第一篇:杜呵呵光学基础知识总结
杜呵呵光学基础知识总结
光学基本定律:
– 光学三大定律:折射、反射、直线传播
–光圈 景深 数值孔径NA 色散 EFL、FNO.、BFL、FFL、光阑、FOV、相对照度、MTF 阿贝尔数 MTF、空间频率 子午平面(meridional)弧失平面 – MTF曲线、离焦曲线,理解空间频率 – MTF、空间频率、TV分辨率三者关系
–费马原理 斯涅尔定律 惠更斯定律 惠更斯-菲涅耳原理 夫琅禾费衍射 – 光通量 光强 光照度 辉度
–球差,慧差 像散 场曲 畸变 垂轴色差 轴向色差 –对焦 调焦 成像公式 物像公式 几何公式
光学(optics)是研究 光(电磁波)的 行为 和 性质,以及 光和物质相互作用 的物理学科
光圈:是照相机上用来控制镜头孔径大小的部件,以控制景深、镜头成像质素、以及和快门协同控制进光量,在快门不变的情况下,光圈越大,进光量越多,画面比较亮;光圈越小,画面比较暗。
景深:是指在摄影机镜头或其他成像器前沿能够取得清晰图像的成像所测定的被摄物体前后距离范围。
(1)、镜头光圈:光圈越大,景深越小;光圈越小,景深越大;(2)、镜头焦距越长,景深越小;焦距越短,景深越大; 3)、拍摄距离:距离越远,景深越大;距离越近,景深越小。
数值孔径(NA):NA = n * sin α,其中 n 是被观察物体与物镜之间介质的折射率;α 是物镜孔径角(2α)的一半。数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低(即消位置色差的能力。
色散:材料的折射率随入射光频率的减小(或波长的增大)而减小的性质。七色光。对于一枚镜头而言,不同色光的焦点位置实际上是不一样。
阿贝数:用以表示透明物质色散能力的反比例指数,数值越小色散现象越厉害。材料的折射率越大,色散越厉害,即阿贝数越低。
费马原理:光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。又称最小时间原理或极短光程原理。
斯涅尔定律 Snell's Law(光的折射定律):光入射到不同介质的界面上会发生反射和折射。n1sinθ1 = n2sinθ2叫斯涅尔公式。惠更斯原理:球形波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络就是该时刻总的波动的波面。其核心思想是:介质中任一处的波动状态是由各处的波动决定的。
惠更斯-菲涅耳原理 Huggens-Fresnel principle:行进中的波阵面上任一点都可看作是新的次波源,而从波阵面上各点发出的许多次波所形成的包络面,就是原波面在一定时间内所传播到的新波面。
夫琅禾费衍射 :把单色点光源放在透镜的焦点上,经过透镜后的单色平行光垂直照射衍射屏时,在屏后面不同距离上会观察到一些衍射现象,其中当屏远离到足够大的距离后,光斑中心出现一个较大的亮斑,外围是一些较弱的明暗相间的同心圆环,此后再往外移动,衍射花样出现稳定分布,中心处总是亮的,只是半径不断扩大而已,这种衍射称为夫琅禾费衍射,又称远场衍射。
光通量Φ: 单位:流明[lm],光源发射并被人的眼睛接收的能量之总和即为光通量(Φ)。光强;单位:坎德拉[cd]:一般来讲,光线都是向不同方向发射的,并且强度各异。可见光在某一特定方向角内所发射的强度就叫做光强(l)。
照度E:单位:勒克司[lx],照度(E)是光通量与被照射面积之间的比例系数。1 lx即指1 lm的光通量平均分布在面积lm2平面上的明亮度。
辉度L:单位:坎德拉/平方米[cd/m2]:辉度(L)是表示眼睛从某一方向所看到物体反射光的强度
色温:单位开尔文[K]:,当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体”的温度就称为该光源的色温。“黑体”的温度越高,EFL 与FOV 焦距越短,视场角越大,放大倍率越小,监控范围越大,反之视场角越小,放大倍率越大,监控画面中人越大。
FNO=EFL(焦距)/D(光圈直径): 对于定焦镜头(光圈直径)越大,通光量就越大; MB---机械后焦,指镜头最后的机械面到像面的距离,BF---光学后焦,指镜头最后一片镜片最后一面中心点 到像面的距离。
FB---法兰后焦,镜头法兰面到像面的距离。MTF可以近似理解为黑白线条的对比度,最大值为1; 芯片的极限分辨率=2倍的pixel size分之一,单位为lp/mm 焦深越大,镜头聚焦越容易。
子午平面(meridional): 轴外物点与光轴所确定的平面 弧矢平面(sagittal):过 主光线 且与子午面垂直
像差:
球差,慧差,像散,场曲,畸变,轴向色差,垂轴色差。产生的原因: 1.球面折射系统的特性
2.不同孔径入射光线像的位置不同 3.不同视场的成像倍率不同 4.子午、弧矢面成像性质不同 5.相同光学介质对不同波长的色光折射率不同
只考虑球差展开式前 2项的系统,当边缘球差为零时,在0.707 位置残余球差最大 为高级球差的-1/4。
球差:是高度 或者孔径角 的函数 1.球差的对称性-函数不含奇次项 2.孔径小-初级球差为主要影响 3.孔径大-高级球差为主要影响
4.正单透镜产生负球差,负单透镜产生正球差 三对不产生像差的共轭点称为 不晕点 或者 齐明点
彗差(coma):彗差是孔径和视场的函数
1.在子午面和弧矢面内用不同孔径的光线对在像空间的交点到主光线的垂直距离。子午彗差:子午面内的光线对交点到主光线的垂直距离 弧矢彗差:弧矢面内的光线对交点到主光线的垂直距离
在实际光学设计中,一般物点所成像偏离对称光斑的情况都是光学系统的彗差(正弦差)造成 像散:
由于轴外物点偏离轴对称位置,细光束中也会表现出子午和弧矢的成像差别,使得子午像点与弧矢像点不重合。即一个物点的成像将被聚焦为子午和弧矢两个焦线,这种像差我们称为——像散。
场曲:像场弯曲的简称,是平面物形成曲面像的一种像差
畸变(distortion):垂轴放大率随视场增大而变化, 枕形畸变(pincushion)-正畸变,桶形畸变(barrel)-负畸变, 畸变仅由主光线光路决定,引起像的变形,不影响成像清晰度,光阑位置影响畸变,透镜之前产生负畸变,透镜之后产生正畸变。
色差-轴向色差:沿光轴度量的色差
色差同时存在于近轴和远轴区域,一般情况下,正透镜产生负色差,负透镜产生正 色差,所以,光学系统校正色差须用正负透镜组合。
色差-垂轴色差:波长 → 折射率 → 焦距 → 放大倍数 → 垂轴色差(倍率色差)两种色光的主光线在高斯面上的交点高度之差。
变焦(zoom):改变焦距f也改变了镜头的视场,原理是在镜头中加一组活动的透镜。调焦(Focus)改变像距v,即改变镜头光心到sensor平面的距离。变焦镜头原理图:
成像公式:1/u+1/v=1/f, 其中u是物距,v是像距,f是焦距。物像计算公式:f=h D/H,D:物距 h:象高 H:物高。
电视线:TV Line = lp/mm x 2 x 传感器的靶面高度 = lp/mm x 2 x 传感器垂直分辨率 x 像素点尺寸 几何光学公式:
几何光学公式.pdf
第二篇:光学基础知识
光学基础知识
物理学的一个部门。光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的
机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。
17世纪末,牛顿倡立“光的微粒说”。当时,他用微粒说解释观察到的许多光 学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。1678 年惠更斯创建了“光的波动说”。波动说历时一世纪以上,都不被人们所重视,完全是人们受了牛顿在学术上威望的影响所致。当时的波动说,只知道光线会在
遇到棱角之处发生弯曲,衍射作用的发现尚在其后。1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。他让光源S的光照亮一个狭长的缝隙S,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通1 过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说
光线通过双缝以后,在每个缝上形成一新的光源。由这两个新光源发出的光波在
抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带,若位相相反,则相互抵消表现为暗带。杨格的实验说明了惠更斯的波动说,也确 定了惠更斯的波动说。同样地,19世纪有关光线绕射现象之发现,又支持了波 动说的真实性。绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。
20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种 现象称为“光电效应”。并发现光电子的发射率,与照射到金属表面的光线强度
成正比。但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限
度时,既使照射光的强度再强也无法从金属表面释放出电子。这是无法用波动说
解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电
子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振
幅成正比。光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到
足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。
但实验结果却违反这种波动说的解释。爱因斯坦通过光电效应建立了他的光子学
说,他认为光波的能量应该是“量子化”的。辐射能量是由许许多多分立能量元
组成,这种能量元称之为“光子”。光子的能量决定于方程 E=hν 式中E=光子的能量,单位焦耳
-34h=普朗光常数,等于6.624?10焦耳?秒
ν=频率。即每秒振动数。ν=c/λ,c为光线的速度,λ为光的波长。现代的观念,则认为光具有微粒与波动的双重性格,这就是“量子力学”的基础。
在研究和应用光的知识时,常把它分为“几何光学”和“物理光学”两部分。适
应不同的研究对象和实际需要,还建立了不同的分支。如光谱学,发光学、光度
学,分子光学、晶体光学,大气光学、生理光学和主要研究光学仪器设计和光学
技术的应用光学等等。
严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就
是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米
之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39 微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但
