第一篇:行程问题思维刘有珍行程问题归纳总结
行程问题思维刘有珍行程问题归纳总结 解题思路
1个核心公式:路程=速度×时间
2个基本题型:相遇即合作,路程和=速度和×时间; 追及即干扰,路程差=速度差×时间;
6种常见方法:图示法、公式法、比例法、赋值法、方程法、代入法 8个行程模型:火车过桥、火车运动、队伍行进、往返相遇、等距离运动、等间隔发车、无动力漂流、流水行船
精细备考 考点1:基本公式法 方:题干中等量关系明显,一般结合方程法,依据核心公式直接解题,方程往往围绕路程或时间展开。
【例题1】(广州2012-84)甲公司的马经理从本公司坐车去乙公司洽谈,以30千米/时的速度出发20分钟后,马经理发现文件忘带了,便让司机以原来1.5倍的速度回甲公司拿,而他自己则以5千米/时的速度步行去乙公司。结果司机和马经理同时到达乙公司。甲乙两公司的距离是()千米。
A.12.5 B.13 C.13.5 D.14 [答案]A [解析]20分钟的路程为30×1/3=10千米,设马经理步行的总距离为x,则,解得x=2.5(千米),因此两地的距离为12.5千米,答案选择A。
【例题2】(深圳2012-6)小强从学校出发赶往首都机场乘坐飞机回老家,若坐平均速度40千米/小时的机场大巴,则飞机起飞时他距机场还有12公里;如果坐出租车,车速50千米/小时,他能够先于起飞时间24分钟到达,则学校距离机场()公里。
A.100 B.132 C.140 D.160 [答案]C [解一]24分钟=0.4小时,假设学校距离机场的距离为s,则,解之可得s=140。答案选择C。
[解二]12公里所需的时间为12÷40=0.3小时,24分钟=0.4小时。两次速度比为4:5,路程一定,因此时间比为5:4,两次的时间差为0.7小时,进而得到第一次所需时间为5×0.7=3.5小时,从而可以得到学校距离机场的距离为40×3.5=140公里。
【例题3】(贵州2012-41)某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高1/9,就可比预定的时间提前20分钟赶到;如果将车速提高1/3,可比预定的时间提前多少分钟赶到?()
A.30 B.40 C.50 D.60 [答案]C [解析]54公里/小时=0.9公里/分钟,设准点达到的时间为t,则有:0.9t=1×(t-20),解得t=200(分钟),所以总路程为0.9×200=180(公里)。如果将车速提高1/3,则车速为0.9+0.9×1/3=1.2(公里/分钟),需要时间为180÷1.2=150(分钟),比预定的时间提前200-150=50(分钟)。
【例题5】(北京2013-77)甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行,则第一次相遇的位置距离出发点有150米的路程;如两人同时从同一点出发同向而行,问跑得快的人第一次追上另一人时跑了多少米?()
A.600 B.800 C.1000 D.1200 [答案]C [解析]第一次相遇距离出发点150米,跑的快的人跑了250米,跑的慢的人跑了150米,设速度分别为250米/分、150米/分,同时同地同向出发,快的追上慢的是追及问题,路程差为400米,则追及时间为400÷(250-150)=4分钟,进而得到速度快的路程为250×4=1000米,答案选择C。
考点2:相遇追及问题
相遇:主要指迎面相遇,相遇问题研究路程和与速度和之间的关系
追及: 主要指追及相遇,追及问题研究路程差和速度差之间的关系
【例题6】(浙江2011-53)甲、乙两辆清洁车执行东、西城间的公路清扫任务,甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从
东、西城相向开出,相遇时甲车比乙车多清扫15千米,问东、西两城相距多少千米?
