仪器分析课程学习心得

时间:2019-05-12 13:05:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《仪器分析课程学习心得》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《仪器分析课程学习心得》。

第一篇:仪器分析课程学习心得

《仪器分析》学习心得

仪器分析是我们大学课程里的一门专业基础课,本着让我们在大学学习期间掌握有关仪器分析的一些常用方法的基础原理、特点和应用。通过老师的详细讲解,我认为这门课程对于我们将来参加科学研究或具体实际工作都是很有帮助的。通过学习,我也感触颇深,受益匪浅。

在老师讲的众多实验仪器中我对电感偶和等离子体(ICP)最为感兴趣,想法颇多。主要是因为,我现在跟随着唐老师做大学生创新实验——用吸附法处理含铬电镀废水,因此经常用到ICP,感觉ICP对我们的科研具有很大的帮助,方便我们测量分析实验结果,快捷方便。

1.1我简单讲一下,ICP的CP光谱议中等离子体焰的形成过程及原理。

ICP英文翻译过来是电感耦合等离子体,顾名思义,在炬管的切向方向引入高速氩气,氩气在炬管的外层形成高速旋流,通过类似真空检漏仪的装置产生的高频电火花使氩气电离出少量电子,形成一个沿炬管切线方向的电流.因为炬管放置在高频线圈内,通过高频发生器产生的高频振荡通过炬管线圈耦合到已被电离出少量电子的氩气上,使氩气中的这部分电子加速运动,撞击其他电子产生电离,形成雪崩效应,最终靠高频发生器连续提供能量,即可形成一个稳定的等离子体火焰。

样品气溶胶在ICP高温作用下经历了蒸发、原子化、电离、激发等过程。在听完课后,我感觉对这个过程还不是很清楚,我就上网搜索了相关ICP的自学资料来进一步学习。在学习后,我明白了这4个过程的具体内容。以ICP测量CaCl2样品为例,先通过去溶剂成盐粒,盐粒在高温下蒸发成气态,在通过离解成原子态,激发发射特征谱线测量。

1.2下面我大概讲一下ICP的样品前处理,测试参数的选取,标准曲线的绘制。

1.2.1样品前处理:样品在放入ICP前,应该经过分解。可以是采用酸溶、碱溶、灰化后酸溶和微波消解等。消解液可以是王水、KOH /NaOH、氢氟酸高氯酸组成的混合酸、王水与硫酸和磷酸组成的混合酸等。具体的消解可以看下面:。

1.2.2再进行测试参数的调整。主要调载气雾化压力、高频功率、辅助气、积分时间、蠕动泵速、进样量等参数。

1.2.3标准曲线的绘制。准确移取混合标准溶液,用5%稀硝酸配制标准溶液系列。标准曲线可以是标准曲线定量法、内标法及标准加入法。

1.3 ICP的优缺点。1.3.1优点:

(1)可以快速地同时进行多元素分析;(2)灵敏度较高,每毫升亚微克级;(3)基体效应低,较易建立分析方法;(4)标准曲线具有较宽的线性动态范围;(5)具有良好的精密度和重复性。1.3.2 缺点:

ICP测试测试存在着干扰效应,似有不足。包括一下四方面的干扰效应:

(1)物理干扰:样品溶液黏度、表面张力以及密度差异引起谱线强度的变化,主要表现为酸效应和盐效应;

(2)化学干扰:又称“ 溶剂蒸发效应”,是火焰光源经常发生的干扰效应;

(3)电离干扰:易电离元素进入ICP,推动电离平衡向中性原子移动,离子浓度降低,而原子浓度升高,谱线强度受到影响;(4)光谱干扰:比较常见,通常用干扰系数法来校正。特别是在我们学院买了一台ICP时,我们用铬溶液去调试,发现我们学院的ICP测的数据要略低于化院的数据。

在测量Cr我经过老师允许尝试的操作了ICP,发现要将我们现在所学的仪器分析知识运用于实际的测试操作中,这个差距还是很大的。但是想在实际操作中顺利操作,必须打好理论基础,不然我会损坏仪器,更不能准确的测量。

1.4最后,我想针对这门课程,想向老师谈谈对这门课的看法。老师您在详细讲解仪器分析的理论知识后,可以带着我们去学院5楼看看我们学院的液相色谱,气相色谱及刚进来的ICP。虽然我们自己也可以去5楼让实验室的老师给我们讲解,但是有老师专业的讲解,可能效果会好点。另外老师可以在课堂与我们互动点,多提点问题,多相互交流,那样上课的效果更好。