可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光 的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光 的光谱只是电磁光谱中的一部分。
物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线和X光线等不可见光)的物体。通常指能发出可见光的发光体。凡物体自
身能发光者,称做光源,又称发光体,如太阳、恒星、灯以及燃烧着的物质等都
是。但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反
射物体不能称为光源。在我们的日常生活中离不开可见光的光源,可见光以及不
可见光的光源还被广泛地应用到工农业,医学和国防现代化等方面。光源主要可
分为:热辐射光源,例如太阳、白炽灯、炭精灯等;气体放电光源,例如,水银
灯、荧光灯等。激光器是一种新型光源,具有发射方向集中、亮度高,相干性优
越和单色性好的特点。
光学中以光的直线传播性质及光的反射和折射规律为基础的学科。它研究一般光学仪器(如透镜、棱镜,显微镜、望远镜、照相机)的成像
与消除像差的问题,以及专用光学仪器(如摄谱仪、测距仪等)的设计原理。严
格说来,光的传播是一种波动现象,因而只有在仪器的尺度远大于所用的光的波
长时,光的直线传播的概念才足够精确。由于几何光学在处理成像问题上比较简
单而在大多数情况下足够精确,所以它是设计光学仪器的基础。光学中研究光的本性以及光在媒质中传播时各种性质的学科。物理光学过去也称“波动光学”,从光是一种波动出发,能说明光的干涉、衍射
和偏振等现象。而在赫兹用实验证实了麦克斯韦关于光是电磁波的假说以后,物
理光学也能在这个基础上解释光在传播过程中与物质发生相互作用时的部分现 象,如吸收,散射和色散等,而且获得一定成功。但光的电磁理论不能解释光和
物质相互作用的另一些现象,如光电效应、康普顿效应及各种原子和分子发射的
特征光谱的规律等;在这些现象中,光表现出它的粒子性。本世纪以来,这方面 的研究形成了物理光学的另一部门“量子光学”。
光源发出之光,通过均匀的介质时,恒依直线进行,叫做光的直
进。此依直线前进之光,代表其前进方向的直线,称之为“光线”。光线在几何
光学作图中起着重要作用。在光的直线传播,反射与折射以及研究透镜成像中,都是必不可少且要反复用到的基本手段。应注意的是,光线不是实际存在的实物,而是在研究光的行进过程中细窄光束的抽象。正像我们在研究物体运动时,用质
点作为物体的抽像类似。
指地球进入月球的本影中,太阳被遮蔽的情形。当太阳、月球和 地球在同一条直线上时便会发生。月球每月都会处于太阳与地球之间,不过日食
并不能每月看到,这是因为白道(月球的轨道)平面对地球轨道有5?的倾角。月球可能时而在黄道之上或时而在黄道之下,故其阴影不能落在地球上。只有当
太阳、月球和地球在一直线内,才能产生日蚀。如果地球的某一部分在月影之内,即发生日蚀;日蚀有全蚀、偏蚀、环蚀三种。地球上的某些地方正位于月球的影
锥之内(即在基本影之内)这些地方就能观看到日全蚀。锥外虚影所射到的地方
(即半影内的地方)则看到偏蚀。月球离地球较远的时候,影锥尖端达不到地面,这时从圆锥的延长线中央部分看太阳的边缘,还有狭窄的光环,这就是发生的环
蚀现象。环蚀在亚洲,一百年中只能遇见十几次,在一个小地区欲见环蚀者,数
百年也难得有一次机会。月影投到地面上,急速向西走,所以某一地点能够看见 的全蚀时间非常的短,最长不过七分半钟,平均约3分。日全蚀带的宽度,平均约160公里。在某一地点能够看见日全蚀的机会,非常的少;平均360年只有一
次。日全蚀的机会虽少,而需要观测和研究的问题甚多。例如日月相切时刻的测
定。爱因斯坦引力说的证明等等。在我国古代称之为岁星,是九大行星中最大也最重的行星,它的 直径比地球的直径大11倍,它的质量也比地球重317倍。它的自转周期为9.842 小时,是所有行星中最快的一个。木星上的大气分布很广阔,其组成含氢(H)2 氮(N)、沼气(甲烷CH)及氨气(NH),因此,其表面完全为昏暗所笼罩着。243 木星离地球的距离为628 220 000公里,它的赤道直径为142 804公里,比地球
要大11倍。虽然它是太阳系最大的一颗行星,但它却有最短的自转周期,比起
地球的一天短了14小时6分钟;故知它是以极其惊人的速度不停地自转着,就
是在其赤道上的某一质点最少也以时速45 000公里的速度卷旋前进着。离心力在赤道地带也大得惊人,结果便造成赤道的凸出,使此行星变成如一个压扁的橙
子一样。木星有四颗大卫星,被命名为木卫
一、木卫二„,都能用小望远镜看到,甚至有人能用肉眼观察到。显然它们的体积必定相当可观,它们的直径木卫一约
是3719公里,木卫二约是3139公里,木卫三约是5007公里,木卫四约是5184 公里。在这四颗卫星中,最靠近木星表面的一颗就是木卫一。由于巨大的卫星引 力。木卫一只能以42小时半的时间环绕木星一周。在这些木卫环绕木星的过程
中,它们有时在木星之后所谓被掩,有时在木星的阴暗面,称为蚀,有时在木星
前叫作凌犯。
当地球位于太阳和月球之间而且是满月时,进入地影的月球,就
会发生月蚀。月球全部走到地影中的时候,叫做全蚀;只有一部分进入本影的时
候,叫做偏蚀。月全蚀的时候可分做五象,当月球和本影第一次外切的时候,叫
做初亏;第一次内切的时候叫做蚀既;月心和本影中心距离最近的时候,叫做蚀
甚;当月球和本影第二次内切的时候,叫做生光;第二次外切的时候叫做复圆。
偏蚀时,只有初亏、蚀甚、复圆三种现象。月蚀现象一定发生于望(阴历十五)的时候;但是望的时候,未必发生月蚀。这是因为白道(月球运行轨道)和黄道
(地球运行的轨道)不相一致的缘故。但望时的月球如果距离交点太远,将不能
发生月蚀;必须在某一定距离之内,才可以发生月食,这一定的界限,叫做月蚀
限;这限界是随日、月、地球的距离和白道交角的变化而略有变动,最大值为 12.2?,最小值为9.5?。月蚀最长时共维持3小时40分,其中1时40分为全 蚀,其余两小时为偏蚀。月蚀如在地平以上发生,则因地球自转,故可见地区超
过半个地球。月全蚀时因地球大气反射红光进入地影,故可见古铜色微光之月面。
月蚀次数虽较少,但见蚀带极广,而日蚀带狭窄,故同一地区之居民,看见月蚀
之次数较日蚀多。
一般指光在真空中的传播速度。真空中的光速是物理学的常数之
一,它的特征是:(1)一切电磁辐射在真空中传播的速率相同,且与辐射的频
率无关;(2)无论在真空中还是在其他物质媒质中,无论用什么方法也不能使
一个信号以大于光速c的速率传播;(3)真空中光速与用以进行观测的参照系
10无关。如果在一伽利略参照系中观察到某一光信号的速率为c=2.99793?10厘米/秒,那么,在相对此参照系以速度v平行于光信号运动的另一个伽利略参照
系中,所观测到的光信号一定也是c,而不是c+v(或c-v),这就是相对论的基础;(4)电磁学理论中的麦克斯韦方程和罗伦兹方程中都含有光速。当用高
斯单位来写出这两个方程时,这一点特别明显。光在真空中的速度为c,在其他媒质中,光的速度均小于c,且随媒质的性质和光波的波长而不同。
伽利略曾经建议,使光行一段7.5千米的路程以测定其速度,但因所用的设备不完善而未成功。此后,直到1675年,丹麦学者罗默在巴黎求得光速之可用数值。罗默把他的观察扩展到宇宙之间,而其所用的研究对象
则为木星卫星的成蚀。这些卫星之中最内层的
因此,每经过此一周期之间隔,M便再次进入木星J之阴影中,而使地球上的观察者暂时无法看到它。罗默发现,当地球E环绕太阳S作公转
木星卫星的成蚀要迟14秒钟会才发生;又当地球在同一时间(即
至于木星卫星的实际绕转周期,则可根据地球公转到E或E时所作之观测58 2求得。罗默认为此一现象,确实是由于地球从E运行到W之时,光之进行必须1 跟在地球后面追赶上去,而当地球由E运行到E时,则光之进行可对着地球迎67 着赶上所致。由此可知,E与E或E与E之间的距离,与地球在木星的卫星绕木1267 星一周所需要的时间内运行的路程相符合。因为地球公转速度为30千米/秒,所以此二距离都是等于42.5?60?60?30(千米),约为,4 600 000千米。这说明光需要多走14秒钟始能赶上地球由E至E的这一段距离;另一方面它在地12 球由E至E向光迎头赶上的这段距离中,光之行进却能省下14秒钟。由此得到67 光速约稍大于300 000千米/秒(4 600 000/14?328 000千米/秒)。当地球由E远离木星而继续运转至E、E„等处时,那么当靠近E时,则每次成蚀延2345迟之时间相继地累积起来,直到地球渐近于E时成蚀延迟时间逐渐减少为零了5(此乃由于木星与地球间的距离之增加,由于接近E而渐渐减少,终于抵达E55而趋于零所致)。故成蚀延迟之时间,当地球在半年之中由E运转至E时,每85次成蚀延迟时间相加起约等于1000秒。这也就是光从木星到达E和光从木星到5达E8这两段行程所需的时间差(亦即光行经地球公转轨道直径EE所需之时间)。58由天文学上可知地球公转的轨道这直径为d=300 000 000千米;利用此数值计算出的光速为
这一数值要比根据每连续两次木星卫星成蚀之时差所求得的光速更可靠一 些。罗默测出的光速c=315 000千米/秒,和现在科学家采用更较精细的量度方
法在真空中求得之光速的数值c=299 696?4千米/秒,实极接近。c=299 796 这个数值是美国物理学家迈克耳孙测出的。在激光得以广泛应用以后,开始利用
激光测量光速。其方法是测出激光的频率和波长,应用 c=λν
计算出光速c,目前这种方法测出的光速是最精确的。根据1975年第15届 国际计量大会决议,把真空中光速值定为 c=299 792 458米/秒。
8在通常应用多取c=3?10米/秒。
Michelson(1852~1931年)美国物理学家。他创造的迈克耳孙干涉仪对光学和近代物理学是一巨大的贡献。它不但可用来测定微小长度、折射率和光波波长等,也是现代光学仪器如付立叶光谱仪等仪器的重要组成部 分。他与美国化学家莫雷(1838~1923年)在1887年利用这种干涉仪,作了著名的“迈克耳孙—莫雷实验,这一实验结果否定了以太的存在,从而奠定了相对 论的实验基础。1926年用多面旋镜法比较精密地测定了光的速度。光在均匀媒质中是沿着直线传播的。因此,在点光
源(即其线度和它到物体的距离相比很小的光源)的照明下,物体的轮廓和它的
影子之间的关系,相当于用直线所做的几何投影。光的直线传播定律是人们从实
践中总结出来的。而直线这一概念本身,显然也是由光学的观察而产生的。作为
两点间的最短距离是直线这一几何概念,也就是光在均匀媒质中沿着它传播的那
条线的概念。所以自古以来,在实验上检查产品的平直程度,均以视线为准。但
是,光的直线传播定律并不是在任何情况下都是适用的。如果我们使光通过很小 的小孔,则