A.60千米 B.75千米 C.90千米 D.135千米 [答案]B [解析]已知甲车和乙车的时间,可以设两地的路程为18,则甲速=3,乙速=2,则相遇时间=18÷(3+2)=3.6小时,相遇时甲乙的路程差=(3-2)×3.6=3.6,3.6=15千米,所以两地相距18÷3.6×15=75千米。答案选择B。
【例题7】(江苏2013C-31)甲、乙两人分别从A、B两地同时出发,相向而行,匀速前进。如果每人以一定的速度前进,4小时相遇;如果各自每小时比原计划少走1千米,5小时相遇。则甲乙两地的距离是?()
A.40千米 B.20千米 C.30千米 D.10千米 [答案]A [解析]设甲乙原定速度和为x,则两次相遇所走路程和不变,即4x=5(x-2),解得x=10,进而可得两地的距离为4×10=40,答案选择A。
【例题8】(陕西2013-76)甲、乙二人分别从A、B两地同时出发,相向而行,甲的速度是乙的4倍,甲用时15分钟到达B地后立即返回,甲乙第二次相遇后,乙再走()分钟才能到达A地。
A.40 B.30 C.45 D.33.3 [答案]A [解析] 设乙的速度是1,甲的速度为4,则A、B两地相距60,乙到达A地需要60分钟,结合题干可知,甲、乙第二次相遇是甲追上乙的追及相遇,即路程差为60,所以追及时间为60÷(4-1)=20分钟,乙还需要40分钟,答案选择A。
思维小节
速度单位换算:小乘大除
1千米/小时=米/秒,1米/秒=3.6千米/小时,即“小变大乘以3.6,大变小除以3.6”
【例题9】(河北2013-43)一只猎豹锁定了距离自己200米远的一只羚羊,以108千米/小时的速度发起进攻,2秒钟后,羚羊意识到危险,以72千米/小时的速度快速逃命。问猎豹捕捉到羚羊时,羚羊跑了多少路程?()
A.520米 B.360米 C.280米 D.240米 [答案]C [解析]猎豹速度为30米/秒,羚羊速度为20米/秒,2秒钟后,猎豹的路程为60米,距离羚羊140米,进而可以得到追及时间为140÷(30-20)=14秒,所以羚羊跑了14×20=280米。答案选择C。
【例题10】(山东2013-55)甲乙两地相距20公里,小李、小张两人分别步行和骑车,同时从甲地出发沿同一路线前往乙地,小李速度为4.5公里/小时,小张速度为27公里/小时。出发半小时后,小张返回甲地取东西,并在甲地停留半小时后再次出发前往乙地。问小张追上小李时,两人距离乙地多少公里?
A.8.1 B.9 C.11 D.11.9 [答案]D
[解析]小张从第一次从甲地出发到第二次从甲地出发共1.5小时,这1.5小时期间,小李一直在行走,所以可以转化成小李出发1.5小时后,小张才开始出发的追及问题。设小张追上小李需要x小时,(27-4.5)x=4.5×1.5,解得x=0.3,距离乙地20-27×0.3=11.9(公里)。答案选择D。
考点3:重点模型
模型1:队伍行进模型
队尾→队首:追及问题,S队伍=速度差×时间=(v1-v2)t 队首→队尾:相遇问题,S队伍=速度和×时间=(v1+v2)t 【例题11】(安徽2012-64)一支600米长的队伍行军,队尾的通讯员要与最前面的连长联系,他用3分钟跑步追上了连长,又在队伍休息的时间以同样的速度跑回了队尾,用了2分24秒,如队伍和通讯员均匀速前进,则通讯员在行军时从最前面跑步回到队尾需要多长时间?()
A.48秒 B.1分钟 C.1分48秒 D.2分钟 [答案]D [解析]设通讯员的速度为,队伍的速度为,2分24秒=2.4秒,由题意列方程有:,解得=250(米/分钟),=50(米/分钟),则返回队尾所需时间为=2(分钟),答案选择D。
模型2:火车过桥
火车过桥:路程=桥长+车长,即火车过桥路程包含两部分
【例题12】(联考2012秋-47)某公路铁路两用桥,一列动车和一辆轿车均保持匀速行驶,动车过桥只需35秒,而轿车过桥的时间是动车的3
倍,已知该动车的速度是每秒70米,轿车的速度是每秒21米,这列动车的车身长是(轿车车身长忽略不计)?()
A.120米 B.122.5米 C.240米 D.245米 [答案]D [解析]假设动车长是x,桥长为y,则,解之可得x=35×7=245(米),答案选择D。
模型3:火车头尾错离型
反向错离型:路程和=快车车长+慢车车长
【例题13】(浙江2011-51)一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与火车的速度比是5︰3,问两车的速度相差多少?
