第一篇:嵌入式系统设计的最后知识点总结
系统概念
1、嵌入式系统的定义?
以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。“嵌入”、“专用”、“计算机”
2、嵌入式系统的软、硬件组成?以及主要特点?
软件:从底层到上层:bootloader等系统初始化引导程序、设备驱动层(包括驱动程序、板级支持包BSP等)、操作系统、用户应用程序。(底层为上层提供服务)开发软件:即集成开发环境(asemmbler&&compiler&&linker&&debugger&&loader)硬件组成:核心板+外围板+外设(核心板:微控制器(CPU和外设接口、外设控制器)、电源、时钟、复位、SDRAM、flash。外围板面向外围设备,一般是引脚的集合、电平转换电路。外围设备。),当然也可以将核心板和外围板放在一起。
硬件特点:通常由嵌入式处理器和嵌入式外围设备组成,高度集成,常采用SOC设计方法,对功耗、体积等有严格要求,定制性决定了它的可裁剪性,没有像计算机领域的垄断,解决方案不唯一。
软件特点:采用交叉开发方式,系统软件层次分明,操作系统为用户程序提供标准API,提供图形接口和文件系统。用户调用系统服务,系统调用设备驱动从而操纵硬件。
3、嵌入式系统产品设计的基本流程?
需求分析
功能性需求是系统的基本功能,如输入输出信号、操作方式等;
非功能性需求包括系统性能、成本、功耗、体积、重量等因素。规格说明
精确地反映客户的需求并且作为设计时必须明确遵循的要求。体系结构设计
描述系统如何实现所述的功能和非功能需求,包括对硬件、软件和执行装置的功能划分以及系统的软件、硬件选型等。
软硬件设计
基于体系结构,对系统的软件、硬件进行详细设计。系统集成
把系统的软件、硬件和执行装置集成在一起,进行调试,发现并改进单元设计过程中的错误。系统测试
对设计好的系统进行测试,看其是否满足规格说明书中给定的功能要求。
4、处理器及操作系统的选型主要考虑哪些方面?
① 操作系统本身所提供的开发工具。② 操作系统向硬件接口移植难度。
③ 操作系统的内存要求。④ 开发人员是否熟悉此操作系统及其提供的系统API。⑤ 操作系统是否提供硬件的驱动程序,如网卡驱动程序等。⑥ 操作系统的是否具有可剪裁性。⑦ 操作系统是否具有实时性能。
5、交叉开发、交叉开发环境?为何需要交叉开发环境? 在一台通用计算机(宿主机)上进行软件的编辑编译,然后下载到嵌入式设备(目标机)中运行调试的开发方式
交叉开发环境一般由运行于宿主机上的交叉开发软件(assembler&&compiler&&linker&&debugger&&loader)、宿主机到目标机的调试通道组成 需要交叉开发环境是因为目标机一般对体积、功耗等有严格限制,资源也面向应用,较为紧张,要求仅仅能流畅运行代码即可,而将用户开发软件(包括各种库、工具)放置在主机上,而且现在的集成开发环境提供了各种修改好的功能库,用起来也方便。
6、嵌入式集成开发环境的主要功能?
这是由其组成决定的。Assembler将.c源代码汇编,compiler形成目标文件,linker根据链接描述文件将各个目标代码链接定位生成可执行代码。Debugger有些交叉开发工具提供了仿真调试通道。Loader可以将目标文件烧录进设备中(有时需要内部引导代码的配合)
7、嵌入式Linux 开发主要流程?