我们只能得到一个轮廓有些模糊的小孔的像。孔越小,像越模糊。当孔
而引起的。
光遇到物体或遇到不同介质的交界面(如从空气射入水面)
时,光的一部分或全部被表面反射回去,这种现象叫做光的反射,由于反射面的
平坦程度,有单向反射及漫反射之分。人能够看到物体正是由于物体能把光“反 射”到人的眼睛里,没有光照明物体,人也就无法看到它。在光的反射过程中所遵守的规律:(1)入射光线、反射
光线与法线(即通过入射点且垂直于入射面的线)同在一平面内,且入射光线和
反射光线在法线的两侧;(2)反射角等于入射角(其中反射角是法线与反射线 的夹角。入射角是入射线与法线的夹角)。在同一条件下,如果光沿原来的反射
线的逆方向射到界面上,这时的反射线一定沿原来的入射线的反方向射出。这一
点谓之为“光的可逆性”。
当一束平行的入射光线射到粗糙的表面时,因面上凹凸不平,所以入射线虽然互相平行,由于各点的法线方向不一致,造成反射光线向不同的
方向无规则地反射,这种反射称之为“漫反射”或“漫射”。这种反射的光称为
漫射光。很多物体,如植物、墙壁、衣服等,其表面粗看起来似乎是平滑,但用
放大镜仔细观察,就会看到其表面是凹凸不平的,所以本来是平行的太阳光被这
些表面反射后,弥漫地射向不同方向。
镜的反射面是光滑平坦的面,叫做平面镜。普通使用的镜是在
磨平后的玻璃背面涂有银,或涂锡和水银的合金。物体放在镜前时,物体即映于 镜中而可以看见。这是由于物体反射出的光,于镜面反射后进入眼睛所致。平面
镜成像,并非光线实际的集合点,所以叫做虚像。平面镜所成之像的大小和原物
体相同,其位置和原物体成对称,因为像和镜面的距离,恒与物体和镜面的距离
相等。实物在两平面镜间可引起多次反射而形成复像,其在每镜中除由原物各成
一像小,余皆互以他镜之像为物而形成。
从海面下伸出海面或从低洼坑道伸出地面,用以窥探海面或地
面上活动的装置,其构造与普通的望远镜相同,唯另加两个反射镜使物光经两次
反射而折向眼中。潜望镜常用于潜水艇,坑道和坦克内用以观察敌情。反射面为球面的镜,可用以成像。球面镜有凹、凸两种,反射
面为凹面的称“凹面镜”,反射面为凸面的称“凸面镜”。连接镜面顶点与其球
心的直线称为“主轴”。与主轴相近而与它平行的一束光线,被镜面反射后,反
射光线(或其延长线)与主轴相交,其交点称为“焦点”。镜面顶点和焦点之间 的距离称为“焦距”,等于球半径的一半。凹镜的球心和焦点(实焦点)都在镜
前,凸镜的球心和焦点(虚焦点)都在镜后。凹镜有使入射光线会聚的作用,所 以也称“会聚镜”,凸镜有使入射光线发散的作用,所以也称“发散镜”。在反
射望远镜中用到凹镜;在汽车前面供驾驶员看后面车辆情况的镜子,则是凸镜。
又称“反射本领”。是反射光强度与入射光强度的比值。不同
材料的表面具有不同的反射率,其数值多以百分数表示。同一材料对不同波长的
光可有不同的反射率,这个现象称为“选择反射”。所以,凡列举一材料的反射
率均应注明其波长。例如玻璃对可见光的反射率约为4%,锗对波长为4微米红外光的反射率为36%,铝从紫外光到红外光的反射率均可达90%左右,金的选择性很强,在绿光附近的反射率为50%,而在红外光的反射率可达96%以上。此外,反射率还与反射材料周围的介质及光的入射角有关。上面谈及的均是指光
在各材料与空气分界面上的反射率,并限于正入射的情况。
对于凸面镜只能使特成正立、缩小的虚像。如图4-2(a)所示。由物A点出发的平行于光轴的光线,达到镜面后将反射,其反射光的延长
线必交球面镜的焦点F上。而从A射向F的光线被球面反射后将平行于光轴。这
两条反射线,没有实交点,只有虚交点A′,也就是说视觉认为这两条光线是从
A′发出的。物体上的B点发出的沿光轴的光线,即平行于光轴,又过焦点,故 B′为B点的像。在物体AB上的各点,接照前述办法作图,其各点的像点都在A′B′上,故A′B′即为AB的像。无论物AB在何处,它所发出的光射到球面镜后
而反射的光,没有实交点,因此所成之像必为虚像。由图中可以看出,物体在轴 的上方,所成的虚像也在轴的上方,故所成之像为正立。无论AB在什么位置,从A点出发的平行于轴的光线一定在AF方向的光线的上方。此两线的交点A′必比A点更靠近轴,所以像是缩小的。根据上述方法作图可知凹透镜成像可有三
种情况:(1)物在凹镜前二倍焦距以外时,是倒立缩小的实像,见图4-2(b)。(2)物在两倍焦距以内,焦点以外时,则成倒立放大的实像,见图4-2(c)。(3)当物位于焦点以内时,则成正立的放大的虚像,见图4-2(c)。
凡光线在通过疏密不同介质交界面时改变方向的现象,称为
光之折射。如图4-3所示,光线AB由空气内斜向射至水面,自入射点B起,就向这点的法线EE′偏折而取BM的方向。若在水底置一平面镜M,使反射线MC再由水中透入空气,则自入射点C起,离开法线FF′偏折,而取CD的方向。偏折后的光线BM和CD,称为折射线,折射线和法线所成的角,如?E′BM和?FCD,称为折射角。由此可知光线由稀的介质入射到密的介质时,折射线常向法线偏向,故折射角常比入射角小;若由密的介质透入稀的介质时,折射线常离法线而偏向,折射角常比入射角大。当光线通过介质的密度在不断变化时,光线前进的方向也
随之而改变,因此我们隔着火盆上的热空气看对面的东西时,会觉得那东西不停
地在闪动着。这是由于火盆上面的空气因受热很快地上升,这部分空气的密度便
和周围空气的密度不同,而且热度还不断在变化,当由物体射来的光线通过这样 的空气,其折射光线的路径不断发生变化,就会使物体变成了闪动的形状。在炎
夏中午时分,假使躺在地上来看树木、房屋和人物,它们的轮廓好像是透过一层
流动的水一样,而且动摇不定。这是因为那时十分炎热,地面的辐射热很多,温
度高,接近地面的空气受热,密度变小,因而上升,成为向上流动的气流,由物
体射来的光线通过这种变动着的气流折射光线的路径就不断改变,因此所看到的
物便都动摇不定。我们在夜里看到天空中恒星的闪动,也是这个道理。大气里经 常存在着密度不同的气流和旋涡,当恒星的光线通过这种气流时,就会使它原来
折射的路径发生变化,一会儿到左,一会儿到右,恒星是不会闪动的,都是这折
射光造成的。又如太阳位于地平线附近时,光之折射作用尤大。在地平线下的太
阳,阳光从太空(真空)平射至逐渐变化的光密媒质空气中而发生的折射,光线
传到地面是一曲线,因为光之折射的关系,太阳看上去就如同刚刚接触到地平线 的下缘一样,其实它业已落至地平线以下了。同理,当太阳刚刚还在地平线下的
时候,看上去它已升起来了。所以我们可以说:太阳实际上比我们肉眼所见的要
落得早些而起的迟些;这等于说,光之折射将我们的白天稍稍加长了一点。
在光的折射现象中,确定折射光线方向的定律。当光由第一
媒质(折射率n)射入第二媒质(折射率n)时,在平滑界面上,部分光由第一12 媒质进入第二媒质后即发生折射。实验指出:(1)折射光线位于入射光线和界 面法线所决定的平面内;(2)折射线和入射线分别在法线的两侧;(3)入射角i的正弦和折射角i′的正弦的比值,对折射率一定的两种媒质来说是一个常数,即
此定律是几何光学的基本实验定律。它适用于均匀的各向同性的媒质。用来 控制光路和用来成象的各种光学仪器,其光路结构原理主要是根据光的折射和反
射定律。此定律也可根据光的波动概念导出,所以它也可应用于无线电波和声波
等的折射现象。
表示在两种(各向同性)媒质中光速比值的物理量。光从第一
媒质进入第二媒质时(除垂直入射外),任一入射角的正弦和折射角的正弦之比
对于折射率一定的两种媒质是一个常数。这常数称为“第二媒质对第一媒质的相),并等于第一媒质中的 对折射率”。(n12
第一媒质)的折射率称为这媒质的“绝对折射率”,简称“折射率”。由于 光在真空中传播的速度最大,故其他媒质的折射率都大于1。同一媒质对不同波
长的光,具有不同的折射率;在对可见光为透明的媒质内,折射率常随波长的减 小而增大,即红光的折射率最小,紫光的折射率最大。通常所说某物体的折射率
数值多少(例如水为1.33,玻璃按成分不同而为1.5~1.9),是指对钠黄光(波
-10长5893?10米)而言的。
折射率较大的媒质(光在其中速度较小)与折射率较小的媒质(光在其中速度较大)相比较,前者称“光密媒质”,后者称“光疏媒
质”。如水对空气为光密,空气对水为光疏。光从光疏媒质进入光密媒质时,要
向接近法线方向折射,即折射角小于入射角;光从光密媒质进入光疏媒质时,要
离开法线折射,即折射角大于入射角。
折射定律的解释,是利用原始形态的惠更斯原理。这种形式的惠更斯原理,实质上是几何光学的原理,并且严格地说,只有在几何光
学适用的条件下,也即在光波的波长和波阵面的线度相比为无穷小时,才能够加
以应用。在这些条件下,它使我们能够导出几何光学的折射定律。假设以v表示1 第一种媒质中的光波速度,以v表示第二种媒质中的波速。设i是波阵面的法线2 OC与折射媒质表面的法线OD之间的夹角,见图4-4。设在时刻t=0,波阵面的C点到达媒质表面时,和点O重合,则在波阵面从A′点到达第二种媒质(点B)所需的时间为τ,次波便从作为中心的点O出发,传播到某一个距离Of。以点O,O等为中心的各个次波,到指定时刻都传播到相应的距离,在第二种媒质中12 给出许多元球面波f、f„„。按照惠更斯原理,诸元波的包络面,即平面Bfff,1221指出波阵面的实在位置。显然
将数值A′B=vτ和Of=vτ代入式中,得到: 12 vτsinr=vτsini 12 或
由此看到,惠更斯的理论解释了折射定律,并且很容易使折射率的数值和傅 科在150多年以后所做的实验结果相符。应当注意,在折射现象中,光经过两种
媒质,所以折射率与两种媒质有关,当光由媒质?射入媒质?,这个折射率是指 媒质?对媒质?的相对折射率,通常记作
折射率,通常用n来表示,显然
光由光密(即光在其中传播速度较小的)媒质射到光疏(即光
在其中传播速度较大的)媒质的界面时,全部被反射回原媒质内的现象。光由光 密媒质进入光疏媒质时,要离开法线折射,如图4-5所示。当入射角θ增加到某种情形(图中的e射线)时,折射线延表面进行,即折射角为90?,该入射角θ称为临界角。若入射角大于临界角,则无折射,全部光线均反回光密媒质c(如图f、g射线),此现象称为全反射。当光线由光疏媒质射到光密媒质时,因为光线靠近法线而折射,故这时不会发生全反射。
光从光密媒质射到光疏媒质的界面时,折射角大于入射角。当
折射角为90?时,折射光线沿媒质界面进行,这时的入射角称为“临界角”。当入射角大于临界角时,折射定律就无法适用了,而只会发生全反射现象。光由
水进入空气的临界角约为48.5?,从玻璃进入空气的临界角,随玻璃的成分不 同而异,约在30?~42?之间。利用光的折射定律可以求出其临界角。应注意,这时光是由光密媒质射向光疏
如果光是由某种媒质射向空气界面,则n是该媒质对空气的折射率,光导纤维是利用全反射规律而使光沿着弯曲途径传播的光学
元件。它是由非常细的玻璃纤维组成束,每束约有几万根,其中每根通常都是一 种带套层的圆柱形透明细丝,直径约为5~10微米,可用玻璃、石英、塑料等材料在高温下控制而成。它已被广泛地应用于光学窥视(传光、传像)和光通讯。