第二篇:仪器分析课程感受

首先谈一谈我对学习这门课程的感受。上了研究生之后突然学习这么多仪器有些手忙脚乱,毕竟本科阶段研究内容是少的,多是老师传授,我们非主动的接受,数据分析自然也就没有接触。想到拿到课题之后就要进行实验,得数据,不由得硬着头皮对那些陌生的仪器开始关注起来。我不知道别的同学看到电子云,sp杂化这些术语有什么感受,我却是非常激动。因为让我回想起高中时为了参加化学竞赛,老师把我们带到合肥的168中学培训的那段时间。虽然只有一个多月,现在回想起来弥足珍贵。当时给我们上课的都是化学学术的大佬,在168中学那个会议厅似的大教室里给我们这些来自全国各地的半大孩子传输知识学问。自己那个时候还不晓得对知识饥渴的滋味,只是理解着尽力去听。台上的教授耐心讲解,娓娓道来,却也了解不少。现在在仪器分析这门课程中看到熟悉的面孔,仿佛看到了分别已久的老朋友。但是分别的时间太久,曾经是那么熟悉和了解取而代之的也只有生疏了。这不禁让我后悔,当年大好的资源摆在自己面前没有认真学习。不过现在有机会重温这些,并在接下来的研究生阶段中应用到自己的研究中,想想还是很开心的。这样学习起来也多了些许兴趣和信心。

我的研究方向是分子生物学,在实验中用到的仪器很多。和这门课相关的分析技术主要是高效液相色谱和紫外分析。下面对这两者的原理、用到的仪器和应用简单介绍下。

超高效液相色谱是分离科学中的一个全新类别,UPLC借助于HPLC的理论及原理,涵盖了小颗粒填料、非常低系统体积及快速检测手段等全新技术,增加了分析的通量、灵敏度及色谱峰容量。与传统的HPLC相比,UPLC的速度、灵敏度及分离度分别是HPLC的9倍、3倍及1.7倍。因此其在蛋白质、多肽、代谢组学分析及其它一些生化领域里将会得到广泛应用。在提到“蛋白组学”或“代谢组学”时,与没有“组”的差别从分析的角度说就是样品量极大,需要在短时间分析成千上万的样品。UPLC不损失分离度的高速度优点在这里就能充分体现。多数生化样品及天然产物都十分复杂,在同样条件下,UPLC能分离的色谱峰比HPLC多出一倍还多。在同样条件下,UPLC的分辨率能够认出更多的色谱峰(质谱检测器-LCT)。

紫外分析仪是荧光技术的应用。荧光技术是某些物质受一定波长的光激发后,在极短时间内(10-8秒)会发射出波长大于激发波长的光,这种光称为荧光。这一发光现象在各方面的应用及有关的方法称为荧光技术。荧光技术在生物化学及分子生物学研究中应用主要包括以下几个方面:

1、物质的定性:不同的荧光物质有不同的激发光谱和发射光谱,因此可用荧光进行物质的鉴别。与吸收光谱法相比,荧光法具有更高的选择性。

2、定量测定:利用在较低浓度下荧光强度与样品浓度成正比这一关系可以定量分析样品中荧光组分的含量,常用于测定氨基酸、蛋白质、核酸的含量。

3、研究生物大分子的物理化学特性及其分子的结构和构象:荧光的激发光谱、发射光谱、量子产率和荧光寿命等参数不仅和分子内荧光发色基团的本身结构有关,而且还强烈地依赖于发色团周围的环境,即对周围环境十分敏感。利用此特点可通过测定上述有关荧光参数的变化来研究荧光发色团所在部位的微环境的特征及其变化。

4、利用荧光寿命、量子产率等参数可以研究生物大分子中的能量转移现象:通过该现象的研究,可以获得生物大分子内部的许多信息,如分子之间的相互作用、分子间结合的紧密程度、蛋白质、核酸分子的解聚程度等等。

由此,认真学习仪器分析这门课的相关内容会对我今后的研究有很大帮助。

最后谈一点我个人对这门课程的建议吧。仪器分析这门课的内容还是比较多的,学习起来也有一定的难度,需要认真对待。鉴于这门课庞杂的内容,其中涉及了许多化学,尤指有机化学的知识,我建议老师在上课的时候可以把一些简单的有机知识课前给我们讲解一点,每次课前一点点,或者推荐我们看一些有机教材,告诉我们哪些有机知识要自己温习理解,我想这样会更有助于之后图谱解析的。

第三篇:仪器分析课程教案

第十二章 电解分析法和库仑分析法

一、基本要点:

1.熟悉法拉第电解定律;

2.掌握控制电位电解的基本原理; 3.理解控制电位库仑分析方法;

4.掌握恒电流库仑滴定的方法原理及应用。

二、学时安排:4学时

电解分析法包括两方面的内容:

1.利用外加电源电解试液后,直接称量在电极上析出的被测物质的重(质)量来进行分析,称为电重量分析法。2.将电解的方法用于元素的分离,称为电解分离法。

库伦分析法是利用外加电源电解试液,测量电解完全时所消耗的电量,并根据所消耗的电量来测量被测物质的含量。

第一节 电解分析的基本原理

一、电解现象

电解是一个借外部电源的作用来实现化学反应向着非自发方 向进行的过程。电解池的阴极为负极,它与外界电源的负极相连;阳极为正极,它与外界电源的

正极相连。

例如:在CuSO4溶液侵入两个铂电极,通过导线分别与电池的正极和负极相联。如果两极之间有足够的电压,那末在两

电极上就有电极反应发生。

阳极上有氧气放出,阴极上有金属铜析出。通过称量电极上析

出金属铜的重量来进行分析,这就是电重量法。

二、.分解电压与超电压

分解电压可以定义为:被电解的物质在两电极上产生迅速 的和连续不断的电极反应时所需的最小的外加电压。从理论上 讲,对于可逆过程来说,分解电压在数值上等于它本身所构成的 原电池的电动势,这个电动势称为反电动势。反电动势与分解电 压数值相等,符号相反。反电动势阻止电解作用的进行,只有当 外加电压达到能克服此反电动势时,电解才能进行。实际分解电 压并不等于(而是大于)反电动势,这首先是由于存在超电压之 故。

超电位(以符号η来表示)是指使电解已十分显著的速度 进行时,外加电压超过可逆电池电动势的值。超电压包括阳极超 电位和阴极超电位。对于电极来说,实际电位与它的可逆

电位之间的偏差称为超电位。在电解分析中,超电位是电 化学极化和浓差极化引起的,前者与电极过程的不可逆性有关。后者与离子到达电极表面的速度有关。超电位是电极极化的度

量。超电位的大小与很多因素有关,主要有以下几方面: 1.电极的种类及其表面状态; 2.析出物的形态; 3.电流 密度; 4.温度; 5.机械搅拌。

三、电解方程式

在电解过程中,外加电压(V),反电动势(E反),电解电流(i)及电解池内阻(R)之间的关系可表示如下:

电解方程式是电化学分析法的基本定律之一。通过(1)可以计算出溶液电解所需的合理外加电压,以硫酸铜溶液为例,该电解池所需的外加电压为:

V = E反 + η+ iR = 0.91+0.72+0.05 =1.68V

四、两种电解过程

能斯特方程式有两方面的含义:

1.对于一定的氧化还原体系(即与还原态活度的比率决定电极电位。2.对于一定的氧化还原体系(即极表面氧化态与还原态活度的比率。

究竟哪一个起主导作用,这要看具体的电解过程。电解过 程有两种:控制电流电解过程和控制电位电解过程。在控制电流 电解过程中,外加电压一般较大,保证电极上总有化学反应不断 发生,电流强度基本保持不变。在控制电位电解过程中,调节 外加电压,工作电极的电位控制在某一定数值或某一小范围内,使被测离子在电极上析出,其它离子留在溶液中。第二节 电解分析法

一、.控制电流电解分析法 1.仪器装置

2.控制电流电解过程中的电位—时间曲线

电解过程中阴极电位与时间的关系曲线如图所示。

一定),电极表面氧化态

一定),电极电位决定电

电解一开始,阴极电位立即从较正的电位向负的方向变化,到电位达到的还原电位时,阴极电位符合能斯特方程式:

3.应用

用控制电流电解分析法测定的常见元素

控制电流电解法一般只适用于溶液中只含一种金属离子的情况。如果溶液中存在两种或两种以上的金属离子,且其还原电位相差不大,就不能用该法分离测定,所以选择性不高是该法的最大缺点。但这种方法可以分离电动序中氢以前和氢以后的金属。

二、控制阴极电位电解分析法

在控制阴极电位电解分析法中,调节外加电压是工作电极的电位控制在一定范围内或某一电位值,使被测离子在工作电极上析出,而其它离子还留在溶液中,从而达到分离和测定元素的目的。

1.装置2.阴极电位的选择

需要控制的电位值,通常是通过比较在分析实验条件下共存 离子的i-E曲线而确定的。从图中可以看出,要使甲离子还原,阴极电位须负于a,但要防止乙离子析出,阴极电位又须正与b,因此,阴极电位控制在a与b之间就可使甲离子定量析出而乙离 子仍留在溶液中。

3.控制电位电解过程中电流与时间的关系

在控制电位电解过程中,由于被测金属离子在阴极上不断还 原析出,所以电流随时间的增长而减小,最后达到恒定的最小值。由曲线图可知,电解电流随时间的增长以负指数关系衰减。阴极 电位虽然不变,但外加电压却随时间下降。因此,在控制阴极电 位电解过程中,需要不断的降低外加电压,同时电解电流也随时 间而逐渐减小。当电流趋于零时,说明电解已经完全。4.应用

控制阴极电位电解法的最大特点是它的选择性好,所以它的 用途较控制电流电解法广泛。只要阴极电位选择得当,可以使共 存金属离子依次先后在阴极上分别析出,实现分离或分别定量测 定。

第三节 电重量分析的实验条件 一.影响金属析出性质的因素 1.电流密度的影响 2.搅拌和加热的影响 3.酸度的影响

4.络合剂的影响

二、阴极干扰反应及其消除方法 溶解氧或氯的影响 阳极上的再氧化 Pt 阳极的溶解

第四节 库仑分析法基础

一、法拉第定律 法拉第定律包括两方面内容:

1.电流通过电解质溶液时,物质在电极上析出的质量与通过电解池的电量成正比,即与电流密度和通过电流的时间的乘积成正比。这是法拉第第一定律。

m ∝ Q

m ∝ i.t;Q = i.t

2.相同的电量通过各种不同的电解质溶液时,在电极上所获得的各种产物的质量与它们的摩尔质量成正比。这是法拉第第二定律。合并法拉第第一,第二定律可以得到

m = MB.i.t /F

式中,MB为电解产物的摩尔质量。MB /F 相当于通过1库伦电量使物质在电极上析出的质量。

二、电流效率

由法拉第电解定律可知,当物质以100%的电流效率进行电解反应时,那麽就可以通过测量进行电解反应所消耗的电量(库伦数),求得电极上起反应的物质的量。所谓100%的电流效率,指电解时电极上只发生主反应,不发生副反应。影响电流效率的主要因素有:

溶剂的电极反应。

电解质中的杂质在电极上的反应

溶液中可溶性气体的电极反应

电极自身的反应

(5)电解产物的再反应

第五节 控制电位库仑分析法

原理和装置

控制电位库仑分析用控制电极电位的方法进行电解,并用库仑计或作图法来测定电解时所消耗的电量,由此计算出电极上起反应的被测物质的量。

测量电量的方法:

库仑计——氢氧气体库仑计的构造

它由一支带有活塞和两个铂电极的玻管同一支刻度管相连接,管中充以0.5mol/LK2SO4溶液。当有电流流过时,铂阴极上析出氢气,铂阳极上析出氧气,从右边管中电解前后液面差就可读出氢氧气体的总体积。在标准状况下,每库仑电量析出0.1739mL氢氧混合气体。根据法拉第定律,即可得到被测物质的量。

第六节 控制电流库仑分析法

一、基本原理和装置

1..控制电流库仑分析基本原理

广义上说,控制电流库仑分析是指以恒定电流进行电解,测量电解完全时所消耗的时间,再由法拉第定律计算分析结果的分析方法。它可按下述两种类型进行:

(1)被测定物质直接在电极上起反应;

(2)在试液中加入大量物质,使此物质经电解反应后产生一种试剂,然后此试剂与被测物起反应。一般都按第二种类型进行。这种方法是在试液中加入适当的辅助剂后,以一定强度的恒定电流进行电解,由电极反应产生一种“滴定剂”。该滴定剂与被测物质发生定量反应。当被测物质作用完后,用适当的方法指示终点 8 并立即停止电解。由电解进行的时间t(s)及电流强度I(A),可按法拉第定律计算被测物的量 2.仪器装置

二、指示终点的方法 1..化学指示剂法

普通容量分析中所用的化学指示剂,均可用于库仑滴定法

中。例如,肼的测定,电解液中有肼和大量KBr,加入MO为指示剂,电极反应为:

电极上产生的Br2与溶液中的肼起反应:

NH2-NH2 + 2Br2 = N2 + 4HBr 过量的Br2使指示剂退色,指示终点,停止电解。2.电位法

利用库仑滴定法测定溶液中酸的浓度时,用玻璃电极和甘汞电极为检测终点电极,用pH计指示终点。此时用Pt电极为工作电极,银阳极为辅助电极。电极上的反应为:

由工作电极发生的反应使溶液中OH-产生了富余,作为滴定剂,使溶液中的酸度发生变化,用pH计上pH的突跃指示终点。

3.死停终点法

通常是在指示终点用的两只铂电极上加一小的恒电压,当达到终点时,由于试液中存在一对可逆电对(或原来一对可逆电对消失),此时铂指示电极的电流迅速发生变化,则表示终点到达。

三、库仑滴定的应用及特点

凡是与电解所产生的试剂能迅速而定量地反应的任何物质,均可用库仑滴定法测定。

表:库仑滴定应用实例

库仑滴定具有下列特点:

(1)不需要基准物质。

(2)不需要标准溶液。

(3)灵敏度高,适于微量和痕量分析。

(4)易于实现自动化和数字化,便于遥控分析。

第四篇:仪器分析课程论文

色谱分析技术在植科专业相关实验和教学中的应用

2011—2012 学年第一学期

课程名称: 仪 器 分 析

班 级: 09级植物科学与技术(2)班

学 号:

学生姓名:

摘 要:本文通过对色谱分析的一些方法的简要分析和与我们植物保护学院植物科学与技术专业的联系来向大家论述相关知识和信息。我们专业有许多实验都要借助于色谱分析方法才能够圆满的完成相关实验。因此,色谱分析技术在我们专业能够得到很好的运用与发挥。同时也因为色谱分析方法的发展才引领了科技的进步,进而取得了一系列的科技成果。

关键词:色谱;实验;化学;应用

正 文:

一、色谱分析法的起源、分类及其原理

1、色谱分析法的起源[1]

色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография,这个单词最终被英语等拼音语言接受,成为色谱法的名称。汉语中的色谱也是对这个单词的意译。

2、色谱分析法的分类[2]