搭建开发环境--烧写bootloader--烧写内核--烧写根文件系统--烧写应用程序。
开发环境:REDHAT-LINUX、下载相应的GCC 交叉编译器进行安装、配置开发主机(配置MINICOM和配置网络,MINICOM 软件的作用是作为调试嵌入式开发板信息输出的监视器和键盘输入的工具,配置网络主要是配置IP地址、NFS 网络文件系统,需要关闭防火墙)
烧写bootloader 下载一些公开源代码的BOOTLOADER根据自己具体芯片进行移植修改。下载时,有些芯片没有内置引导装载程序,比如三星的ARM7、ARM9 系列芯片,这样就需要编写烧写开发板上flash 的烧写程序。
或者网络上有免费下载的WINDOWS 下通过JTAG 并口简易仿真器烧写ARM 外围flash 芯片的程序。也有LINUX 下公开源代码的J-FLASH 程序。
下载内核
如果有专门针对你所使用的CPU 移植好的LINUX 操作系统那是再好不过,下载后再添加自己的特定硬件的驱动程序,进行调试修改。下载根文件系统
从www.xiexiebang.complete...*/
OSIntExitY
= OSUnMapTbl[OSRdyGrp];
/*...and not locked.*/
OSPrioHighRdy
=
(INT8U)((OSIntExitY
<<
3)
+ OSUnMapTbl[OSRdyTbl[OSIntExitY]]);
if(OSPrioHighRdy!= OSPrioCur){
/* No Ctx Sw if current task is highest rdy
*/
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];//找就绪态的最高优先级,并找到相应TCB。
OSCtxIntCtr++;
/* Keep track of the number of context switches */
OSIntCtxSw();
//调用中断级的任务调度函数
/* Perform interrupt level context switch
*/
}
}
OS_EXIT_CRITICAL();}
中断级任务切换函数
执行出栈指令之后还用中断返回指令?没有包含关系?模式(代码分析)?
OSIntCtxSw;post FIQ Context switcher.This is called from OSIntExit when a hooked ISR;wants to return in the context of another task.We load the new tasks context;(from OSPrioHighRdy)and do the return from interrupt.;;Get pointer to stack where ISR_FiqHandler saved interrupted context
;ISR entry only saves
找到异常模式堆栈,它只保存了.first seven regs and LR
#16?
add
r7, sp, #16
;save pointer to register file(point to r0)LDR
sp, =IRQStack;FIQ_STACK;test to del it意义?
;Change ARM CPU to SVC mode for stack operations.将CPU切换至管理模式,以操作不同模式的堆栈。
;This gets the CPU off the interrupt stack and back to the
;interrupted task's stack, which is the one we want to alter.;mrs
r1, SPSR
;get suspended PSR orr
r1, r1, #0xC0
;disable IRQ, FIQ.msr
CPSR_cxsf, r1
;switch mode(shold be SVC_MODE)
;PSR, SP, LR regs are now restored to the interrupted SVC_MODE.;now set up the task's stack frame as OS_TASK_SW does...将进入IRQ异常的时候保存的上下文,从IRQ栈中赋值到SVC栈中
ldr
r0, [r7, #52]
;get IRQ's LR(tasks PC)from IRQ stack
sub
r0, r0, #4
;Actual PC address is(saved_LR-4)STMFD
sp!, {r0}
;save task PC放入管理模式栈中 STMFD
sp!, {lr}
;save LR
mov
lr, r7
;save FIQ stack ptr in LR(going to nuke r7)