A.10米/秒 B.15米/秒 C.25米/秒 D.30米/秒 [答案]A [解析]反向错离题型,则两车的速度和=(250+350)÷15=40米/秒,设客车的速度是5,火车的速度是3,速度和为8=40米/秒,则速度差2=10米/秒,答案选择A。
模型4:往返相遇型
往返相遇:1)迎面相遇n次,则路程和为(2n-1)个全程;2)往返相遇问题中,每个人的路程与路程和按照同样的比例变化。如第1次相遇路程和为1个全程,第2次相遇路程和为3个全程,则其中的每个人路程变为第1次相遇时路程的3倍。
【例题14】(联考2013春-45)小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?()
A.1.5 B.2 C.2.5 D.3 [答案]B [解一]由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法,解得x=2y,故两人的速度比为2∶1。答案选择B。
【例题15】(深圳2012-17)甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离是()米。
A.6000 B.6500 C.7000 D.7500 [答案]D [解析]设两地的距离为s米,第二次相遇共走了3s米,甲速:乙速=3:2,第一次相遇时甲的路程为3/5s米,第二次相遇时甲的总路程为9/5s米,因而两次相遇的地点相距2/5s米,所以两地相距3000÷2/5=7500米,答案选择D。
模型5:等距离运动
等距离运动:平均速度;
特征:“等距离”、“上下坡运动”、“往返”等字眼
【例题17】(北京2014-76)某人开车从A镇前往B镇,在前一半路程中,以每小时60公里的速度前进;而在后一半的路程中,以每小时120公里的速度前进。则此人从A镇到达B镇的平均速度是每小时多少公里?
A.60 B.80 C.90 D.100 [答案]B [解析]“前一半,后一半”等距离运动,答案选择B。模型6:无动力漂流
无动力漂流:漂流时间,其中t1为逆流时间,t2为顺流时间; 【例题18】(四川2012-14)一艘轮船从上游甲地开往下游乙地需要5个小时,以同样的功率从乙地开往甲地需要6个小时。如在甲地放下一无动力竹排,它到达乙地需要多长时间?()
A.5小时 B.15小时 C.30小时 D.60小时 [答案]D [简析]根据公式,答案选择D。模型7:等间隔发车
1)发车时间,其中t1为迎面相遇时间,t2为反向追及时间;
2)等间隔发车问题本质上是等距离的相遇问题和追及问题,其中路程和=路程差=等间隔距离
【例题19】(重庆秋季2013-93)为了保持赛道清洁,每隔10分钟会有一辆清扫车从起点出发,匀速清扫赛道。甲、乙两名车手分别驾驶电动车和自行车考察赛道,甲每隔5分钟追上一辆清扫车,每隔20分钟有一辆清扫车追上乙,问甲的速度是乙的多少倍?()
A.3 B.4 C.5 D.6 [答案]D [解析]设甲的速度是x,乙的速度是y,清扫车的速度为1,清扫车之间的距离是不变的,即追及的路程差不变,进而可得:,解得x=3,y=0.5,即甲速是乙速的6倍。答案选择D。
模型8:流水行船模型→顺速=船速+水速,逆速=船速-水速
【例题20】(四川2013秋季-54)一艘货船,第一次顺流航行420千米,逆流航行80千米,共用11小时;第二次用同样的时间顺流航行了240千米,逆流航行了140千米。问水流速度是多少千米/小时? A.12 B.16 C.20 D.24 [答案]C [解析]分析题干可知,顺流减少了180千米,逆流增加了60千米,时间不变,即顺流3千米时间=逆流1千米时间,进而可以得到,11小时=660千米顺流=220千米逆流,也就是说,顺速=60千米/小时,逆速=20千米/小时,水速=(60-20)÷2=20千米/小时。答案选择C。
华图刘有珍
第二篇:行程问题总结
行程问题教学研究 枳沟初中
薛金灵
很明显这是列方程解应用题中的行程问题,行程问题是初中数学的重要内容,是中考的重要内容之一。是初中数学列方程解应用题的三大重点:行程问题,工程问题,百分率问题中的重点题型。行程问题又具体分为以下几种情形:
相遇问题:甲、乙相向而行:甲走的路程+乙走的路程=总路程
追击问题:甲、乙同向不同地:追者走的路程=前者走的路程+两地间的距离
环形跑道问题:
1、甲、乙两人在环形跑道上同时同地同向出发,快的必须多跑一圈才追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发,两人第一次相遇跑的总路程=环形跑道一圈的长度。
飞行问题:基本等量关系:顺风速度=无风速度+风速
逆风速度=无风速度-风速
顺风速度-逆风速度=风速×2 航行问题:基本等量关系:顺水速度=静水速度+水速
逆水速度=静水速度-水速
顺水速度-逆水速度=水速×2 典型例题:李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分不钟200米
自行车路段和跑步路段共5千米,共用15分钟,求自行车路段和跑步路段的长度。
本题是一般的行程问题的列方程解应用题,直接应用关系式:路程=速度×时间,列方程或方程组解答。首先设未知数,一般两种设法,直接设或间接设,先考虑直接设,如设自行车路段为x米,跑步路段为y米。然后我画线段图表示路程,等量关系很明显即:路程相等一个方程,时间相等一个方程为:
x+y=5000
{ x÷600+y÷200=15
当然本题也可用一元一次方程解,如设自行车路段为x米,则跑步路段为(5000-x)米。可列方程得:x÷600+(5000-x)÷200=15
说明:本例还得注意单位统一
总之,列方程解应用题是初中数学教学的重点难点,在实际教学时,让学生首先弄清问题是具体的哪种类型,画图分析题意,选择所需的等量关系列方程。列方程解应用题的关键是把未知数与已知数同等看待。很多学生不会列方程的主要原因就把未知数与已知数分别看待,未知数设上不用。另外列程解应用题是两个过程,先根据题意列方程,在求解未知数值。
水流
1:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。求船在静水中的速度(即船速)和水流速度(即水速)。
分析:要求船速和水速,要先求出顺水速度和逆水速度,而顺水速度可按行程问题的一般数量关系求,即:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度。因此,顺水速度是286÷11=26千米,逆水速度是286÷13=22千米。所以,船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米。
2:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。
3.某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?
4.A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所
以水速相同。根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。所以,乙船在静水中每小时行16-6=10千米。
【应用举例】
例1 甲、乙两人在10千米的环形公路上跑步,甲每分钟跑230米,乙每分钟跑170米. ⑴若甲先跑10分,乙再从同地同向出发,还要多长时间相遇? ⑵若甲先跑10分,乙再从同地反向出发,还要多长时间相遇? 解:
1.(1)设需要的时间为x秒(230-170)x=10000
60x=10000
x=166.6分钟(2)设需要的时间为x秒 230×10+(230-170)x=10000
60x=7700
x=128.3分钟 答:⑴若甲先跑10分,乙再从同地同向出发,还要166.6分钟相遇? ⑵若甲先跑10分,乙再从同地反向出发,还要128.3分钟 相遇?
例2 一列火车行驶途中,经过一条长300m的隧道需要20s的时间.隧道的顶上有一盏固定的灯,垂直向下发光,灯光在火车上照了10s.求这列火车的长为多少?