光导纤维的结构如图4-6所示,内层材料选取的折射率大,外层材料的折射率
低,就是要在内外层之间的界面上产生全反射,以保证光的传输效率。如图4-
7所示,单箭头线表示临界光线,它在内外层分界面上的入射角等于或小于临界
角A。若在折射率为n的媒质中入射角大于i的那些光线(以双箭头表示),在00n、n分界面上的入射角就小于A,这些光线无法通过纤维而在其中传播。只有12 在媒质n中其顶角为2i的锥体内的全部光线才能在光学纤维中传播,根据临界00 角的定义。
和折射定律 sini=nsini n0011 可得
所以对于一定的n和n,i的值是固定的,纤维所容许传播的光线所占的范120 围是一定的。要使更大范围内的光束能在光学纤维中传播,应该选择n和n的12 差值较大的材料。通常把nsini的值叫做光导纤维的数值孔径。光导纤维可用00于潜望镜和内窥视系统,它可以窥视人眼所观察不到的或有损于人体健康的地
方。国防上可以制成各种坦克、飞机或舰艇上的潜望镜。医学上可以用来制作胃、食道、膀胱等内腔部位进行检查和依断的各种医用窥镜。如果配有大功率激光传
输的光学纤维,还可进行内腔激光治疗。由于光纤通讯与电通讯相比具有许多优
点,诸如抗电磁干扰性强、频带宽和保密性好、通讯容量大,设备轻巧,制取纤
维的二氧化硅的资源又十分丰富。近年来已有数百条光纤通讯线路在世界各地进
行试验或正式运动。光导纤维的问世,为光能的应用开辟了更广阔的天地。透明材料(如玻璃、水晶等)做成的多面体。在光学仪器中应用
很广。棱镜按其性质和用途可分为若干种。例如,在光谱仪器中把复合光分解为
光谱的“色散棱镜”,较常用的是等边三棱镜;在潜望镜、双目望远镜等仪器中
改变光的进行方向,从而调整其成像位置的称“全反射棱镜”,一般都采用直角
棱镜。
光通过一三棱镜的偏向角等于入射角与出射角之和减去
棱镜的折射棱角。如图4-8所示。a为棱镜的折射棱角,当光束SB入射到棱镜时,经连续发生两次折射,出射光线(CS′和入射光线SB之间的夹角,叫做偏向角“δ”。由图不难看出:
-i)+(i′-i′)=(i+i′)-(i+i′)=i+i′-a δ=(i1212112211 如果保持入射线的方向不变,而将棱镜绕垂直于图面的轴线旋转,则偏向角 必然随之而改变。可以证明,如果入射角等于出射角时,即在i=i′时,则偏11向角最小,称为最小偏向角。用δ表示。min δ=2i-α min1 由此可得
又当i=i′时,折射角 12
利用这两个特殊的入射角和折射角,可以计算棱镜材料的折射率
利用最小偏向角测折射率,非常方便也很精确。折射棱角a很小的棱镜,光线通过它时产生的偏向角可按下列方法推出。即由折射定律可知 sini=nsini,sinii′=nsini′。1212 在折射棱角a很小和近轴光线的条件下,?BEC的底角i,i′很小,所以 22 i?ni,i′?ni′ 1212 则有
δ=ni+ni′-α=n(i+i′)-α=(n-1)α 2222 运用这个近似关系,可以推导出薄透镜的物像关系式。复色光被分解为单色光,而形成光谱的现象,称之为“色散”。
色散可通过棱镜或光栅等作为“色散系统”的仪器来实现。例如,白色光线射于
三棱镜,则通过棱镜之后,光线被分散为由不同颜色光组成的色彩光谱。如一细
束阳光可被棱镜分为红、橙、黄、绿、蓝、靛、紫七色光。这是由于复色光中的
各种色光的折射率不相同。当它们通过棱镜时,传播方向有不同程度的偏折,因
而在离开棱镜则便各自分散。折射率较大的紫色光偏向大,而折射率较小的红光
则偏向小。由于各色光的折射率有大小之分(这是由于各色光的频率不同造成的,频率高的折射率大),所以非单色光才会发生色散。当一白光由空气射入水或玻
璃时,折射后分成各色的光,若玻璃为两面平行的平板,则光从玻璃射出的线平行,不同色光再行重叠,并未发现色散现象。若光通过棱镜,不同色光之出射线
不平行,色散现象较易观察。
复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色
光按波长(或频率)大小而依次排列的图案。例如,太阳光经过三棱镜后形成按
红、橙、黄、绿、青、蓝、紫次序连续分布的彩色光谱。红色到紫色,相应于波
10长由7,700~3800?10米的区域,是为人眼能感觉的可见部分。红端之外为波长更长的红外光,紫端之外则为波长更短的紫外光,都不能为肉眼所觉察,但能
用仪器记录。因此,按波长区域不同,光谱可分为红外光谱,可见光谱和紫外光
谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分
为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光
谱和连续光谱。光谱的研究已成为一门专门的学科,即光谱学。光谱学是研究原
子和分子结构的重要学科。
光学仪器的一种重要元件,由透明物质(如玻璃、水晶等)制成。
光线通过透镜折射后可以成像。按照其形状或成像要求的不同,透镜可分为许多
种类,如两面都磨成球面,或一面是球面另一面是平面的称“球面透镜”;两面 都磨成圆柱面,或一面是圆柱面一面是平面的称“柱面透镜”。透镜一般可分为
凸透镜和凹透镜两大类。
凸透镜是中央部分较厚的透镜。凸透镜分为双凸、平凸和凹凸
(或正弯月形)等形式,如图4-9所示。薄凸透镜有会聚作用故又称聚光透镜,较厚的凸透镜则有望远、发散或会聚等作用,这与透镜的厚度有关。将平行光线
(如阳光)平行于轴(凸透镜两个球面的球心的连线称为此透镜的主光轴)射入
凸透镜,光在透镜的两面经过两次折射后,集中在轴上的一点,此点叫做凸透镜 的焦点(记号为F),凸透镜在镜的两侧各有一焦点,如为薄透镜时,此两焦点
至透镜中心的距离大致相等。凸透镜之焦距如图4-10所示,是指焦点到透镜中心的距离,通常以f表示。凸透镜球面半径越小,焦距越短,凸透镜可用于放大
镜、老花眼及远视的人戴的眼镜、显微镜、望远镜的透镜等。
两侧面均为球面或一侧是球面另一侧是平面的透明体,中间部
分较薄,称为四透镜。分为双凹、平凹及凸凹透镜三种,如图4-11a所示之A、H,称为主轴,其中央之点O称B、C。其两面曲率中心之连线图4-11b所示之G1 为光心。通过光心的光线,无论来自何方均不折射。图4-11c表示,平行主轴之光束,照于凹透镜上折射后向四方发散,逆其发散方向的延长线,则均会于与
光源同侧之一点F,其折射光线恰如从F点发出,此点称为虚焦点。在透镜两侧
各有一个。凹透镜又称为发散透镜。四透镜的焦距,如图4-12所示。是指由焦点到透镜中心的距离。透镜的球面曲率半径越大其焦距越长,如为薄透镜,则其
两侧之焦距相等。
人们能感觉到物,是由于物体各点所反射的光,经过人眼这个
光学系统(相当一个焦距可调的凸透镜)成像于视网膜上,再由视神经传到大脑
而造成视觉,从光学的角度讲,物点是发散光束的顶点,所以物就是由这些发散
光束顶点的组合而成。如果光束经不同媒质的界面反射或折射以后,光线的方向
虽然改变了,但反射光线或折射光线所构成的光束仍然有一个顶点“P′”,这 个顶点P′就叫做像点,在这种情况下,每个像点和物点间建立了一一对应的关
系。这些像点的组合就是像。如果光束中各光线确实在某点会聚,那么该会聚光
束的顶点叫做实像;如果光束经界面反射或折射后是发散的,但这些光线反向延
长后,能够找到光束的顶点,则该发散发束的顶点叫做虚像。物和像则是这些光
束顶点的集合。在空间中的物,它向所有方向反光,眼睛无论在何处,只要找对
方向都可以看到物。像则不然,因为平面镜或透镜的反射或折射的光束不是向所
有方向,光束总是局限在一定的范围内。如果人眼恰处于光束所在的范围内,便
可看到像,但是当眼睛位于反射或折射光束的范围之外时,眼睛是看不到像的。
因为这些光束不能进入人的眼睛。
物体发出的光线经过光具组(如反射镜、透镜组等)反射
或折射后,重新会聚而造成的与原物相似的图景,实像可以显映在屏幕上,能使
照像底片感光。摄影或放映电影都必须利用实像。若物体发出的光线经光具组反
射或折射后,如为发散光线,则它们反向的延长线(虚光线)相交时所形成的像 称为“虚像”。虚像不能显映在屏幕上,也不能使照像底片感光,只能用人眼观
察到。在放大镜、显微镜、望远镜等光学仪器中观察到的像都是虚像。在光具组中,常按不同的要求使几个透镜来达到成像的目的,以
两个透镜为例,如果第一个透镜所形成的实像位于第二个透镜的后面,则对第二
个透镜来说,这像就称为“虚物”。
在研究透镜成象光学中有几个重要的特定名称。它们
是:(1)主光轴它是连接透镜两球面曲率中心的直线。(2)副光轴——通过光
心的任意直线。所以副光轴有无数条。(3)光心——透镜主轴上的一个特殊点。通过光心的光线,其出射方向和入射方向互相平行,但可有旁向的平行位移,对
薄透镜一般认为其方向不变。薄透镜的中心可以近似地当作光心,射向薄透镜中
心的光线可认为无折射地通过。(4)焦点——平行光束经透镜折射或曲面镜反射后的交点。有实焦点和虚焦点两类。薄透镜两边的焦点对称。而一般透镜的第
一焦点(物方焦点)和第二焦点(像方焦点)不对称。(5)主焦点——平行于
透镜的主光轴的平行光束,经反射或折射后和主光轴相交的点。(6)副焦点—
—平行于跟主光轴夹角不大的副光轴的光线,经透镜折射后会聚(或发散光线的 反方向的延长线)于该副光轴上的一点。副焦点都处在焦平面上。(7)焦平面——通过透镜(球面镜)主焦点并和主光轴垂直的平面。和主光轴成任意角度的
平行光线经折射后相交的交点,均处于焦平面上。(8)焦距——薄透镜的中心
到焦点之间的距离。(9)焦度——透镜或透镜组焦距的倒数。会聚透镜的焦度
规定为正,发散透镜的焦度规定为负。如果焦距用米作单位时,焦度的单位叫做
屈光度;而眼镜的焦度通常用度作为单位,1度为1屈光度的百分之一。
描述物像位置以及它们和透镜或透镜组的特征量之一(焦距)
之间的关系式。对一个薄凸透镜可以认为是由底面朝向透镜中央的许多棱镜的集
合,而这些棱镜的顶角是很小的,对于顶角很小的棱镜来说,如果构成棱镜的材
料的折射率为n,顶角为A,那么在近轴光线的条件下,其偏向角δ为常数(n-1)A。当棱镜给定后,近轴光线的偏向角δ是不变的。我们可以利用此关系来推导
薄透镜的物像公式。如图4-13a所示,设PM为平行光束所任一条光线在M点入射,而OM=h,则出射光线MF′必通过透镜的焦点F′,OF′=f,f为透镜的焦距。根据近轴光线的条件,即f>>h,偏向角近似为
当主轴的物点P发出的任一近轴光线PM入射到透镜的M点时,图4-13b所示,在理想成像的条件下,出射光线MP′和主轴的交点P′为像点,此时偏向角也应相同。令物距OP=u,像距OP′=v,由图b中的几何关系可知
ξ+η=δ
在近轴光线的条件下,可得
该式叫做高斯公式。平面镜、球面镜和薄透镜所形成的像的位置,可以根据 物像关系式求得,最基本的公式有两个,即高斯公式
其中u是物距——代表物到透镜(或面镜)的距离;v是像距——代表像到透镜(或面镜)的距离;f为透镜的焦距。K是像的横向放大率。此二关系式对三种光具组都适用。下表表明在三种透镜中应用情况。
光
具 透镜 球面镜平面镜 公式
焦距 f??