ldmfd
lr!, {r0-r12}
;get saved registers from FIQ stack STMFD
sp!, {r0-r12}
;save registers on task stack
;save PSR and PSR for task on task's stack MRS
r4, CPSR
;OSPrioCur = OSPrioHighRdy
// change the current process LDR
r4, addr_OSPrioCur LDR
r5, addr_OSPrioHighRdy bic
r4, r4, #0xC0;leave interrupt bits in enabled mode STMFD
sp!, {r4} MRS
r4, SPSR STMFD
sp!, {r4}
;save task's current PSR;SPSR too
LDRB
r6, [r5] STRB
r6, [r4]
;Get preempted tasks's TCB LDR
r4, addr_OSTCBCur LDR
r5, [r4]
;store sp in preempted tasks's TCB STR
sp, [r5]
;Get new task TCB address LDR LDR LDR
r6, addr_OSTCBHighRdy
r6, [r6]
sp, [r6]
;get new task's stack pointer;OSTCBCur = OSTCBHighRdy STR r6, [r4]
;set new current task TCB address
LDMFD sp!, {r4} MSR
SPSR, r4 LDMFD sp!, {r4} BIC
r4,r4,#0xC0;we must exit to new task with ints enabled MSR
CPSR, r4
LDMFD
sp!, {r0-r12, lr, pc}
时钟节拍中断服务子程序
Void OSTickISR(void){
保存处理器寄存器的值;
调用OSIntEnter(),或是将OSIntNesting加1
if(OSIntNesting==1){
OSTCBCur->OSTCBStkPtr=SP;
}
调用OSTimeTick();
功能根据链表遍历每个TCB,将非零的延时值--,有减到零,若非suspend状态,则置就绪位。
清发出中断设备的中断;
重新允许中断(可选用)
调用OSIntExit();
恢复处理器寄存器的值;
执行中断返回指令;
} 中断节拍函数 void OSTimeTick(void){
OS_TCB *ptcb;
OSTimeTickHook();
/*OS_CFG中#define OS_CPU_HOOKS_EN
1*/
ptcb = OSTCBList;
(2)
while(ptcb->OSTCBPrio!= OS_IDLE_PRIO){
(3)
OS_ENTER_CRITICAL();
if(ptcb->OSTCBDly!= 0){
if(--ptcb->OSTCBDly == 0){
if(!(ptcb->OSTCBStat & OS_STAT_SUSPEND)){
(4)/ SUSPEND,则不能就绪,OSRdyGrp
|= ptcb->OSTCBBitY;
(5)
否则就绪到
OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
} else {
ptcb->OSTCBDly = 1;
}
}
}
ptcb = ptcb->OSTCBNext;
OS_EXIT_CRITICAL();
}
OS_ENTER_CRITICAL();
(6)
OSTime++;
(7)累加从开机以来的时间,用的是一个无符号32位变量
OS_EXIT_CRITICAL();}
任务控制块初始化函数OS_TCBInit()在创建任务时调用,它获得TCB控制块并对其进行初始化,并让对应任务就绪,完成任务创建的大部分任务。
Delay()和节拍中断的对应关系
Delay函数是自行挂起,等待延时时间到的函数,它的功能就设置TCB中的延时值,清除自己的就绪位。而在每个节拍中断处理函数中,会将延时值--。减到零时重新就绪。并在中断退出时进行任务切换,有可能再次得到CPU的运行权。
若
是
第二篇:嵌入式系统相关知识点总结
嵌入式系统的定义及特点
定义:嵌入式系统是以应用为中心、以计算机技术为基础,软、硬件可裁剪,适应于应用系统对功能、可靠性、成本、体积、功耗等方面有特殊要求的专用计算机系统。
特点:(1)嵌入式系统是面向特定应用的。嵌入式系统中的CPU是专门为特定应用设计的,具有低功耗、体积小、集成度高等特点,能够把通用CPU中许多由板卡完成的任务集成在芯片内部,从而有利于整个系统设计趋于小型化。