解:经过一条长300m的隧道要20s:这里的20s是指隧道的长度加上火车的长度,即火车从进隧道,到完全的出隧道的长度。而隧道上的灯所照的时间10s:就是火车的长度。根据速度相等,设火车长x米,则
300+xx 变换为300+x=2x,即 2010x=300 所以火车长300米。
例3 在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间是多少? 解:设需要的时间为x秒,110千米/小时= 则:
275250米/秒,100千米/小时= 米/秒 99275250x-x=12+4 99解得:x=5.76 答:需要的时间为5.76秒
【课堂操练】
2.甲、乙两人分别在相距50km的地方同向出
发,乙在甲的前面,甲每小时走16km,乙每小时走18km,如果乙先走1小时,问甲走多少时间后,两个人相距70km? 解:设甲走的小时数为x(x+1)×18-16x=70-50 2x=20-18 x=1 甲走1小时后两人相距70km
3.一辆大汽车原来的速度是30千米/时,现在开始均匀加速,每小时提速20千米;一辆小汽车原来行驶的速度是90千米/时,现在开始均匀减速,每小时减速10千米。经过多长时间两辆车的速度相等?这时车的速度是多少? 解:设经过x小时车速相等。30+20x=90-10x 解为x=2 再用30+20×2=70 最后答:经过2小时两辆车的速度相等,这时车速是每小时70千米
4.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两 人同时到校,学校离家有多远? 解:设学校离家有x里
x10x ,x=4答:学校离家有4里 66085.甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.快车先开30分,两车相向而行,慢车行驶了多少小时后两车相遇?
解:设x小时后相遇
65x+85x=450-85*0.5
x=2.717 答:2.717小时后相遇
6.甲、乙两人分别从A、B两地同时出发相向而行,已知甲的速度比乙快3千米/时,两人从上午8时出发,上午10时还相距15千米,到中午12时两人又相距15千米,求A、B两地间的距离。
解:设AB两地的距离为x千米
上午10时还相距15千米,此时甲乙两人共行了x-15千米,用时2小时
中午12时两人又相距15千米,此时甲乙两人共行了x+15千米,用时4小时 两人的速度之和相等,有(x-15)/2=(x+15)/4 2(x-15)=x+15
2x-30=x+15 x=45 答:A、B两地间的距离是45km
【课后盘点】
1.采石厂工人爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移到400米以外的安全区域,导火索燃烧速度是1厘米/秒,人离开的速度是5米/秒,则导火索的长度至少是多少 厘米.
解:假设工人正好在爆破中心400m时,导火索燃尽,爆破开始。工人转移用时为t1=400/5=80s 导火索燃烧时间为t2=t1=80s 导火索长度为80s*1cm/s=80cm
2.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是
. 解:(60+a)m
5.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.
答案:解:解:设上山速度有x千米/小时 1.5x×50=60x+1 , x=1/15
1.5×1/15=0.1千米
0.1×50=5千米
答:上山速度有1/15千米/小时.下山速度有0.1千米/小时,山下到山顶的路程有5千米。6.一列火车在铁道上匀速行驶,经测量,这列火车在迎面而来的人身旁驶过用了15秒时间,而从背向而去的人身旁驶过用了17秒时间,已知行人步行的速度都是3.6千米/小时,请问这列火车有多长?
解:设火车速度x米每秒 3.6千米/小时=1米/秒 15(1+x)=17(x-1)x=16 火车长17(16-1)=255米
答:这列火车长255米
7.某人从家骑自行车到火车站,如果每小时
行15千米,那么他可以比火车开车时间提前15分钟到达;如果每小时走9千米,则要比开车时间晚15分钟到达.
(1)若准时到达火车站,需要多长时间?
(2)现打算比开车早10分钟到达,每小时应走多少千米? 解:设还有x分钟火车开车
15千米/小时=13千米/分钟
9千米/小时=千米/分钟 42013(x-15)=(x+15)解得x=60 420即:还有60分钟火车开车 时间:60-10=50(分钟)路程:14(60-15)=千米 445换算成小时:0.225×60=13.5千米/小时
8.A、B两地相距60km,甲乙两人分别从A、B两地骑车出发,相向而行,甲比乙迟出 发 20min,每小时比乙多行3km ,在甲出发后1h40min ,两人相遇,问甲乙两人每小时各行多少km? 解:
解法1:设甲的速度为xkm/h,乙的速度就是(x-3)km/h 所以3x+(x-3)×2=60 5解得x=18
所以甲的速度为18km/h
乙的为15 km/h
解法2:设乙的速度为xkm/h,则甲的速度为(x+3)km/h 甲比乙迟出发20分,乙行了2个小时(1+40/60)(x+3)+2x=60 解得 x=15 甲的速度为15+3=18千米/小时
答:甲的速度为18千米每小时,乙的速度为15千米每小时
9.一列匀速前进的火车,从它进入320m的
隧道到完全通过隧道经历18s,隧道顶部一盏固定的灯光在火车上照了10s,则这列火车的长为多少?