色谱分析法根据流动性的性质可以分为:气相色谱分析法和高效液相色谱分析法两种。气相色谱分析法具有高分离效能、高检测性能、分析时间快等优点,因此应用比较广泛。而高效液相色谱分析法也因其高效、快速而得以广泛应用。根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。

3、色谱分析法的简单原理[3] 色谱分析法是一种利用混合物中诸组分在两相间的分配原理以获得分离的方法。其过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。

二、色谱分析法在相关学习实验中的应用

1、植物生理学相关实验

(1)、叶绿素的提取与分离实验 先从菠菜叶片中,用有机溶剂将叶片中的色素提

[4]取出来;然后利用纸层析,在圆形的滤纸中心用毛细管进行点样(少量多次,尽量均匀,形状规则);再以汽油做扩散剂将叶绿素进行扩散,进而得到叶片内色素的主要成份。此试验应用的纸层析法是色谱分析法的一种较常用的方法,不仅见效快、成本低、现象明显、重复性强,而且易于操作,适合于教学研究和学生实验,同时也有利于色谱分析法的发展。

[5](2)、植物组织呼吸强度及呼吸商的测定的实验 用直径4mm和2000mm的色谱柱装上担体。采用热导检测器[6] 检测,柱温为60℃,进样器温为40℃,以氦气为载气,气体流速为20ml/min;再用微量注射器分别抽取不同量的纯O2和纯CO2,注入气相色谱仪中,并记录O2和CO2出峰时间和不同量的峰值。进而描绘出进样量中O2和CO2的绝对量和峰值的标准曲线。然后运用相关知识计算植物组织呼吸强度及呼吸商的测定的实验。

2、分子生物学相关实验

[7](1)、糖蛋白的分离和纯化实验 糖蛋白是存在与植物体内的一种大分子化合物,本实验主要运用三种色谱柱(Sepharose CL-6B、S-Sepharose、SynChropak RP-PC16)依次进行分离和纯化。首先,使用Sepharose CL-6B色谱柱进行初步的分离,然后再将流出液通过S-Sepharose色谱柱进行初步的纯化,使得样品中的各组分的分离更彻底,最后用SynChropak RP-PC16色谱柱进行最终的纯化,最后将吸附柱上的大分子洗脱出来,一般用0.1%TFA和65%乙腈进行脱洗28分钟即可得到纯品。

3、生物化学相关实验

[8](1)、检验莨菪碱和东莨菪碱的分离效果实验 用碱性氧化铝作为吸附剂,撤在玻板上,然后路套有调节荡层厚度的塑料环的破棒置于玻板一端,用手推至另一线即可。然后,用样品进行点样,接着用有一定倾斜度的薄层色谱进行展开;最后对其进行显色,用改良德氏试剂喷雾显色。显色剂用小型喷雾器喷出,雾点要小,与薄层保持一差距离,或可在展开剂尚未蒸干以前喷雾显色,以免将薄层表面吹坏。如果分离效果好,则显色后共显现两个斑点,莨菪碱及东莨菪碱各显一个斑点。

[9](2)、从绿色叶片中制备线粒体实验 试验前供拭材料放在暗处2—3天,取材前再给光照I一3小时,这种暗处理消除了细胞中大量淀粉,有利于相系统中的分配行为。试验材料为生长健壮的嫩叶片。首先将较大的叶脉除去,然后取100g叶片、洗净、剪碎加200m1冷的A液。在4℃下于组织捣碎机中高速匀浆2次,每次5—7秒钟。8层妙布过滤。滤液以600xg离心10分钟。上清液再以11000xg离心10分钟.沉淀悬浮于B液,并用B液洗2次。用11000xg离心l0分钟收集沉淀。此即线粒体的粗制品。

线粒体的纯化是在Dextran—PEG相[10] 系统中进行的。相系统的成分为:6.1%DextranT500,6.1%PEG、2mMKCl、0.3M蔗糖和5mM磷酸钾缓冲液(pH7.8)。新制备的相系统,放置约1小时就可以形成明显的上下两相。此时Dextran分布在下相,PEG在上相。取5m1上相液悬浮线粒体粗制品。再加入4ml下相液,充分混合后,用600xg离心3—4分钟。此时大部分叶绿体颗粒及色素分配到上相,所以上相为绿色。尤其在上层的界面处分布着大量叶绿体颗粒。而在下相液中游离色素和叶绿体颗粒很少,几乎为白色透明液体。在下相液的界面处分布着大量的线粒体。小心地吸出绿色的上相液。注意不要破坏它的界面,以免把线粒体带出。然后再加入5m1新的上相液,与下相液充分混合后,依照以上步骤,重复分配2次。最后用7倍体积的B液稀释含线粒体的下相液,并用500xg离心3分钟,上清液再以11000xg离心10分钟收集沉淀,此即纯化的线粒体。