(2)嵌入式系统涉及先进的计算机技术、半导体技术、电子技术、通信和软件等各个行业。是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
(3)嵌入式系统的硬件和软件都必须具备高度可定制性。
(4)嵌入式系统的生命周期相当长。嵌入式系统和具体应用有机地结合在一起,其升级换代也是和具体产品同步进行的。
(5)嵌入式系统本身并不具备在其上进行进一步开发的能力。在设计完成以后,用户如果需要修改其中的程序功能,必须借助于一套专门的开发工具和环境。
(6)为了提高执行速度和系统可靠性,嵌入式系统中的软件一般都固化在存储器芯片或单片机中,而不是存贮于磁盘等载体中。
特点也可答:1.系统内核小。2.专用性强。3.系统精简。4.高实时性的系统软件(OS)是嵌入式软件的基本要求。5.嵌入式软件开发要想走向标准化,就必须使用多任务的操作系统。6.嵌入式系统开发需要开发工具和环境。7.嵌入式系统与具体应用有机结合在一起,升级换代也是同步进行,所以具有较长的生命周期。8.为了提高运行速度和系统可靠性,嵌入式系统中的软件一般都固化在存储器芯片中。
操作系统在嵌入式系统中所起的作用(四个)
嵌入式操作系统(嵌入式linux学习)的功能
嵌入式操作系统除具备了一般操作系统(嵌入式linux系统)最基本的功能,如任务调度、同步机制、中断处理、文件处理等外,还有以下两个方面的功能:
1.构成一个易于编程的虚拟机平台
嵌入式操作系统构成一个虚拟机平台,EOS把底层的硬件细节封装起来,为运行在它上面的软件(如中间件软件和各种应用软件)提供了一个抽象的编程接口。软件开发在这个编程接口的上进行,而不直接与机器硬件层打交道。
2.系统资源的管理者
嵌入式操作系统是一个系统资源的管理者,负责管理系统当中的各种软硬件资源,如处理器、内存、各种I/O设备、文件和数据等,使得整个系统能够高效、可靠地运转。
嵌入式操作系统负责嵌入式系统的全部软、硬件资源的分配、调度、控制、协调并发活动。它必须体现其所在系统的特征,能够通过装卸某些模块来达到系统所要求的功能。
嵌入式操作系统是嵌入式系统应用的核心.嵌入式操作系统,大大地提高了嵌入式系统硬件工作效率,并为应用软件开发提供了极大的便利。
操作系统的作用主要体现在两方面:
1.屏蔽硬件物理特性和操作细节,为用户使用计算机提供了便利 2.有效管理系统资源,提高系统资源使用效率
Linux与嵌入式使用的uclinux操作系统的关系
Linux与UNIX系统兼容,开放源代码。现在广泛应用于服务器领域。而更大的影响在于它正逐渐的应用于嵌入式设备。uClinux正是在这种氛围下产生的。所以uClinux就是Micro-Control-Linux,字面上的理解就是“针对微控制领域而设计的Linux系统”。
uClinux是针对控制领域的嵌入式linux操作系统,它从Linux 2.0/2.4内核派生而来,沿袭了主流Linux的绝大部分特性。uClinux同标准Linux的最大区别就在于内存管理。标准Linux是针对有MMU的处理器设计的。在这种处理器上,虚拟地址被送到MMU,MMU把虚拟地址映射为物理地址。通过赋予每个任务不同的虚拟—物理地址转换映射,支持不同任务之间的保护。对于uCLinux来说,其设计针对没有MMU的处理器,不能使用处理器的虚拟内存管理技术,仍然采用存储器的分页管理。
什么是内核?
内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。内核,是一个操作系统的核心。是基于硬件的第一层软件扩充,提供操作系统的最基本的功能,是操作系统工作的基础,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
什么是Bootlonder? 答案一搜狗百科:启动程序(英语:boot loader,也称启动加载器,引导程序)位于电脑或其他计算机应用上,是指引导操作系统启动的程序。引导程序启动方式及程序视应用机型种类而不同。BIOS开机完成后,bootloader就接手初始化硬件设备、创建存储器空间的映射,以便为操作系统内核准备好正确的软硬件环境。BootLoader是依赖于硬件而实现的,特别是在嵌入式领域,为嵌入式系统建立一个通用的BootLoader是很困难的。
答案二百度百科:Boot Loader 是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。通常,Boot Loader 是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 Boot Loader 几乎是不可能的。尽管如此,我们仍然可以对 Boot Loader 归纳出一些通用的概念来,以指导用户特定的 Boot Loader 设计与实现。
使用带uclinux操作系统的嵌入式系统应该注意什么问题?
