第一篇:高等数学学习心得
高等数学学习心得
040930117 通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:
第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
第二篇:高等数学学习心得
高等数学学习心得
机制1班 陈涛
经过半年的高等数学的学习,对于高等数学有些心得与体会。
首先高等数学是我第一次接触,明显感觉到它与初中及高中时候学习的初等数学有很大的不同。对于初等数学,我们是为了中考以及高考才努力学习,学习初等数学,只需要做大量的习题,熟练解题的步骤,就可以在考试中获得十分可观的分数。但是对于高等数学,我们以前学习初等数学的方法以及认识已经不再适用于高等数学的学习。
学习高等数学是为了诸多研究性专业与学科打好基础,它是研究科学问题的最重要的工具,毫不夸张的说高等数学就是一门研究性的学科,学习高等数学我们要抱着科学严谨的态度。对于高等数学我们要多思考,多理解,从根本上去探索它的定义,它的意义。学习初等数学的题海战术已不再适用于高等数学。如果对于高等数学的某个定义你不理解,做再多的题也很难去寻找这个定义的根本,就算你通过做大量的题熟悉某一类题目的解题方法,但将题目类型稍微改变一下,估计你就无计可施了。所以,我们要从根本上理解它的定义,因为不管题目如何变换,它始终不会离开定义。所以理解定义是学习高等数学的关键,是高等数学的基础。
兴趣也是学习高等数学的关键。学习高等数学必须要有兴趣,很多人说高等数学很难很枯燥,就是因为没有产生兴趣,兴趣是学习最好的导师,只要你有兴趣,那么你自然会努力学习这门课程,就不会感觉到乏味与困难。兴趣是你学习高等数学的动力,有了兴趣你就会勇于在高等数学的海洋中探索。
在这半年的学习中,我们学习了高等数学中的函数、极限、导数、微积分等概念。首先在函数的学习中,我们主要学习了一些关于函数的基本概念以及函数性质。其次,我们学习了极限,在极限的学习过程中,我们学习了两个重要极限以及介值定理。在求极限的过程中我们学习等价替换等方法求极限,为我们解决了求极限问题的障碍。在学习极限之后,我们学习了导数。明白了引出导数的原因,以及导数存在的意义。在导数的学习中,我们学习了隐函数的导数;导数的定义;洛必达法则求极限的方法;求曲线的切线方程;函数的一些利用导数求出的一些性质,例如单调性,凹凸性;微分在近似计算中的应用;麦克劳林公式,中值定理证明以及导数的应用等方面的知识。导数是高等数学非常重要的组成部分,在高等数学中与许多概念都有关联。紧接着导数我们学习的是积分,积分是高等数学重要的组成部分之一,积分是由平面图形的面积提出的,它在物理学中也有极多的应用。在积分的学习中,我们学习许多关于定积分与不定积分概念与计算方法以及(不)定积分中的性质,并且在定积分中有诸多例如奇偶性,周期性等重要性质,这是我们学习的重要部分。在积分中还有一些性质需要我们注意,比如反常积分,变上限积分函数,还有利用积分求极限,还有一点非常重要的应用需要我们注意,利用积分求面积求体积。在这学期最后我们学习了我感觉是本学期最难一部分,微分方程。在课堂听课的过程中我发现了许多同学对这方面的学习与理解有困难,我也感觉到这章的学习比前几章要吃力的多。微分方程这章的定义比较深奥,这是导致许多同学无法理解的重要原因。其次这章的学习过程中,题目的类型过多,以及书本上讲的过于狭隘,我们在计算过程中十分容易碰壁。对于许多题目无从下手。
经过这半年的学习我对数学有了更深刻的认识,数学是最严谨的语言,它只有错与对,永远不会出现模棱两可的概念。数学也是我最喜欢的学科,因为数学题目会给我惊喜,没当解出一题,自豪与满足感便会充满全身。这般的学习也让我对数学的学习有了更详细的计划,让我对数学的学习有了更浓厚的兴趣。
第三篇:大一高等数学学习心得
大一高等数学学习心得
转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。
记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。
对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。
在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。
第四篇:高等数学学习心得
高等数学学习心得
一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?