物像公式
横向放大率 用物像公式进行计算时,应注意关系式中的各项都是代数值。
因为只有取代数值,公式才具有普遍意义,否则会造成、凹球面、凸球面、凹透
镜、凸透镜的物像公式各不相同,把问题变得复杂。各特定光学量的符号的采用
法则是很重要的,若符号选错,则所有的计算全都错了。下面就其应用法则归纳
为:(1)所有距离从光心(或顶点)量起;(2)对于实像v取正值,对于虚像v取负值;对于实物u取正值,对于虚物u取负值;(3)凡已知量,其数值前必须冠以符号;凡未知量,必须根据求出的符号来确定物像的性质和位置;(4)
会聚透镜(或凹面镜)的焦距为正(实焦点);发散透镜(或凸面镜)的焦距为
负(虚焦点)。物像公式,正确运用符号法则,只要知道物体离开透镜(或球面
镜)光心的距离u和焦距f,就可以求出成像的位置、像的性质和像的大小。应
该注意的是,在球面反射和薄透镜折射时,物像公式只有在近轴光线,近轴物的
情况下才适用。因此成像关系式是近似的。
表示物体与第一焦点的距离,而X表示光像与第二焦点 设X12的距离,由图4-14可以看出,?CC′F~?MOF和?M′OF~?AA′F放大率 2211
即 XX=ff 1212 对于薄透镜来讲,f=f=f,所以有 12 XX=f 122
著,运用时也较方便。
各种透镜成像作图中,应注意,实际光线用实线画出,在每一条光线上还必须标明箭头,以示光的传播方向。其辅助线,引伸线通常不
用实线而采用虚线,以免和实际光线混淆。最后,光线作图法的目的是确定像的
位置、性质和大小,因此作图可在方格纸上完成,图中标明比例和所有已知量及 待定量的数值。即称为按比例成像作图法。(1)凸透镜成像作图——这一作图
主要是三条光线。如图4-15所示。其中PF为通过主焦点的入射线经透镜折射
后平行于主轴。而POP′为通过光心的入射线不改变方向。由P点出发平行于主光轴的入射线折射后通过主焦点。此三条线必交于同一点P′,P′便是P点的像。为了简便只要用其中的两条线便可确定像点的位置;(2)凹透镜成像作图的三条光线,如图4-16所示。平行于主轴的入射线,经透镜折射后的出射线的
反向延长线通过和物同侧的虚主焦点。由P点射向透镜另一侧虚主焦点的入射 线,折射后平行于主光轴。由P点射出通过光心的线不改变方向。其前两条线的
反向延长线与第三条线均交于P′点。P′点便是P点的虚像;(3)凸透镜的任意光线作图法。如果物点P在主轴上,则上述的三条光线便合为一条而无法作图,此时像的位置可利用副光轴和焦平面的性质来确定。利用第一焦平面的作图方 法,如图4-17所示。经P点作一条入射光线PO,它沿着主轴方向穿过透镜方 向不变;经P点作一条任意光线PA,交透镜于A点并与第一焦平面交于B点;作副光轴BO,过A点作和BO平行的线AP′,交主光轴的P′点,P′便是P的像点。同理,也可用第二焦平面作图,其作法如图4-18所示。作任意光线PA交透镜于A点;过透镜中心O作平行于PA的辅助线OB′,与第二焦平面交于B′点;连接A、B′两点且延长,与沿主轴的光线交于P′点,则P′点即为所求也像:(4)凹透镜的任意光线作图法。利用凹透镜的副光轴和焦平面作图,如图
4-19所示。经P点作任意光线PA,交透镜于A点,经透镜的中心O作平行于PA的副光轴OB′,和第二焦平面交于B′点;连接A、B′两点,它和延主轴的 光线交于P′,则P′点为所求之像点。
从图4-20可以看出,随着物和焦点之间的相对位置 的不同,成像的情况也不同。大致可分为6种情况说明,如图4-20所示。(1)物位于无穷远时,则像距v=f,成实像,放大率K=0。可用于测定焦距;(2)当?>u>2f时,像的位置f<v<2f,这时是倒立实像,放大率K<1。眼睛、照像机均相当于这种成像关系;(3)当u=2f时,v=2f,这时是倒立实像,放大率
K=1,即物像的大小相等;(4)2f>u>f时,2f<v<?,倒立实像,K>1,放大像。幻灯机,显微镜,均是这种成像关系;(5)u=f时,则v??这时无像,这时K??放大,探照灯是这种光学关系;(6)f>u>0时,v<O,正立虚像,K>1放大,放大镜是这种光学成像关系。图中的2、3、4、5、6各种情况,分别代表(1)、(2)、(3)、(4)、(5)、(6)所说之情况。
凹透镜所成的像,无论物体的位置在焦点以外还是
焦点以内,它经凹透镜折射后,所成的像,都是缩小的,正立的虚像。像和物在
透镜的同侧。因此它的成像规律,不同于凸透镜那样复杂。如图4-21所示。
人的眼睛是一个光学系统。它的构造可以简化为一个单凸透镜和
一个屏幕。从物体的两端反射出的两条光线对眼睛的光心点所张的角,叫做视角。
物体越小或距离越远,视角越小。观察很小或很远的物体,常使用放大镜、显微
镜和望远镜等以增大射角。不是在任何距离处的物体人眼都能看清楚。眼睛能看
清物体必要的条件是:(1)物体的像不但要落在视网膜上,并用要落在黄斑中
央的中央凹处;(2)像应该有一定的照度。进入眼中的光通量是由瞳孔自行调
节,达到一定照度。这一照度是在视网膜透应机能范围之内;(3)视角一般不
能小于1′(长1厘米的线段在距眼睛34米处的视角约为1′)。由眼睛的调节作用(或称调焦)所能看得清楚的最远和最近两点,分别叫做远点和近点。正常 眼睛远点在无穷远处,近点在10厘米到15厘米处。在适当的照度下,物体离开眼睛25厘米时,在视网膜上造成的像最清晰,并且看起来不易感到疲劳,这个
距离叫做明视距离。人的眼睛就是一个透镜系统。外界的景物通过成像在视网膜
上而被视觉神经所感受。
远处物体无法成像于视网膜上,而在网膜前,这时要带近视镜。
这是由于近视眼的晶状体比正常眼睛凸一些,或视网膜距晶状体的距离过远,所
以造成远处的平行光不能会聚在视网膜上,而会聚在视网膜之前,这说明近视眼 的远点不在远穷远处。故不能看清远处物体,只能看清一定距离内的物体。为了
矫正近视眼,应采用凹透镜制成的眼镜,使光通过眼镜先发散,再通过晶状体会
聚,使会聚点后移到视网膜上。
无穷远处的物体所成的像只能在视网膜后面。这是由于视网膜到
晶状体的距离过近,或晶状体比正常人眼扁平所致。远视眼的近点比正常人眼远,所以视力范围比正常人眼小。矫正远视眼的方法是用凸透镜做眼镜,使光线在进
入眼睛之前,先由凸透镜会聚,以达到使会聚点移前而达到视网膜上。用以矫正视力或保护眼睛的简单光学器件。由镜片(一般为透镜)和镜架组成。矫正视力的眼镜可分为三种:(1)近视眼镜:由凹透镜制成,能把原先落在视网膜前的像移后到视网膜上;(2)远视眼镜和老光眼镜:由凸透镜制成,能把原先落在视网膜后的像移前到视网膜上;(3)散光眼镜:由球柱面透镜或复曲面透镜制成,以矫正由于角膜各方向曲率不同所引起的像散。保护
眼睛用的眼镜有防护镜、防风镜和太阳镜等,用以保护眼睛免受灼伤、暴风袭击、强烈紫达线辐射和红外线的刺激,以及防止强光刺激等。
显微镜为一使微小物构成放大虚像的透镜系统。最简单之显微镜
为单显微镜,系一收敛透镜,俗称放大镜。通常我们所说的显微镜是指复显微镜 的简称,用以观察极微小的物体。显微镜是1610年伽利略发明的。其最简单的型式只包括两个凸透镜,用一个直立金属圆筒,上下两端各装一个焦距极短的物
镜和一个焦距较长的目镜,为了消除像差,实际上二透镜均已各由数个透镜组合
所取代。图4-22是以基本的单片透镜构造说明显微镜的工作原理。物体置于物
镜焦点稍外,得到倒立放大实像于目镜的焦点稍内处;再经目镜折射产生放大虚
像于明视距离处。显微镜的放大率为m,在明视距离D处的虚像对眼睛所张的视角为β,并设物体置于D距离处,直接看物的视角为α,则β与α之比值等于显
微镜的放大率即m=β/α。求得虚像与物体的大小之比,则可求得显
显微镜的放大率是目镜与物镜放大率的乘积
因物镜的放大率,通常为5~40倍,目镜约为3~20倍,所以一般显微镜的放大率最大约为800倍。如果选用放大倍数更大的物镜时,必须在物体与物镜之
间,充以折射率与透镜接近的油,这种镜头叫做油浸镜头,利用油浸镜头可使放
大倍数达2000倍。最近又发明一种激光断层共轭扫描显微镜,使放大倍数又大
大地提高。
用以观测远处物体或天体的光学仪器。通常的望远镜是由两组胶
合透镜构成。每一组胶合透镜都相当一个凸透镜。简单的一种结构:可于一圆筒
一端装一个物镜——焦距较长的凸透镜,另一端插入一较小的圆筒,可以自由在
大筒中前后移动,小圆筒外端装一目镜——焦距较短的凸透镜,也可作成双筒(即
由两个装有物镜和目镜的圆筒构成)。两目镜间的距离可以调节,两筒可使两眼