uClinux的内存管理
uClinux同标准Linux的最大区别就在于内存管理。对于uCLinux来说,其设计针对没有MMU的处理器,不能使用处理器的虚拟内存管理技术,仍采用存储器的分页管理,系统在启动时把实际存储器进行分页。在加载应用程序时程序分页加载。这一点影响了系统工作的很多方面。
uClinux系统对于内存的访问是直接的,所有程序中访问的地址都是实际的物理地址。操作系统对内存空间没有保护,各个进程实际上共享一个运行空间。由于应用程序加载时必须分配连续的地址空间,而针对不同硬件平台的可一次成块,分配内存大小限制是不同,所以开发人员在开发应用程序时必须考虑内存的分配情况并关注应用程序需要运行空间的大小。另外由于采用实存储器管理策略,用户程序同内核以及其它用户程序在一个地址空间,程序开发时要保证不侵犯其它程序的地址空间,以使得程序不至于破坏系统的正常工作,或导致其它程序的运行异常。
从内存的访问角度来看,开发人员的权利增大了(开发人员在编程时可以访问任意的地址空间),但与此同时系统的安全性也大为下降。uClinux的多进程处理
uClinux没有MMU管理存储器,在实现多个进程时(fork调用生成子进程)需要实现数据保护。uClinux的这种多进程实现机制同它的内存管理紧密相关。uClinux针对没有mmu处理器开发,所以被迫使用一种flat方式的内存管理模式,启动新的应用程序时系统必须为应用程序分配存储空间,并立即把应用程序加载到内存。缺少了MMU的内存重映射机制,uClinux必须在可执行文件加载阶段对可执行文件reloc处理,使得程序执行时能够直接使用物理内存。
编程实现五个点的中值滤波和均值滤波
clear all;t=0:0.01:1;f2=5;%生成一个正弦信号y; y1=1*sin(2*pi*f2*t);%y1=square(2*pi*f2*t);%向y中加入噪声信号生成x;x1=y1+0.1*randn(1,101);figure(1)subplot(2,1,1);plot(t,y1,'r');title('生成一个正弦信号y');grid;legend y;subplot(2,1,2);plot(t, x1,'r');title('向y中加入噪声信号生成x');grid;legend x;X=1:length(x1)for X=1:length(x1)z2=smooth(x1,5);%M=5时的均值滤波 end for X=1:length(x1)figure(2)plot(t,z1,'r');title('M=5时的均值滤波处理后的信号');grid;legend y;for X=1:length(x1)L2= median(x1,5);end figure(3)plot(t,L2,'r');title('M=5时的中值滤波处理后的信号');grid;legend y;
第三篇:嵌入式 知识点总结
1、嵌入式系统的特点:
(1).嵌入式系统的个性化很强,软件系统和硬件在不同的应用中均有差异;(2).由通用计算机系统发展而来,根据应用对软硬件进行裁剪;(3).高的可靠性,强的实用性;
(4).高的耗电量直接影响系统的成本及电源寿命;
2、什么是嵌入式系统?
嵌入式系统是以应用为中心,以计算机技术为基础,采用可剪裁硬件,适用于对功能,可靠性,成本,体积,功耗等有严格要求的专用计算机系统。
3、采用RISC架构的ARM微处理器一般具有如下特点:(1).体积小、功耗低、成本低、性能高;
(2).支持Thumb(16位)/ARM(3位)双指令集,能很好地兼容8位/16位器件;(3).大量使用寄存器,指令执行速度快;(4).大多数数据操作都在寄存器中完成;(5).寻址方式灵活简单,执行效率高;(6).采用固定长度的指令格式;
4、嵌入式系统开发流程:
选择嵌入式处理器(硬件平台)---选择嵌入式操作系统(软件平台)-----开发嵌入式应用软件-----测试通过---(是)---系统测试-----开发结束
5、嵌入式系统软件设计流程:
代码编程(C/汇编源程序)-----交叉编译(OBJ文件)-----交叉函数库----交叉链接(系统映像文件)---(重定向与下载)---目标板----调试;
6、ARM9E处理器有独立的指令缓存(ICACHE)和数据缓存(DCACHE);
7、ARM9系列处理器共有37个寄存器,其中31个属于通用寄存器,6个为ARM处理器;
8、ARM总共有7种不同的处理器模式,分别是:用户模式,快速中断模式,外部中断模式,管理模式,数据访问中止模式,未定义指令中止模式,系统模式
9、R13一般作为栈指针SP;R14被称为连接寄存器LR,作用:一是在通过BL或者BLX指令调用子程序时存放当前子程序的返回地址;二是在发生异常时用来保存该模式基于PC的返回地址;R15是程序计数器PC,用来保存处理器取值的地址;
10、流水线技术的工作原理:
ARM7采用的是3级流水线:FETCH/DECODE/EXECUTE.此时在EXECUTE阶段要完成大量的工作,包括寄存器和存储器的读写操作、移位操作、ALU操作等,这导致在执行阶段往往需要多个时钟周期,从而成为系统性能的瓶颈。
ARM9采用5级流水线技术,分别是FETCH/DECODE/EXECUTE/MEMORY/WRITE.FETCH阶段和之前功能相同,即从指令存储器中取值;DECODE阶段除了译码之外,还读取寄存器操作数;EXECUTE阶段执行运算,产生ALU运算结果或产生存储器地址;MEMORY阶段进行存储器的读写操作;WRITE阶段将结果写回寄存器;
11、ARM9使用一个统一的TLB来缓存页表信息,TLB主页分为两个部分:主TLB和锁定TLB;
12、ARM总共有7种处理器异常:复位异常、未定义指令异常、软件中断异常、指令预取终止异常、数据访问终止异常、外部访问终止异常、快速中断请求异常
13、(1).复位异常和软件中断异常时,处理器进入管理模式;(2).未定义指令异常时,处理器进入未定义模式;
(3).指令预取终止异常和数据访问终止异常时,处理器进入中止模式;(4).外部中断请求时,处理器进入外部中断模式;(5).快速中断请求时,处理器进入快速中断模式; 14.ARM运行状态:ARM状态和Thumb状态;ARM指令必须在ARM状态下执行,同样,Thumb指令也必须处于Thumb状态下执行。
15.ARM状态和Thumb状态切换可以通过BX指令来实现。
16.ARM指令集有5种形式的位移操作:LSL:逻辑左移;LSR:逻辑右移;ASR:算术右移;ROR:循环右移;RRX:带扩展的循环右移;
17.立即数并不是任意数都是合法的,在立即数寻址中,分配给立即数的空间是12位,8位用于保存一个常数,4位用于保存循环右移基数,而循环右移每次需要移动偶数位,即右移的位数是基数*2;假设常数为A,循环右移位数为N,则最后得到的立即数=A循环右移(N*2位);
18.ARM指令的寻址方式及特点:(1)立即寻址;
(2).寄存器偏移寻址;(3).寄存器偏移寻址;(4).寄存器间接寻址;(5).基址变址寻址;(6).多寄存器寻址;
(7).堆栈寻址:满递增堆栈、空递增堆栈、满递减堆栈、空递减堆栈; 19.LDR和STR LDR指令:从内存读取数据装入寄存器; STR指令:将寄存器中的数据存入内存;
20.CDP:是协处理器数据处理指令:用来执行特定的数据操作; MCR:将ARM寄存器中的数据传输到协处理器寄存器中;
MRC:数据传输方向与MCR指令相反,它将协处理器寄存器中的数据传送到ARM处理器寄存器中;
21.ADR:小范围的地址读取伪指令,主要用来读取基于PC相对偏移的地址或基于寄存器相对偏移的地址;
LDR:大范围伪地址读取伪指令,用于加载32位的立即数或是一个地址值; 22.Thumb跳转指令:
B:是Thumb指令中唯一可以条件执行的指令; BL:带链接的长跳转;
BX:指令在跳转的同时,会选择性的切换指令集; BLX:带链接的跳转,并选择性的切换指令集;