一•走出心理的障碍.我想学不好高数的大多数人都会说自己学习高数没有兴趣,学习高数确实枯燥乏味,面对的除了x,y,z别无他物.这些同学当中极大数是高中时的数学没有学懂,因此一上来就失去了自信心,自认为自己不行学不懂高数.为什么这么说呢?因为我也认为学习高数是很枯燥的事.尤其是在凳子上一坐两个小时,听着教授的讲解,这更像是在解读天书.虽是这样说,但是学习高数的兴趣是自己激发的.就拿我来说吧,我曾经的数学学的并不好,高考时就因为数学没考好落榜,当时的心情可想而知,但来到大学看到高数课本时,刚开始自己也觉得很恐怖,因为在数学前边又加了“高等”二字,想想自己连“低等数学”都没学好,高等数学要怎么学呢?和大家一样,初来大学每天去占座,然后试着去认真听老师讲课,认认真真听了几节课下来,我对高数产生了“一点点”兴趣,觉得高数不过如此嘛,然后就越来越注重高数的学习。通过这个例子,我只想说对高数或者别的科目没兴趣那只是心理作怪,因此要克服学习高数的困难应该先克服自己的心理.具体应该怎样克服这种心理难关呢?我认为最重要的是要找回自己的自信心,不要以为自己就学不好高数,不要以为自己就不是学习高数的料,你没试着认真的学,你咋知道学不好呢,因此学好高数我认为第一点就是要有自信心和专心的思考.这才是学习好高数的基础。
二·注重学习方法。
对于高数的学习,不同的人有不同的学习方法,我也建议大家能够总结出自己的一套学习方法,只有适合自己的学习方法才是最好的方法,下面我就简单介绍一下我的学习方法,我自认为不是最好的,但是最实用的。其实对于高数的学习很简单,学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题,所以:
首先要尽快的适应这种差异,把思维放开了,不要太死板。然后就是要把握三个环节,提高学习效率:
1)课前预习:怎样预习呢?了解老师即将讲什么内容,相应的复习与之相关内容,把老师要讲的内容和与之相关的内容从头到尾看一遍,比如说老师要讲积分,那就把导数公式,微分复习一下,所谓的看并不是走马观花,要静下心来看,但看到预习的内容里有不懂的地方做个记号,老师讲课的时候肯定会讲到,因为高数老师可都是教授,学历和经验都很丰富。
㈡认真上课:带着问题认真听课,一定要集中注意力,专心听讲,重点是注意老师的讲解方法和解题思路,其分析问题和解决问题的过程,记好课堂笔记,因为听课是一个全身心投入----听、记、思相结合的过程,如果老师让做题那一定要动手去做,做题才能体现出你的掌握情况,如果有不懂的地方,那下课一定要积极主动地问老师,老师肯定很乐意的给你讲解,直到你听懂为止,还有一点在大学给老师留一个好的印象很重要,多向老师请教就是一个很好的方法,会让老师觉得你爱学习,这样一举两得的事何乐而不为呢?
㈢课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少;然后打开教材把老师今天所讲的内容认真看一次,完善笔记,尤其是书上的例题,都很经典,一定要掌握解题方法,这点很重要,因为很多知识你以为课堂上接受了,但实际过几天就忘了,所以课后必须复习,不懂的地方多和同学交流一下,.多交流学习高数的心得.这里所说的交流不仅仅限于同学,也可以和老师.至于交流学习高数的心得不一定也要找好学生.其实,学的稍后的同学有时他们的学习方式很好,知识没有重视和培养而已.因此不要小看任何人.三·学不好高数的坏处.坏处就一点:高数学不好,其他数学科目就不用学了,因为高数是基础。四·学好高数的好处。
从考试的角度看,高数所占学分最高,5学分,如果平时一步一个脚印跟着老师走过来的,期末考试肯定会取得一个很好的成绩,这个对提高你的学分绩点有很大的帮助,学分绩点有啥用,就不必多说了吧,这是年终评奖评优的第一依据,也是最重要的依据。第二,高数的真谛不是你打多么高的分数,而是潜移默化的培养了你的一种理性思维,对于学理工科的,这种思维对专业课的积极作用是不可小视的,因为它能提高你的逻辑推理能力和逻辑判断能力,我是计算机专业的,我们所学的数学科目有高数,概率论,线性代数,离散数学,学好这些科目对学好专业课的帮助很大。
五·高数考试
期末临近,最后就说一下高数的期末考试吧,我想很多人对这点感兴趣,这么说呢,大学考试不会太难,平时多注意老师上课总结或强调的,也许那就是考试的内容,老师所说的重点一定是重点,重点题目要做到举一反三,考前老师会带大家一起复习,但不是说就会给考试原题,但老师让做的题一定得掌握,当然如果想挂科就不用掌握。
说了这么多,也不知道对大家有没有用,只希望在以后的学习中能够帮到大家,预祝大家在即将到来的期末考试中取得优异的成绩,也在大学的四年里能够有所收获。谢谢大家!