同时观察,从而获得立体感。从远处物体来的光,经物镜折射后造成物体的倒像,将小圆筒伸缩调节,而由目镜将物镜所成的像加以放大,以便观察。用以观察地 上远处物体的望远镜有伽利略望远镜、观剧镜、棱镜望远镜等类型,均成正像。
用以观测天体的望远镜称天文望远镜,一般均成倒像。按光在望远镜中的路线分,又有折射望远镜(亦称开普勒望远镜)、反射望远镜、双筒望远镜等几种。具有
正像透镜装置的折射望远镜亦称“地上望远镜”。本世纪30年代发现天体也发
出无线电辐射。用以接收和测量天体无线电辐射的仪器称为射电望远镜,也是天
文望远镜的一种。由于开普勒望远镜的镜筒较长,携带不便;故往往在物镜和目
镜之间加装一对全反射棱镜,使入射光线在镜筒中经过多次全反射,以减短筒的
长度,同时可以将物镜所成的倒像再倒转过来而成正像。这种装置便称为棱镜望
远镜,它的视野较大。棱镜望远镜常用于航海、军事窥测和野外观察等。开普勒
后,在其焦望远镜的原理如图4-23所示。从远处物体射来的光线,经过物镜L1 点以外距焦点很近的地方成一倒立缩小的实像。调节目镜L与物镜L的距离使21 L的前焦点和物镜的焦点重合,所以实像的A′B′位于L和它的焦点之间,但22 距焦点很近的地方,L以A′B′为物,形成放大的虚像A″B″。这时观测者所2 看到的就是A″B″。A″B″的视角远大于直接用眼睛看远处物体的视角,因此 从望远镜中看到的物体使人觉得离自己既近而又清楚。对于观测天体的天文望远
镜,它的聚光本领很大,能看到很远的天体。天文望远镜分为折射式、反射式和
折反射式三种。由物镜造成的天体实像可用目镜观测,天文望远镜的口径应尽量
大一些,这样进入镜中的光就多一些,所成的像就越明亮清晰,我国最大的天文
望远镜口径为2.16米。望远镜种类很多,但基本原理还是光的折射和反射。用
其观察远物时,使视角变大。
又名“无线电望远镜”。专门用来接收由天体发来的无线电
波的仪器。主要由天线和接收机两部分构成。天线用来接收天体发射的无线电波,相当于光学望远镜的物镜。天线类型很多。由许多作为半波振子的金属棒构成的,称为“振子天线”,专用于米波波段无线电波的接收。有的天线则成抛物面形状,称为“抛物面天线”,无线电波的探测器就装在抛物面的焦点上。它主要用于分
米、厘米和毫米波波段无线电波的接收。天线和接收机用传输线联接起来。接收
机先把由天线传来的高频信号放大,然后加以检滤,再把高频电信号变成可用仪
表测量和记录的低频电信号,或变成直接进行照相的图形。因为无线电波可以穿
过云雾和尘埃,因此用射电望远镜能不分睛雨昼夜连续进行观测;对于那些难以
用光学望远镜观测的天体和宇宙空间,利用射电望远镜便可进行探测研究。关于光的本性的一种学说。第一位提出光的波动说的是与牛
顿同时代的荷兰人惠更斯。他在17世纪创立了光的波动学说,与光的微粒学说相对立。他认为光是一种波动,由发光体引起,和声一样依靠媒质来传播。这种
学说直到19世纪初当光的干涉和衍射现象被发现后才得到广泛承认。19世纪后
期,在电磁学的发展中又确定了光实际上是一种电磁波,并不是同声波一样的机
械波。19世纪60年代英国物理学家麦克斯韦在理论研究中发现,振动着的电荷
或迅速交变的电流都会激起其周围的电磁场,并以波的形式向外传播,其传播速 度与光速相同,从而提出光是电磁波的假说。1888年德国物理学家赫兹用实验证明了电磁波的存在,从此奠定了光的电磁理论。这一理论能够说明光的传播、干射、衍射、散射、偏振等许多现象。但不能解释光与物质相互作用中的能量量
子化转换的性质,所以还需要近代的量子理论来补充。
关于光的本性的一种学说。17世纪曾为牛顿等所提倡。这种学说认为光由光源发出的微粒、它从光源沿直线行进至被照物,因此可以想像
为一束由发光体射向被照物的高速微粒。这学说很直观地解释了光的直进及反射
折射等现象,曾被普遍接受;直到19世纪初光的干涉等现象发现后,才被波动
说所推翻。但在19世纪末和20世纪初,许多有关光和物质相互作用的现象,如
光电效应,不能用波动说来解释,这促使爱因斯坦于1905年提出光是一种具有粒子性的实物(光子)。但这观念并不摒弃光具有波动性质。这种关于光的波粒
二象性的认识,是量子理论的基础。
光量子之简称。基本粒子的一种,光子不显电性。光子的能量是量
子化的。1905年爱因斯坦在解释光电效应时首次指出了光子的存在,从而揭示 了光的波粒二象性。真空中的光子在不同参照系中都以光速c运动。如果光的频
2率为γ,则光子的能量为hγ(h为普朗克常数,动量为hγ/c,质量为hγ/c)。
但其静止质量为零。
发出具有相同频率、相同振动方向和恒定相位差的两列(或两列以 上)波在空间迭加时,在交迭区的不同地点加强或减弱的现象。这是波的一个重
要特性。波在交迭的区域中,有些地方振动被加强,有些地方振动被减弱,形成
明暗相间的“干涉图样”。水波的干涉是常见的现象。单色光波的干涉图样是明
暗相间的条纹,复色光产生彩色条纹。利用光的干涉,可以精确地进行长度测量,以及检查表面的平滑程度等。利用电磁波的干涉,可作成定向发射天线。显然声
波也可产生干涉。
两列或多列光波在空间相遇时相互迭加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。在一般的情况下两个独
立光源向空间的一个区域发出光波时不能发生干涉。不发生干涉的两个光源,只
说明它们没有发出相干涉。通常的独立光源不相干的原因是:光的辐射一般是由
原子的外层电子激发后自动回到正常状态以光的形式把能量放出所形成的。由于
辐射原子的能量损失,加上和周围原子的相互作用,个别原子的辐射过程是杂乱
无章而且常常中断,持续时间甚短,即使在极度稀薄的气体发光情况下,和周围-3原子的相互作用已减至最弱,而单个原子辐射的持续时间也不超过10秒。当某
个原子辐射中断后,它自身或者其他的原子又受到激发重新辐射,但却具有新的
初位相。这就是说,原子辐射的光波并不是一列连续不断、振幅和频率都不随时
间变化的简谐波,即不是理想的单色光。此外,不同原子辐射的光波波列的初相
位之间也是没有一定关系和规律。这些断续、或长或短、初位相不规则的波列的
总体,构成了非相干的光波。由于原子辐射的这种复杂性,在不同瞬时迭加所得 的干涉图样变化得如此之快和如此地不规则,以致这种短暂的干涉现象无法观 测。从微观上看,光子只能自己和自己干涉,不同的光子是不相干的;但是从宏
观上看,干涉现象却是大量光子各自干涉结果的统计平均效应。故实际的光的干
涉对光源的要求也不是那么苛刻。由于60年代激光的问世,使光源的相干性大大提高,同时快速光电探测仪器的出现,探测仪器的时间响应常数缩短,以至可
-3-9~10以观察到两个独立光源的干涉现象。1963年玛格亚和慢德用时间常数10 秒的变象管拍摄了两个独立的红宝石激光器发出的激光的干涉条纹。可目视分辨 的干涉条纹有23条。对于普通的光源,保证相位差恒定是实现相干的关键。为
了解决发光机制中初相位的无规则迅速变化和干涉条纹的形成要求相位差恒定 的矛盾,可采用把同一原子所发出的光波分解成两列或几列,使各分光束经过不
同的光程,然后相遇,这样,尽管原始光源的初相位频繁变化,分光束之间仍然
可能有恒定的相位差,因此可以产生干涉现象。通常用两种方法实现这种分解:
(1)分波阵面法——将光源的波阵面分为两部分,使之分别通过两个光具组,经反射、折射或衍射后交迭起来,在一定区域形成干涉。由于波阵面上任何一部
分都可以看成为新光源,而且同一波阵面的各个部分有相同的位相,所以这些被
分离出来的部分波阵面可作为初相位相同的光源,不论点光源的位相改变得如何
快,这些光源的初相位差却是恒定的,杨氏双缝、菲涅耳双面镜和洛埃镜等都是
产生这类分波阵面的干涉装置。(2)分振幅法——当一光束投射到两种透明媒质的分界面上,光能一部分反射,另一部分折射。之方法叫做分振幅法。最简单 的分振幅干涉装置是薄膜,它是利用薄膜的上下表面对入射光反复地反射,由这 些反射光波在空间相遇而形成的干涉现象。由于薄膜的上下表面的反射光来自同
一入射光的两部分,只是经历不同的路径而有恒定的相位差,因此它们是相干光。
另一种重要的分振幅干涉装置,是万克耳孙干涉仪。光的干涉现象是光的波动性 的最直接、最有力的实验证据。光的干涉现象是牛顿微粒模型根本无法解释的,只有用波动说才能圆满地解释这一现象。
杨格于1801年设法稳定两光源之相位差,首次做出可见光之干涉实验,并由此求出可见光波之波长。其方法是,使太阳光通过一挡板上