4、植物化学相关实验

[11](1)、从番茄中提取番茄红素和β—胡萝卜素首先,将新鲜番茄洗净,捣碎成浆状后,称取15g左右放人烧瓶中,添加20ml 95%乙醇,热水浴回流5分钟,温度不应高于85℃,趁热过滤,滤渣转移至烧瓶备用;然后,向烧瓶中加人20ml二氯甲烷,热水浴回流7分钟(温度应低于55℃),冷却,过滤,滤渣转移回烧瓶,再添加10ml二氯甲烷,重复操作,合并乙醇和两次二氯甲烷的提取液,倒入分液漏斗中,添加5ml饱和氯化钠溶液,振荡,静置,分出有机相,用无水硫酸钠干燥,过滤,将滤液蒸馏以回收大部分溶剂,所剩溶液继续在通风橱内水浴蒸干备用;最后,用氧化铝装柱,石油醚洗脱。开始之前,应将自制的有色物料平铺在氧化铝上,用滴管添加少许石油醚后,打开活塞,放出石油醚,直至与柱顶平齐。黄带(β一胡萝卜素)移动快,红带(番茄红素)移动慢。待黄带完全从柱上洗去后,换用氯仿继续洗脱红带。将两份洗脱液在通风橱内水浴蒸干,得到的就是两种较纯的色素。

[12](2)、槲皮素与金雀异黄素的分离与提纯实验 槲皮素(quercetin)、金雀异黄素(genistein)同属于黄酮类化合物,具有广泛的抗肿瘤、抗血小板、抗氧化等药理作用[13~14]。首先,精确配制SDS浓度为0.0081,0.01,0.02,0.03,0.04,0.05mol·L-1的水溶液作为展开剂(0.0081mol·L-1为SDS的CMC)进行实验,并在一定浓度下依次分别加入体积分数为2%,4%,6%,8%的甲醇、异丙醇、正戊醇、正丁醇、冰乙酸。新华三号滤纸切割成2.5cm×12cm的纸条,毛细管点样。药品溶解在甲醇中,展开前层析缸密闭,以展开剂蒸气饱和1h,上行法展开约10cm左右。点样量:Q,Q1,Q2均为0.5μl,而G,G1,G2则均为2μl(因G,G1,G2的检出灵敏度较低)。然后,以10g·L-1FeCl3溶液喷洒后,各药品点显紫黑色,以初步鉴定样品酚型结构的存在。在365nm的紫外光照射下,对原始样品点、非SDS溶液展开并经50g·L-1AlCl3甲醇溶液喷洒的样品迁移点、SDS胶束水溶液展开并经50g·L-1AlCl3甲醇溶液喷洒的样品迁移点,3种不同情况下的荧光表现进行比较。

三、现代色谱分析法的应用

近年来,有越来越多的色谱分析成果问世,比如:多孔性聚合物填料在高效液相色谱中的应用、高速逆流色谱技术在植物特殊化学成分研究方面的应用、智能色谱的诞生及其应用以及超临界流体色谱的迅猛发展等等。这些都极大的促进了当今世界科技的快速发展,反过来快速发展的科技又给色谱分析技术的发展提供的动力。这种“双赢”的局面正迎合了这个信息高速传播、生活娱乐节奏加快的当今世界,是一个良好的循环发展系统。相信色谱分析技术必定能够更好更快的发展。

参考文献: [1].王瑞芬.现代色谱分析法的应用.北京:冶金工业出版社,2006 [2].敖潇潇.分析化学中的色谱法分类.河南:河南科技杂志,2011 [3].李艳红.分析化学.北京:石油工业出版社,2008

[4].陈建勋.植物生理学实验指导.广州:华南理工大学科技出版社,2002 [5].李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000 [6].杜斌.实用现代色谱技术.河南:郑州大学出版社,2009

[7].师治贤.生物大分子的液相色谱分离和制备.北京:科学出版社,1996 [8].张志良.植物生物化学技术和方法.北京:农业出版社,1986

[9].B.L.威廉斯,K威尔逊编.实用生物化学原理和技术.北京:科学出版社,1979

[10].郅文波,邓秋云,宋江楠等.高速逆流双水相色谱法纯化卵白蛋白.生物工程学报,2005 [11].陈亚.有机化学实验.昆明:云南科技出版社,2004 [12].刘文,邓亦峰,梁念慈.槲皮素和金雀异黄素硫酸酯合成方法的改进及其HPLC-MS的鉴定.中药材JOURNAL OF CHINESE MEDICINAL MATERIALS,2008

[13].Ioku K,Tsushida T,Takei et al.Antioxidative avtivity of quercetin and quercetin monoglucoside in solution and phospholipid bilayers.Biochim Biophys Acta,1995,1234(4):99.[14].Barnes S,Peterson TG.Biochemical targets of the isoflavone genistein in tumor cell lines.The Society for Experimental Biology and Medicine,1995,208:103.