解:设火车的速度是xm/s. 根据题意得:320+10x=18y 解得:x=40m,得到:火车的长是400m. 答:这列火车长400米。
10.A、B两地相距1890千米,甲、乙两列火车分别从A、B两地同时出发相向而行,甲每小时行120千米,乙每小时行150千米,经过多长时间两车间的距离是135千米? 解:解:在行程问题中,路程=速度×时间,设经过x小时后,两车相距135千米,那么甲行驶了120x千米,乙行驶了150x千米.当两车相遇前相距135千米时,可得方程:120x+135+150x=1890 当两车在相遇后相距135千米时,可得方程:120x+150x=1890+135 解这两个方程,得x=6.5或x=7.5 答:经过6.5小时或7.5小时,两列火车相距135千米.
11.甲、乙两地相距23千米,A从甲地到乙地,在乙地停留20分钟后,又从乙地回到甲地;B从乙地到甲地,在甲地停留30分钟后,又从甲地回到乙.若A、B同时从甲、乙两地出发,经过5小时,在他们各自返回的路上相遇,如果A的速度比B的速度快3千米/时,求两人的速度.
解:设B的速度为a千米/小时,则A的速度为(a+3)千米/小时
11小时,30分钟=小时 3211(5-)a+(a+3)×(5-)=23×3 2320分钟=
914a+a+14=69 2355a=55 6a=6千米/小时
答:A的速度为6+3=9千米/小时
B的速度为6千米/小时
【课外拓展】
有8位退休教师分别乘坐小汽车从山区赶往飞机场,可真不巧,其中一辆小汽车在距离飞 机场15千米的地方出了故障,不能行驶,此时离飞机停止检票时间只剩下42分钟(停止检票后即不让乘客上飞机).这时,惟一可以利用的交通工具只剩下一辆小汽车,连同司机在内一次限乘5人,这辆小汽车的平均速度为60千米/ 时.(1)这辆小汽车要分两批送这8人,如果
第二批人在原地等待,那么这8 人都能及时到达机场吗?请说明理由.(2)(列方程解答)如果在小汽车送第一批人的同时,第二批人先步行;小汽车把第一批人送到机场后立即返回接送在步行中的第二批人, 若这些人的步行速度为5千米/时,问:这8人都能及时到达机场吗?请说明理由.解: 解:(1)设小汽车送这两批人到达机场所用的时间为xh,由题意得60x=15×3 解得x= 34h,即 34×60=45min>42min
答:这8名球迷不能在规定的时间内赶到机场.
(2)设汽车送第一批人返回与第二批人相遇的时间为xh,则这段时间第二批人走的路程为5xkm,汽车送第二批人用的时间为:(15-5x)60h,依题意得:60x+5x=2×15 解得:x= 613 5x=5× 613= 3013(15-5x)60= 1152 所以:汽车送这两批人的时间为 613+ 1152= 3552≈40min<42min. 答:这8名球迷能在规定的时间内赶到机场.
