变为分数后再换元、提出公因式、因式分解、常见的几个数列求和公式、对数的四则运算、三角函数公式(二倍角、和差化积、万能公式等)、含有积分的可以应用分部积分来化简。
由极限确定参数:
一般用到等价无穷小,;洛必达法则,泰勒公式。
函数连续和间断的判别:
函数连续:初等函数在其定义域内的都连续。
连续性运算法则(由初等函数复合)
判断函数在x0点的左右极限是否等于该点函数值。(应用该判定可以求出函数中
含有的参数)
判断函数的间断点:
第一类间断点:可去间断点,跳跃间断点等(左右极限存在)
第二类间断点:除去第一类间断点外都为第二类间断点
连续函数的性质:(证明题)
连续函数的局部性质
连续函数零点定理(零点定理的应用1,闭区间上2,开区间上(边界点有定义,补充定义后用零点定理)3,开区间上(边界点没有定义,在边界点处求左右极限判断两个边界点是否异号,如果异号可用零点定理)
连续函数介值定理(减去一个常数可转化为零点定理问题来解决,即构造函数)
连续函数零点和介值定理都可以和微分中值定理和泰勒公式联合起来求含有一阶二阶导数和高阶导数的恒等式。
连续函数在闭区间上有界及连续函数在闭区间有最大最小值(可和泰勒公式和洛必达法则,微分中值定理联系来证明不等式)
方程的根的个数(构造函数后应用零点定理)
应用反证法来证明恒等式成立
第二章一元函数的导数与微分概念及其计算
导数和微分:
导数:导数定义
导数应用:当求导法则失效时候可以用导数定义求导数
左右导数:函数f(x)的左右导数x0存在且相等则函数f(x)的在x0处可导。一阶导数和二阶导数的几何意义和物理意义
微分:微分定义
微分应用 :函数f(x)在x=x0出的微分是该函数在x=x0处函数增量的线性主要部分(其几何意义)
导数的奇偶性:f(x)在I上可导,若f(x)在I上位奇(偶)函数,则f(x)在I上为偶(奇)函数。
导数的周期性:f(x)在x上可导,并以T为周期,则f(x)在x上也以T为周期。两个函数复合的可到性判断:设F(x)=g(x)*f(x),f(x)在x=a连续,但不可导,有g(x)在x=a处可导,则g(a)=0是F(x)在x=a可导的充要条件。
函数的定义应用范围:
按定义求导数(求导法则不能用、分段函数求导)、利用导数定义求极限。
函数的求导法则:
基本初等函数求导公式、导数四则运算、复合函数求导(幂函数、反函数、隐函数、参数方程、变限积分)、分段函数求导(三种形式)(方法一:按求导法则分别求连接点出的左右导数;方法二:按定义求连接点出的导数或左右导数;方法三:连接点是连续点时,求导函数在连接点处的极限值)。
函数的求导方法:
幂函数求导(先用换底公式或两边取对数)变限积分求导(先用换元法变换积分限)(先化简再求导可以使运算简便)
重要题型:变换求导方程,使x自变量、y因变量变换为y自变量、x因变量
高阶导数和n阶导数的求法:
归纳法求得的几个常见的函数高阶求导公式(最好牢记)
分解有理函数、无理函数或三角函数化为几个常见的函数高阶求导公式;牛顿莱布尼兹公式;泰勒公式。
一元函数微分学的应用:
几何应用:求显示方程、参数方程、极坐标方程、隐函数方程的平面切线。
物理应用:棒的密度、导向线内电流强度、求物体在T温度下的比热、、功率。