第五篇:仪器分析课学习心得

仪器分析课学习心得

现代仪器分析在复合光催化剂制备中的应用

摘要:本文简单介绍了分析化学的一个重要分支,即现代仪器分析在高科技中的地位和作用,指出高科技发展有力的促进现代仪器产生质的飞跃。着重介绍了现代仪器分析在复合光催化剂制备中的应用,例如:XRD,BET,SEM,和XPS这几种主要的测试和表征方法。

关键词:现代仪器分析;复合光催化剂;制备;测试和表征方法。

现代仪器分析为现代分析化学奠定了雄厚的学科理论基础信息理论,使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展[1]。

一.现代分析仪器的发展及发展趋向

现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界。20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术[2]。二维气相色谱技术可使用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可

同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息[3]。

二.现代仪器分析的内容和分类

现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,光化学分析法和其他仪器分析法几类。

1)电化学分析仪器:根据氧化还原电极电位鉴别样品的阴、阳离子的形态含量和活度.如电位滴定仪、pH计、极谱仪等。

2)热学式分析仪器:根据热力学平衡原理,测定物质热交换量.如热分析仪等。

3)磁学式分析仪器:利用原子核在磁场作用下产生共振吸收定性、定量鉴定物质的结构组成。如核磁共振波谱仪。

4)光学式分析仪器:利用物质对光吸收的选择性和发射光的特殊性分析物质的结构及组成。如紫外--可见光分光光度计、荧光光度计、火馅光度计及原子吸收分光光度计等。

5)射线式分析仪器:根振X射线穿透性的原理,测定物质的结构及组成,如X射线分析仪。

6)色谱类分折仪器:利用各物质组分在流动相和固定相之间交换、分配、吸附等作用的差异,达到分离鉴定的目的.如薄层色谱仪、气相色谱仪、液相色谱仪等。

7)电子光学和离子光学式分析仪器:在特定的物理环境中通过对被电离物质荷质比的分析,来鉴定物质的结构组成.如电子探针仪、质谱仪。

8)物性测定仪器:根据物理特性及方法,检测物质的组成和性质.如温度测定仪、水分测定仪、粘度计、比重仪等。

9)其它专用型和多用型仪器:利用化学测定方法,通过仪器完成各阶段的

测定步骤。如蛋白质含量测定仪、脂肪含量测定仪、流动注射仪。

从分析仪器功能来看,一是为了确定物质中的结构与组成;二是利用相关技术对物质中各组成实行分离(如色谱技术).有的兼有两种功能,对一些复杂的物质分析常需要多种技术相结合.如色谱—质谱联机、色谱--红外联机、毛细管电泳--质谱联机。

三.现代仪器分析在复合光催化剂制备中的应用

自1972年Fujishima A等发现锐钛矿型TiO2的光催化性能以来,TiO2在光催化方面的研究和应用备受关注。TiO2因其特殊的光学和电子特性、良好的化学稳定性、无毒性和低成本,在纺织领域成为降解染料及助剂、制备抗菌及抗紫外纺织品的一种理想材料。但TiO2的禁带宽度为3.2eV左右,通常需要在紫外光(100~400nm)照射下才能激发产生光生电子和空穴,从而限制了其在自然光下的应用[4]。因此,将TiO2的光响应效果拓展到可见光范围(400~780nm),极大地提升其光催化效率,已经成为近年来国内外光催化研究的主要方向和热点。

目前,通常采用金属离子掺杂、贵金属沉淀、表面光敏化、非金属掺杂、半导体复合等方法来制备可见光响应型光催化材料。但通过以上方法向催化剂中掺入某些有色离子,将导致催化剂在使用过程中产生二次污染、影响基材颜色等问题。为此,解决光催化剂的“显色”问题也十分重要[5]。

由于本人研究生期间将从事复合光催化剂的制备,并对其性能及感光效率等方面进行测试和表征,因而在此着重介绍在整个实验测试过程中将使用的一些方法,例如:XRD,BET,SEM,和XPS[6]。

1.XRD介绍:

特征X射线及其衍射X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10^-8cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的

科学预见:晶体可以作为X射线的空间衍射光栅,即当一束X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。这一预见随后为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式——布拉格定律:

2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。

通过XRD可以测试出复合光催化剂在不同的煅烧温度下晶型所发生的变化,从而在实验的过程中控制温度在一个合适的范围内,使得光催化剂处于一个最有利的晶型状态[7]。

2.BET介绍:

BET吸附等温式是在Langmuir吸附理论基础上建立发展起来的,主要基于两点假设:⑴物理吸附为分子间力,被吸附的分子与气相分子之间仍存在此种力,因而可发生多层吸附,但第一层的吸附与以后的多层吸附不同,后者与气体的凝聚类似;⑵吸附达到平衡时,每吸附层上的蒸发速度与凝聚速度相等,因此能够对每层写出相应的吸附平衡式[8]。

较大的比表面积可使表面原子数增加,无序度增加,键态严重失配,出现多活性中心,表面台阶和粗糙度增加,表现出非化学平衡和非整数配位的化学价,可促进光催化反应的进行。灼烧前样品的比表面积比灼烧后样品的比表面积大,这是因为所制TiO2纳米粒子的尺寸较小,灼烧过程中,发生颗粒内的致密化(初始晶粒之间的孔坍塌或消失)和颗粒间的合并;同时由于所制TiO2纳米粒子洗涤充分,表面活性剂在晶粒表面无吸附,不能有效的防止TiO2颗粒在灼烧过程中的团聚。