第三篇:小学行程问题
.小学行程问题的经典应用题(附答案)
在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间
2.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
3.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
4.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
5.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程
第四篇:行程问题 1
行程问题
1.小王汽车从家去县城,原计划每小时行12千米,由于有事晚出发半小时,要想按时到达,必须比原计划每小时多行4千米。县城距小王家___________千米。
2.某人开车从A地到B地要行200千米,开始时他以56千米/时的速度行驶,但因中途汽车故障修车半小时,为了按原定计划准时到达,他必须把速度增加14千米/小时来跑完以后的路程,他修车的地方距A地有___________千米。
3.在一圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙环形一周各需要______,_____分钟。
4.一条山路从山下到山顶是40分钟还差1000米,从山顶下山35分钟可以走完,已知下山速度是上山的1.6倍,这条山路长___________米。
5.妹妹走着去上学,出发10分钟后,哥哥骑车去追妹妹,5分钟就追上了妹妹,这时哥哥发现东西忘了,立刻返回,取了东西又去追妹妹,再次追上妹妹时,妹妹已走了___________分钟。
6.小张、小王、小李同时从湖边同一地点出发绕湖行驶,小张速度是5.4千米/小时,小王速度4.2千米/小时,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是___________千米。
7.甲、乙两车同时从A、B两地出发,相向而行,3小时后相遇。相遇后甲车继续行驶2小时到达B地,乙车每小时行24千米,AB两地相距___________千米。
8.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后慢车以40千米/小时的速度从乙站向甲站开出,两车相遇时,相遇点距两站的中点70千米。甲、乙两站相距___________千米。
9.甲步行、乙骑车从同一地点出发沿同一条公路前进。如果甲先出发40分钟,乙用30分钟追上甲,如果甲先出发30分钟,乙追上甲要___________分钟。
10. 某人由山底A上山经过山顶B下山到达山底C,共行30千米,共用7.6小时,已知他上山3千米/小时,下山5千米/小时,求上山AB长___________千米。如果从C点原路返回到A,要用___________小时。
第五篇:行程问题(一)
行程问题
(一)引入:甲乙两人相距200米,甲每小时走45米,乙每小时行55米。几分钟后两人相距500米?
完成“相遇问题”填空1~3;“追及问题”填空1~3。
讲解例1~例4。
例1: 妹妹放学回家,以每分钟80米的速度从学校步行回家,6分钟后,哥哥骑自行车以每分钟200米的速度从学校回家,当妹妹到家时,哥哥正好追上妹妹。问哥哥经过多少分钟追上妹妹?(求追及时间)
【跟进】完成(一)(二)中的其余填空。
甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可追上甲?
甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的1.2倍。现在甲在乙的后面400米,问:乙追上甲还需多少时间?
该题把“现在甲在乙的后面400米”改为“现在乙在甲的后面400米”,这么做?
有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米。两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
例2 :一辆摩托车追赶比它先出发的一辆汽车。已知这辆汽车每小时行驶28千米,摩托车每小时行驶40千米,摩托车出发后7小时追上了汽车,汽车比摩托车早出发几小时?(求提早时间)分析 :
【跟进】
1、妹妹以每分钟50米的速度从家出发去学校,哥哥发现妹妹忘记带学具盒,于是哥哥骑自行车以每分钟200米的速度从家出发追赶妹妹,12分钟后追上妹妹。妹妹比哥哥早出发多少分钟?
2、妹妹从家出发去学校上学,以每分钟50米的速度步行,6分钟后哥哥也从家出发去同一所学校,经过12分钟哥哥追上妹妹。问哥哥每分钟走多少米?
例3:两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场。问:(1)第二辆追上第一辆的地点距仓库多远?
(2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远?
【跟进】
甲、乙两车同时从A地出发去B地,甲车每小时行12千米,乙车每小时行9千米,途中甲车停车4小时,结果甲车比乙车迟到1小时到达目的地,问AB两地之间的路程是多少千米?(求全程)分析:
例4 :小明在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时从他后面开过来一列火车,从车头到车尾经过他身旁共用了21秒,已知火车全长336米,求火车的速度。
【跟进】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。求小强骑自行车的速度。
小华在前面以不变的速度前进,小明在后要去追赶,如果速度是每分钟60米,要15分钟才能追上;如果速度是每分钟70米,要10分钟才能追上;问小华的速度是多少?