之小孔使成单一光源,再使此单一光源射到另一挡板上,此板上有两相隔很近的
小孔,且各与单光源等距离,则此两同相位之两光源在屏幕上形成干涉条纹。因
为通过第二挡板上两小孔之光因来自同一光源,故其波长相等,并且维持一定的 相位关系(一般均维持同相),因而能在屏幕上形成固定不变的干涉条纹。若X 为屏幕上某一明(或暗)条纹与中心点O的距离,D为双孔所在面与屏幕之间的,S间之距离(通常小于1毫米),λ为S光源及副光源距离,2a为两针孔S12 S、S所发出的光之波长。两光源发出的两列光源必然在空间相迭加,在传播中12 两波各有各的波峰和波谷。当两列波的波峰和波峰或波谷和波谷相重叠之点必为
亮点。这些亮点至S与S的光程差必为波长λ的整数倍。在两列波的波峰与波12 谷相重叠之点必为暗点,这些暗点至S与 1
涉条纹如图4-24所示,它是以P点为对称点而明暗相间的条纹。P点处的00 中央条纹是明条纹。当用不同的单色光源作实验时,各明暗条纹的间距并不相同。
波长较短的单色光如紫光,条纹较密;波长较长的单色光如红光,条纹较稀。另
外,如果用白光作实验,在屏幕上只有中央条纹是白色的。在中央白色条纹的两
侧,由于各单色光的明暗条纹的位置不同,形成由紫而红的彩色条纹。干涉明暗
第三篇:光学镜头基础知识
光学镜头基础知识
这是很久以前系统集成时总结的一点心得体会与大家分享。光学镜头是机器视觉系统中必不可少的部件,直接影响成像质量的优劣,影响算法的实现和效果。另外争取选折合适的镜头,降低机器视觉系统成本,才是产业兴旺发达的唯一出路。光学镜头规格繁多,有时不免头晕。光学镜头从焦距上可分为短焦镜头、中焦镜头,长焦镜头;从视场大小分有广角、标准,远摄镜头;结构上分有固定光圈定焦镜头,手动光圈定焦镜头,自动光圈定焦镜头,手动变焦镜头、自动变焦镜头,自动光圈电动变焦镜头,电动三可变(光圈、焦距、聚焦均可变)镜头等。根据我们使用的经验,俄罗斯的光学镜头很便宜。分类
结构上分
固定光圈定焦镜头
简单。镜头只有一个可以手动调整的对焦调整环,左右旋转该环可使成像在CCD靶面上的图像最清晰。没有光圈调整环,光圈不能调整,进入镜头的光通量不能通过改变镜头因素而改变,只能通过改变视场的光照度来调整。结构简单,价格便宜。手动光圈定焦镜头
手动光圈定焦镜头比固定光圈定焦镜头增加了光圈调整环,光圈范围一般从F1.2或F1.4到全关闭,能方便地适应被被摄现场地光照度,光圈调整是通过手动人为进行的。光照度比较均匀,价格较便宜。自动光圈定焦镜头
在手动光圈定焦镜头的光圈调整环上增加一个齿轮合传动的微型电机,并从驱动电路引出3或4芯屏蔽线,接到摄像机自动光圈接口座上。当进入镜头的光通量变化时,摄像机CCD靶面产生的电荷发生相应的变化,从而使视频信号电平发生变化,产生一个控制信号,传给自动光圈镜头,从而使镜头内的电机做相应的正向或反向转动,完成调整大小的任务。
4手动光圈定焦镜头
焦距可变的,有一个焦距调整环,可以在一定范围内调整镜头的焦距,其可变比一般为2~3倍,焦距一般为3.6~8mm。实际应用中,可通过手动调节镜头的变焦环,可以方便地选择被监视地市场的市场角。但是当摄像机安装位置固定下以后,在频繁地手动调整变焦是很不方便的。因此,工程完工后,手动变焦镜头的焦距一般很少调整。仅起定焦镜头的作用。
5自动光圈电动变焦镜头
与自动光圈定焦镜头相比增加了两个微型电机,其中一个电机与镜头的变焦环合,当其转动时可以控制镜头的焦距;另一电机与镜头的对焦环合,当其受控转动时可完成镜头的对焦。但是,由于增加了两个电机且镜片组数增多,镜头的体积也相应增大。6电动三可变镜头 与自动光圈电动变焦镜头相比,只是将对光圈调整电机的控制由自动控制改为由控制器来手动控制。
场合上分:
按视场大小分为:小视场镜头,普通镜头(约50度左右),广角镜头和特广角镜头(100-120度)标准镜头:视角约50度,也是人单眼在头和眼不转动的情况下所能看到的视角,所以又称为标准镜头。5mm相机的标准镜头的焦距多为40mm,50mm或55mm。120相机的标准镜头焦距多为80mm或75mm。CCD芯片越大则标准镜头的焦距越长。
2、广角镜头:视角90度以上,适用於拍摄距离近且范围大的景物,又能刻意夸大前景表现强烈远近感即透视。35mm相机的典型广角镜头是焦距28mm,视角为72度。120相机的50,40mm的镜头便相当于35mm相机的35,28mm的镜头.
3、长焦距镜头:适于拍摄距离远的景物,景深小容易使背景模糊主体突出,但体积笨重且对动态主体对焦不易。35mm相机长焦距镜头通常分为三级,135mm以下称中焦距,135-500mm称长焦距,500mm 以上称超长焦距。120相机的150mm的镜头相当于35mm相机的105mm镜头。由於长焦距的镜头过于笨重,所以有望远镜头的设计,即在镜头后面加一负透镜,把镜头的主平面前移,便可用较短的镜体获得镜体获得长焦距的效果。
4、反射式望远镜头:是另一种超望远镜头的设计,利用反射镜面来构成影像,但因设计的关系无法装设光圈,仅能以快门来调整曝光。
5、微距镜头(marco lens):除作极近距离的微距摄影外,也可远摄。接口类型来分C型镜头
法兰焦距是安装法兰到入射镜头的平行光的汇聚点之间的距离。法兰焦距为17.526mm 或0.690in。安装罗纹为:直径1in,32牙.in。镜头可以用在长度为0.512in(13mm)以内的线阵传感器。但是,由于几何变形和市场角特性,必须鉴别短焦镜头是否合用。如焦距为12.6mm的镜头不应该用长度大于6.5mm的线阵。如果利用法兰焦距尺寸确定了镜头到列阵的距离,则对于物方放大倍数小于20倍时需增加镜头接圈。接圈加在镜头后面,以增加镜头到像的距离,以为多数镜头的聚焦范围位5-10%。镜头接长距离为焦距/物方放大倍数。CS型镜头
With a 5 mm adapter ring, a C lens can be used on a CS-mount camera.U型镜头
一种可变焦距的镜头,其法兰焦距为47.526mm或1.7913in,安装罗纹为M42×1。主要设计作35mm照片应用(如国产和进口的各种135相机镜头),可用于任何长度小于1.25in(38.1mm)的列阵。建议不要用短焦距镜头。4 42mm 镜头 3 L型镜头 固定焦距宽视场镜头,最初设计作照相放大作用(如国产各种放大机镜头),且在2.25in(63.5mm)视场内具有良好的特性。法兰焦距是具体镜头的函数。安装螺纹为M39×1.0。可用于长度为1.25in(35.1)以内的列阵,且不受限制。
第四篇:光学历年总结
北京大学工学院光学试题2013年04月07日 23:03:44
我把所有能收集到的题目就乱乱的都贴在一起了~ 版本1:
1.写出惠更斯-菲涅尔原理的内容及基尔霍夫衍射积分公式
2.写出光栅的结构因子和单元因子。与投射式光栅相比,反射式闪耀光栅的优点是: 3.写出Abbe干涉成像原理的内容及其意义
4.泽尼克相衬显微镜(1)研究对象是什么(2)用4f系统和矢量图解法画出工作原理(Ps:这个是他上课讲了但是书上和ppt上都没有的东西……)(3)写出步骤(4)能否将 零级谱光强完全去除,为什么?
5.波带片如图所示(只露出第2、4条半波带):(1)写出各焦点的位置(2)为何会有 多个焦点?(3)用螺旋式曲线求主焦点和左侧第一次焦点的光强(4)为何对于圆孔在轴 线上会有亮暗分布,而圆屏则轴线上各点均是亮点?
6.Apple公司新出的Iphone4,分辨率为326像素/英寸(25.4mm),据负责人Steven说已超过了人眼的分辨率,请问是否事实如此。人眼的极限分辨率是多少?瞳孔直径2~8mm,接受的波长范围400~750nm(Ps:可能具体数字不准确……)。将该Iphone4放到多远处可看清每个像素?
7.用波长为λ的平行光和球面光全息照相得到余弦光栅底片,其透过率函数为t(x,y)=t 0 + t1*cosk(x^2+y^2)/2Z.现用与水平面夹角为θ向右下入射的波长为2λ的平行光照射 该余弦光栅,问衍射场的组成及特点。
8.写出透镜的空间极限频率与仪器分辨本领的关系,物放在焦面F处。
9.一台光栅光谱仪,两个凹面镜的焦距均为30cm,接收用CCD宽度为2cm,分2000个像素。接收的波长范围是650~750nm,问光栅应如何选取?若入射光的宽度为1cm,应怎样选择透镜以符合其分辨率?