N2吸附-脱附曲线(BET)是表征介孔材料结构的重要测试手段。根据BET测 4

试结果可以得到介孔材料BET比表面积、孔径分布、孔容和孔道类型等信息,从而为进一步分析介孔材料结构与性能的关系提供了更加详实的依据。

3.SEM介绍:

扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对X射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。

在复合光催化剂的制备过程中,采用SEM方法来观察光催化剂的颗粒间分散程度,有无大范围团聚现象,以及晶粒粒径和形状[9][10]。

4.XPS介绍:

X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱 其主要应用:

1).元素的定性分析,可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素;

2).元素的定量分析,根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度;

3).固体表面分析,包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等;

4).化合物的结构,可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息;

5).分子生物学中的应用。

其中对于螺杆泵定子橡胶的检测中,将主要用到固体表面分析的技术。其技术特征:1.表面分析有很高的灵敏度;2.表面分析可以有效地从样品的大多数原子中分离出表面信号。通过X射线表面分析技术能够得到所需的特征信息,并还能回答其他重要的问题:

1).表面存在那种元素; 2).这些元素处于什么化学状态; 3).每种元素的每种化学态是多少;

4).在三维空间上材料的空间分布是什么样的;

5).若材料在表面上形成薄膜:a).薄膜的厚度是多大;b).厚度是否均匀;c).薄膜的化学组分时候均匀[11][12]。

参考文献

[1] 董慧茹.仪器分析[ M].北京: 化学工业出版社, 2000.[2] 武汉大学化学系.仪器分析[ M].北京: 高等教育出版社, 2001.[3] 朱明华.仪器分析(第 3 版)[ M].北京: 高等教育出版社, 2000.[4]陈娜,程永清等.纳米TiO2光催化剂在抗菌方面的最新研究进展及应用 [5]张芳,邱建伟等.可见光响应型TiO2 光催化材料的制备及应用 [6]胡杰珍,邓培昌.卤族元素掺杂改性TiO2光催化剂研究进展

[7] 谭湘成.仪器分析(第 3 版)[ M].北京: 化学工业出版社, 2008.[8] 黄一石.仪器分析(第 2 版)[ M].北京: 化学工业出版社, 2008.[9] [日] 泉美治, 等.仪器分析导论(第2 版)[ M].李春鸿, 刘振海译.北京: 化学工业出版社,2005.[10] [奥地利] 凯尔纳, 等.分析化学[M].李克安,金钦汉, 等译.北京: 北京大学出版社, 2001.[11] 李继睿等.仪器分析[M].北京: 化学工业出版社, 2010.[12] 加里D·克里斯琴.分析化学[M].王今今, 张振宇译.北京: 化学工业出版社, 1988.

下载仪器分析课程学习心得word格式文档
下载仪器分析课程学习心得.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    智能仪器学习心得

    《智能仪器》学习心得 首先,非常荣幸《智能仪器》这门课程由我们的周老师授课。现在我将学习这门课程的心得、所获得的知识介绍如下。 随着微型计算机及微电子技术在测试领域......

    仪器分析课程教学大纲-安庆师范学院精品课程网

    《仪器分析》课程教学大纲 (修订稿)(供化学、专升本使用) 学时数:51学时(暂定) 学时数:51学时(暂定) 一. 本课程的教学目的、要求 总结85年以来,《仪器分析》作为选修课的教学经......

    仪器分析实验课程开放性实验教学方案

    《仪器分析实验—高效液相色谱》课程开放性实验教学方案 《仪器分析实验—高效液相色谱》课程教学任务于2010年春季学期开始由药学院药分教研室承担。为了适应药学本科生实......

    仪器分析题目

    仪器分析题目 1 高效液相色谱仪的种类有哪些?基本组成是什么? 答:高效液相色谱仪的种类很多,根据其功能不同,主要分为分析型,制备型和专用型。但其基本组成是类似的,主要由输液系统......

    06仪器分析

    精油的仪器分析精油成分分析除上面提到的物理和化学法外,目前常用的是仪器分析法。在确定精油成分时,仪器分析是必要的物段。在确定某一成分化学结构前,首先要提纯该样品,然后采......

    仪器分析总结

    1.紫外可见光谱产生原因?有哪些特点? 原因:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁。同原子一样,分子吸收能量具有量子化特征,记录分子对电磁辐......

    仪器分析总结

    1.绪论 要求: 1.仪器分析概念及性质* 2.仪器分析方法的分类* 3.仪器分析方法的主要评价指标* 仪器分析概念:现代仪器分析是以物质的物理性质或化学性质及其在分析过程中所产......

    仪器分析知识点归纳

    红外光谱法 1.物质吸收红外光的必要条件 ①分子的振动必须能与红外辐射产生耦合作用,即分子振动时必须伴随瞬时偶极矩的变化。②只有当照射分子的红外辐射光子的能量与分子振......