23.MMU:其作用主要有2个方面:一是地址映射,负责将虚拟地址映射成物理地址;二是对地址访问的保护和限制;提供硬件机制的内存访问授权,大多数使用虚拟存储器的系统都使用一种称为分页机制,虚拟地址空间划分成大小相同的一组页,每个页有一个用来标记它的页号,而相应的物理地址空间也被进行划分,单位帧、页和页帧的大小必须相同,虚拟地址被送往MMU,MMU将虚拟地址转化为物理地址。
24.进程调度策略可分为:“抢占式调度”和”非抢占式调度”;
25.在用户空间中,进程是由进程标识符(PID)表示的,一个PID在进程的整个生命期间不会更改,但PID可以在进程进行销毁后重新使用;对用户来说,PID是唯一标识一个进程的数字值;
26.Linux进程还可以通过exec系统调用产生; 27.Linux操作系统有三种进程调度策略:(1).分时调度策略;(2).先到先服务的实时调度策略;(3).时间片轮的实时调度策略; 28.嵌入式文件系统分类:(1).基于Flash的文件系统:
JFFS2文件系统;YAFFS文件系统;Cramfs;Romfs;其他文件系统;
(2).基于RAM的文件系统: RamDisk;Ramfs/Tmpfs(3).网络文件系统NFS 29.Boot Loader 阶段一:1.基本的硬件初始化:a.屏蔽所有中断;b.设置CPU的速度和时钟频率;c.RAM初始化;d.初始化LED;30.ARM-Linux内存管理原理:从两方面入手:一是Linux内核对内存的管理(包括最重要的地址映射、内存空间的分配以及地址访问的限制,即保护机制);二是体系对内存管理方面的特殊性;
31.Linux虚拟内存的实现需要6种机制的支持:地址映射机制、请求页机制、内存分配回收机制、缓存和刷新机制、交换机制和内存共享机制; 32.Linux虚拟内存实现机制间的相互关系:
地址映射机制----请求页机制----内存分配和回收机制---交换机制----缓存和刷新机制
33.进程,又称作任务,是一个动态的执行过程,是处于执行期的程序,进程是系统资源分配的最小单位。
34.在Linux系统中,所有的进程都是fork出来的,它们有个共同的祖先:0号进程;
35.init是内核启动的第一个用户级进程,也是系统的第一个真正的进程,是其他所有进程的父进程,所以init内核线程(或进程)的标识符为1,init有很多重要的任务,负责完成系统的一些初始化设置任务,以及执行系统初始化程序,init程序使用/etc/inittab作为脚本文件来创建系统中的新进程;
36.进程的销毁通过以下三个事件驱动:正常的进程结束、信号、exit函数的调用;
37.进程调度时机可分为:主动调度和被动调度;按细分的话:(1)进程状态转换;(2)当前进程的时间片用完;(3)设备驱动程序;(4)进程从中断、异常以及系统调用返回到用户态; 38.选择进程的依据:policy、priority、counter、rt_priority; 39.内核模块全称为动态可加载内核模块,是Linux内核向外部提供的一个插口,简称为模块; 40.加载模块有两种方法:第一种是通过insmod命令手工将module载入内核;第二种是根据需要载入module;kerneld的主要功能是module载入内核和将它卸载出内核; 41.中断是一个流程,一般经过三个环节:中断相应、中断处理、中断返回;
42.ARM-Linux的系统调用原理:系统调用的过程和中断有类似之处,当CPU遇到自陷指令后,跳转到内核态,操作系统首先保存当前运行的信息,然后根据系统调用号来查找相应的函数去执行,执行完了以后恢复原先保存的运行信息返回,比如通常应用程序所用的fork()函数,它是经过包装的函数,其最终的实现是系统调用;
43.在UNIX系统下有两种方式实现系统调用:通过经过封装的C库或者直接调用;
44.系统调用的过程和中断有类似之处,当CPU遇到自陷指令后,跳转到内核态,操作系统首先保存当前运行的信息,然后根据系统调用号查找相应的函数去执行,执行完了以后恢复原先保存的运行信息返回;通过不同的向量索引可以使CPU立即转入不同的处理程序; 45.init进程是系统所有进程的起点,内核在完成核内参数init=XXX来设置init进程,init进程需要读取/etc/inittab文件作为其行为指针,inittab是以行为为单位的描述性(非执行性)文本; 46.存储文件系统的设备称为block设备(块设备);