第五篇:高等数学网络课程学习心得
高等数学网络课程学习心得
最近学习了郭镜明教授的《高等数学》的网络课程培训,郭老师主要从高等数学教学改革、提高概念教学的效能等方面进行了讲解,既有理论深度,又跟实践结合紧密,对概念引入的背景阐述,对理论在其它方面的应用上,都完美体现了高等数学课程的应用性、广泛性、严谨性。郭老师的课程对自己启发颇多,收益匪浅。
1、高等数学教学改革
各个高校的人才培养目标不同,不同专业对高等数学课程教学内容的要求也不同,所以,分层次、分专业教学非常必要。对纯数学专业的学生,需要注意教学内容的严密性、系统性,并希望学生在此基础上继续深入研究下去。对于非数学专业的学生,必须以数学的应用和应用数学为主要教学内容,教学中应加强习题课的教学,教给学生学习方法和解题方法的同时,进行有意识的强化训练,如自学例题、图解分析、推理方法、理解数学符号、温故知新、归类鉴别等,学生在应用这些方法求知的过程中,掌握相应的数学能力,形成创新和应用技能。对偏向文科的学生,不需要把定理证明全讲,可以将形象化的内容加入,注意植入一些专业知识,既保证课程的趣味性,又保证课程的实用性,使学生更容易理解一些抽象的东西,可以达到相对好的教学效果。分层次、分专业教学涉及到教材、考试、学分、课时、成绩评价、选课等一系列问题,需要统筹协调加以解决。
老师在课堂教学中,要充分考虑学生的知识和能力水平,适当应用多媒体教学,提高教学效率。通过借助数表、图形、动画等将抽象的概念用具体、直观的形式表达,用实例和示例加深对概念、方法的理解。另外,开设数学实验课,通过mathmatic和matlab等软件,让学生动手实践进行计算和画图,加深学生对所学知识的直观了解,从而达到提高学生的学习兴趣和积极性。老师教学要做到因材施教,根据不同学生的学习情况做好辅导答疑工作。例如,对于学习一般的学生,可用讨论的方法与学生一起分析问题,对于学习较差的学生,经常关心他们,让他们逐步树立起学习的信心。同时,将学生作业中的各种情况进行分类汇总,对学生容易出错的地方,进行耐心讲解。
2、用好教学资源,提高概念教学的的效能
加强基本概念教学是高等数学教学中的一个永恒主题。数学的学术形态和教学形态是不一样的;在教学形态中,教材形态和课堂形态也不应该一样要注意区分。引入新的概念和定理时,注意与前面的相关概念和结论加以比较,突出它们的有机联系,便于学生从总体上把握微积分的不同知识点。为了提高概念教学的通俗性,备课时要多换位思考,多想想学生的问题可能在哪里。另外还要提高概念引入的应用性,运用中外教材和教学资源中丰富的应用性案例,根据学生和教学实际进行改造和选用,尽可能揭示概念的实际应用背景,提高学生学习抽象概念的兴趣。在讲课中可以视情况适时插入一些既有趣味又带有一定深度的资料,可调节课堂气氛,提高学生学习兴趣。充分利用现有的教学资源,使数学概念的教学变得更生动、更平易、更有启发性。
3、中美微积分教材的比较研究
1965年到1975年,美国学习微积分的学生人数急剧增加,美国数学家们的最初反应是以同样的方式和较慢的速度教授同样的内容,这就产生了易懂但不太相关的教材和大规模的班级,并且导致了大量学生不能及格,他们对数学再也提不起兴趣。直到二十世纪九十年代初,随着微积分改革的开展,数学家们才开始重新思考:他们在教些什么,为什么要教以及如何教。这种反思还在持续,由于美国大学生选修微积分的人数下降,更显得重要。目前还不能确定这些改革成果最终是否会成为大部分美国数学家所采用的微积分的教学方式。然而,这些讨论显然使得美国的微积分教学充满了活力。我希望随着中国高等学院的扩招,你们能避免我们的错误,并且开始考虑适用于你们社会的微积分教学改革方向。
郭老师还详细给我们讲授了中美微积分教材的比较及启示和从美国微积分教材的演变看信息技术对教学内容的影响,我们的微积分教材体系单一,内容趋同,而美国微积分教材改革历史较长,有较多经验,美国教材的编者在习题配置和选材上破费功夫,使我更加深刻的认识到我们要吸取美国教材中图形和数值的作用及课后题目的设计些具体应用和启发式题目的必要性,参考外文教材认真备课,而学生可以借鉴外文教材理解概念和理论。
通过郭镜明老师深入浅出的讲解,我对高等数学的现状有了更深的了解和思考,希望以后有更多的机会参与这样的网络课程培训,进一步提高自己的教学能力和水平。