分析:小华先行的路程是一定的,即小明比小华多行的路程不变。
追及问题与相遇问题的区别在于运动的方向,及由此而引出的速度和与速度差;共同点是双方所用的时间是相等的。在解答追及问题时,关键是抓住速度差去分析和思考,同时画线段图辅助解题是一种行之有效的方法。
练习
(一)一、填空。
(1)甲、乙两列火车同时从两城相对开出,甲车每小时行54千米,乙车每小时行53千米,经过5小时相遇,两城间的铁路长()千米。
(2)甲、乙两城相距342千米,两列客车分别从甲、乙两城同时相对开出,一列客车每小时行58千米,另一列客车每小时行56千米,()小时相遇。
(3)甲、乙两列火车同时由相距792千米的两地相向而行,9小时后相遇,甲车每小时行45千米,乙车每小时行()千米。
(4)甲、乙两辆汽车同时从东、西两地相向出发,甲车每小时行56千米,乙车每小时行48千米,两车离中点32千米处相遇,那么东、西两地间的路程是()千米。
(5)小明的家在学校南边,小芳的家在学校北边,两家之间的路程是1410千米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校,已知小明每分钟能走70米,小芳每分钟能走80米,小明的家离学校()米。
(6)两列火车从某站相背而行,甲车每小时行52千米,甲车先开出2小时后,乙车才开出,乙车每小时行48千米,乙车开出5小时后,两列火车相距()千米。
(7)甲乙两人在周长是400米的圆形跑道上锻炼身体,两人朝相反方向跑,甲、乙两人第一次相遇和第二次相遇之间经过40秒,已知甲每秒跑6米,那么乙每秒跑()米。
(8)甲在A城,乙、丙在B城同时相向而行,甲时速14千米,乙时速11千米,丙时速9千米。已知甲、乙相遇后,又经过2小时甲、丙相遇,那么两城间的路程是()千米。
(9)A、B两站相距440千米,甲、乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米。一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又返回飞向乙车,这样一直飞下去,燕子飞了()千米,两车才能相遇。
(10)一辆汽车从甲地到乙地去,如果每小时行驶45千米,就要延误1小时到达;如果每小时行驶50千米,就可提前1小时到达,甲乙两地的路程是()千米。
(11)甲队以每小时行进15千米的速度去正前方120千米外的A镇侦察,与甲队同时出发的乙队以每小时9千米的速度前进,那么甲队完成任务后折返原路行()小时和乙队相遇。
(12)甲、乙两辆汽车同时分别从A、B两地相对开出,甲每小时行40千米,乙车每小时行45千米,甲乙两车第一次相遇后继续前进,甲、乙两辆汽车各自到B、A两地后,立即按原路原速返回,两车从开始到第二次相遇共用6小时,那么A、B两地相距()千米。
二、解答。
甲乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立即返回,第二次相遇在离B地55千米处,求 AB两地相距多少千米?
练习
(二)一、填空。
(1)甲、乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后家追上乙,乙每小时行6千米,甲的速度是()。
(2)甲以每小时4千米的速度步行去某地,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙()小时可以追上甲。
(3)甲、乙二人由A地到B地,甲每分钟走50千米,乙每分钟走45千米,乙比甲早走4分钟,二人同时到达B地,那么A地到B地的距离是()米。
(4)有两列火车,一列长102米,每秒钟行20米;一列长120米,每秒钟行17米,两车同向而行,从第一列车追上第二列车到两列车离开需要()秒。
(5)某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。已知列车长90米,那么列车的速度是()。
(6)甲、乙两车同时、同地出发去统一目的地,甲车每小时行40千米,乙车每小时行35千米,途中甲车停车3小时,结果甲车比乙车迟1小时到达目的地,那么两地之间的距离是()。
(7)甲、乙两人沿运动场的跑道跑步,甲每分钟跑300米,乙每分钟跑280米,跑道一圈长400米,如果两人同时由同地向同一方向起跑,那么甲经过()分钟才能第一次追上乙。
二、解答。
1.一架飞机侵犯我国领空,我机立即起飞迎击。在两机相距50千米时,敌机调转机头,以每分钟15千米的速度逃跑,我机以每分钟22千米的速度追击,当我机追至距敌机1千米时,与敌机展开了激战,只用半分钟击落了敌机,敌机从逃跑到被我机歼灭这段时间共用几分钟?
2.甲乙两地之间 的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇。如果两车分别从两城向同一方向开出,慢车在前面,快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?
3.张明、李军和赵琪三人都要从甲地到乙地,早上6点钟,张、李二人一起从甲地出发,张明每小时走5千米,李军每小时走4千米,赵琪上午8点从甲地出发,傍晚6点,张、赵同时到达乙地,问赵琪什么时候追上赵军?
4.甲乙丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,10分钟再遇到甲,求两镇距离是多少千米?