10.根据惠更斯原理,画出平行光正入射到负晶体上,晶体内和晶体外的o光e光传播方向、偏振方向和波前。光轴方向为与水平面夹角α。
11.两偏振片垂直放置,中间放有光程差(n0-ne)d=λ/2的晶片,初始时光轴平行第一 个偏振片放置,然后晶片以ωt的角速度旋转。I0的自然光垂直入射到第一个偏振片上,求I1(透过第一个偏振片的光)I2(透过晶片的光)及I3(透过第二个偏振片的光)。
版本2:
期中也是,考了好多概念和应用的题,不难不复杂,但是要是原理不清,很可能想不清楚 做不对(比如本人……)
Ps:光学本身很妙,但是上wsf的光学,一定随着他讲课的进度及时自学,否则到考试前 再自学恐怕内容太多来不及……ppt和蓝皮书结合看还是不错的。别的不说啥了,大家懂 得,想选光学的学弟学妹们先去试听一节再说。好自为之……
版本3: 填空题: 简述惠更斯原理 两束光相干的三个条件 两种干涉装置及举例 傍轴条件和远场条件
解答题
1、画出迈克尔孙星体干涉仪的简图,说明其巧妙性。
2、近视眼能不能看清等倾条纹?能不能看清等厚条纹?
3、已知波长,求光频率(这个比较简单……)
4、一个凸透镜在中间,左右是两个焦面。左焦面上有OQ两点源,O在光轴上,Q在光轴上方a处。写出两点波前函数(透镜前和透镜后,一共4个)和右焦面接受屏上的干涉条纹形状、间距。
5、凸透镜劈两半的那个干涉装置。画出干涉区域,求两像点连线中垂面接受屏上的干涉条纹形状、零级亮斑位置。
6、(比较怪诞的题)迈氏干涉仪装置的变型。但是n和h都是T的函数。已知dn/dT和dh/dT,还有初始时的n、h、λ,吞吐了80个条纹,求最后的温度。(主要是计算怪异……据说是270多度?)
7、杨氏干涉装置中光源宽度的问题。求极限宽度、极限缝距(和前面一问条件不同)和在第二问条件下缝距变为1/3时的衬比度。
8、已知相关数据,求迈氏干涉仪的测长精度、量程、讯号频率。
9、(书上习题的翻版)工件上有条沟,已知等厚干涉图样、条纹间距和条纹偏离距离,求沟深。
版本4:(送分题部分)
光场时间相干性和空间相干性的反比公式 惠更斯-菲涅尔原理的表述、做图、积分式 阿贝成像原理的表述、意义
四种光波的成分分析(一种平面,两种球面,一种球面加平面)费马定律的表述 用费马定律推导折射定律
(大题部分)
1、类似于对切透镜,但是只有上半部分。即平行光照射,一个凸透镜的上半部分在光轴 上,远处在3F处有个屏,求干涉条纹和一些性质。
2、等厚干涉检验验规是否等高、平整。和红书上那题类似。
3、已知电视机对角线长度,长宽比,分辨率,人眼直径,光波长,求在多远距离之外看电视比较合适。
4、全息图。把一平面波和一球面波(波长相等)的波前记录下来作为衍射光栅,用另一种波长是前两波一半的球面波去重现,求重现波。
5、衍射重复单元。结构单元是单缝,间距分别为a、2a、a、2a、……求衍射场。
6、平行光照射透射光栅。具体不记得了。但就是关于光栅性质的简单计算。(结果我还 是算错了……ft)
7、两个相同的余弦光栅垂直叠加。求频谱面上出现几个谱斑。然后是滤波:只需要cos(2πf(x+y))成分,画图说明怎么滤掉。
8、偏振片干涉。没做完,不说了。
版本5:
1.岸上一个信号发射器,发出电磁波,水面船上一个信号接收器。已知两者高度,电磁波波长。在一个距离D接收器收到加强信号,在D-80米处又收到。求D以及下一次收到加强信号的位置。
2.和现代光学基础4.18题类似。
版本6:
1、惠更斯-菲涅尔原理的内容、积分式与图示说明,并利用积分式说明为什么太阳看起 来是均匀发光的圆盘
2、阿贝成像原理的内容与意义
3、反射闪耀光栅相比投射光栅的优点
4、相衬显微镜的原理
5、布儒斯特角相关,说明对于平行玻璃板,上表面反射光为线偏振光时,下表面反射 光的偏振状态
6、布拉格衍射相关,说明寻找晶体衍射斑的方法及原因;以及微波衍射中,给定波长 时设计合适的晶面间距使得观察效果较好---------概念与计算的分割线-----------------
7、给定星体角间距,求望远镜的最小口径及对应的放大倍数
8、全息图相关,给定物光、参考光、与成像时的入射光,求屏函数与出射场的成分
9、单缝衍射中,将下半部分以折射率为n,厚度为d的啥(名字不记得了)覆盖,(其 实就是增加(n-1)d的光程),求新的衍射场,并在给定缝宽a与(n-1)d的条件下画出光强 分布图
10、透射光栅相关,给条件求光栅常数d、缝宽a、总长度D并说明衍射场情况11、4f系统相关,求正交密接的全同余弦光栅在频谱面上的光斑形状,并设计滤波器使 得像场与cos(2πf(x+y))成正比。
12、利用四分之一波晶片,求自然光与圆偏振光的混合光中两者的比例
13、偏振光相关,叫欧啥棱镜(名字又不记得了),画光路图并计算出射光夹角,类似 小红本习题指导3-14题,但光轴方向不同
第五篇:光学实验总结
2011年第一学期光学实验心得体会
生命科学学院
09级生科3班
余振洋
200900140156 2011/6/1
这个学期即将过去,而光学实验也已经全部结束了。老实说,虽然我是一名学习生物科学的理科生,但这却是我第一次正真意义上的接触到各种光学仪器,第一次深入了解不同的光学原理。因此在实验过程中,当每一次面对不同的仪器和不同的方法时,都需要一个了解和熟悉的过程,这也使得实验的过程显得不是那么的顺利,但总体来说还算平稳,自己也从中收获了很多。
在这个学期中,我跟随着四位不同的老师,学习和体验了六个不同的光学实验,分别是:应用最小偏向角法测定三棱镜的折射率;单色仪的调节与定标;偏振光的产生、检验及强度测定;小型旋光仪的结构、原理及使用;测量牛顿环直径并计算曲率半径;利用双棱镜干涉法测He—Ne激光波长。每做完一个实验,第一感想都是相同的:其实实验本身很简单,只要能够对实验原理有细致深入的了解,在过程中足够细心,很多之前出现过的问题和状况是完全可以避免的。
与此同时,对于我们所使用的这本《实验光学》教材,它在内容的编排上也有其独到之处。与以往的实验指导教材不同,它并不是将每次实验所涉及的实验目的、原理、实验仪器的操作、实验步骤堆在一起列举出来,而是首先将所有的实验原理、实验仪器的操作列举在了书的前面,而将从中发散思维而设计的实验的简洁的实验内容与之分开罗列。这样一来,在进行实验预习的时候就需要自己查阅课本及相关资料,再将它们串联起来。这个过程中就需要对本次实验所涉及的相关内容进行查询,了解设计实验的背景及相关资料,从而更好的认识到这次实验的目的及原理所在,学习前辈学者设计实验的思路及科学的思考问题和解决问题的方法,并且对其进行思考,从而有所发现,加深了对科学实验重要性的了解,明确了物理实验课程的地位,作用和任务。
在试验操作过程中,也培养了自己的动手能力,将学到的实验理论知识应用到实践能力,提高了将实验理论和实际的实验过程相结合的能力,对以后的实验操作及理论知识的学习打下了坚实的基础,有很大的促进作用。
在对实验结果分析的过程中,掌握了测量误差的基本知识,学会了正确处理实验数据的能力。这之中包括:测量误差的基本概念,直接测量量的不确定度计算,间接测量量的不确定度计算以及处理实验数据的一些重要方法。锻炼了分析问题及解决问题的综合能力,从实验过程所遇到的困难中,分析问题的症结所在,并从以往所学到的知识原理中寻找解决措施,从失败的实验结果中分析原因并找出解决方法,从成功的实验结果中分析成功的的关键所在,总结经验,以便下次实验的成功。
下面再对光学实验提出一点建议: 1. 关于实验仪器:
在整个的实验过程中,我想所有的同学包括老师们都知道,有些仪器在操作上并不是那么的准确,甚至是有问题的。而我们学生在使用时,事先并不知情,往往是做到第一组数据出来后或者已经进行到一半了才发现仪器的问题,这样不仅浪费了时间,也有可能打击同学们的积极性。不管是仪器老化还是维护技术的问题,我希望老师们能定时地做一次仪器检测,能调整的尽量调整,不能调整的,就在旁边做一个标注,说明这台仪器有问题,建议同学不要使用。
2.关于老师的教学方式:
我在一个学期的时间里接触到了四位老师,也体验到了不同的教学方式。但这之中,我觉得能带给我们更多启发的是教我们“应用最小偏向角测定三棱镜的折射率”的那位老师(不好意思,由于只接触了一次,我没能记住他的名字)。这位老师在讲解实验原理时,会把我们叫到一块儿,然后根据黑板上的图示,挨个提问我们。在我们说出自己对实验原理的理解后,老师会在此基础上进行正确的讲解并补充相应的细节。这一整个环节后,大家对实验原理就有了透彻的理解,也为接下来实验过程的顺利进行打好了基础。而虽然其他几位老师也都将实验原理及操作方法讲的很仔细,但毕竟只是单方向的输入,而且同时也不能排除有些同学压根就没预习,即使老师讲了以后也没搞懂,最后单纯只是依样画葫芦凑出实验数据了事,我想这样纯粹是浪费时间。而且我们组的成员都觉得,在那位老师和我们一起熟悉了实验原理后,各自都或多或少获得了一些启发性的东西,这样的话,该实验的意义便提高了一个层次了。3.关于实验报告:
每次做完实验,我们都会写一份实验报告,并在最后附上实验数据和针对数据的分析以及讨论。但是我们并不知道我们所回答的课后习题是否正确,而且也不知道我们所总结的实验收获是否完整,也无法了解其余同学的总结。所以希望老师们能在每次实验后将批改完的报告发给我们,以便我们进行自我修正,并提高自己的报告水平。有必要的话,还可以适当进行讲解,加深对实验的认识。4.关于实验内容:
由于时间有限,而实验的内容又很多,所以每个同学每学期只被安排做6个实验,所以很多好的、经典的物理光学实验,我们都没有机会去做,不免让人感到遗憾。比如说全息照相,当我听那些做过的同学讲其中的奥妙和乐趣时,心里那个羡慕啊。但是好像我们在大学阶段就再也无法接触到光学实验了,所以真的很遗憾。对于这点,我也没有很好的办法,毕竟我们不是本专业的学生,所以只能在这儿发一下小感慨了。
总之,我在基础光学实验中,学到了许许多多的东西,我在今后的学习生活中,一定会把它们用上的。最后,再一次对给予我们细致认真讲解和启发性指导的老师表达诚挚的谢意。