47.设备驱动的接口API都是从文件管理器API中继承下来的,所以这些设备API都有open().close().read().write().lseek()和ioctl()等与文件API类似的接口;
48.Linux也使用文件管理器,但是它的文件管理器使用了VFS(虚拟文件系统),正是VFS让Linux能够支持目前多种文件系统。VFS具备访问各种各样的文件系统的能力,也是因为VFS在内部去适应各种不同文件系统的差异,而提供给用户进程的是统一的文件API。49.JFFS2嵌入式文件系统原理:
首先JFFS2是一个日志结构文件系统,包含数据和元数据的节点在闪存上顺序存储。JFFS2定义了三种节点类型:JFFS2_NODETYPE_INODE, JFFS2_NODETYPE_DIRENT,JFFS2_NODETYPE_CLEANMARKER。JFFS2中I节点的信息并没有全部存放在内存,mount操作时,会为节点建立映射表,但是这个映射表并不全部存放在内存中,存放在内存中的节点信息是一个缩小尺寸的结构体。JFFS2使用了多个级别的待回收块队列。JFFS2写平衡策略是在垃圾收集中实现的,垃圾收集的时候会读取系统时间,使用这个系统时间产生一个伪随机数。利用这个伪随机数结合不同的待回收链表选择要进行回收的链表。50.JFFS2克服了JFFS中以下缺点:
(1).使用了基于哈希表的日志节点结构,大大加快了对节点的操作速度;(2).支持数据压缩;
(3).提供了”写平衡”支持;
(4).支持多种节点类型(数据I节点,目录I节点等);(5).提高了对闪存的利用率,降低了内存的消耗;
51.系统调用是操作系统内核和应用程序之间的接口,而设备驱动程序则是操作系统内核和机器硬件之间的接口;
52.Linux支持三类硬件设备:字符设备、块设备、网络设备; 53.Linux内核设备模型的目的和功能:
目的:设备模型提供独立的机制表示设备,并表示其在系统中的拓扑结构,这样使系统具有以下优点:代码重复最小;提供如引用计数这样的统一机制;列举系统中所有设备,观察其状态,查看其连接总线;用树的形式将全部设备结构完整、有效地展现,包括所有总线和内部连接;将设备和对应驱动联系起来,将设备按照类型分类;从树的叶子向根的方向依次遍历,确保以正确顺序关闭各个设备的电源;初衷是为了节能,有助于电源管理,通过建立表示系统设备拓扑关系的树结构,能够在内核中实现智能的电源管理;
功能:将系统中的设备组织成层次结构,然后向用户程序提供内核数据结构信息; 54.同步机制的分类及特点:
(1).同步锁:适用于保持时间段的情况,可以在任何上下文使用,不可以睡眠,任何时候,只能有一个持有者;
(2).信号量:不能用在内核之外,是一种睡眠锁,适用于锁会被长期持有的情况,允许多个持有者;
(3).原子操作:在执行完毕前绝不会被任何其他任何或时间打断,是最小的执行单位,主要用在资源计数上;
(4).完成事件:适用于需要睡眠和唤醒的情景,不会引起资源竞争;
55.表示字符设备的设备文件可以通过”ls-l”命令输出的第一列中的“c”来识别,而块设备则用“b”标识;
56.dev t是一个32位的无符号数,其高12位用来表示主设备号,低20位用来表示次设备号;
Register_chrdev_region()函数和alloc_chrdev_region()函数用于分配设备号,这两个函数最终都会调用_register_chrdev_region()函数来注册一组设备的编号范围,它们的区别是后者是以动态的方式分配的,unregister_chrdev_region()函数则用于释放设备号。Alloc_chrdev_region()函数用于动态申请设备号范围,通过指针参数返回实际分配的起始设备号;
Dev_ti_rdev:对于设备文件而言,此成员包含实际的设备号; Struct cdev *i_cdev:字符设备在内核中是用cdev结构来表示的,此成员是指想cdev结构的指针;
57.I/O接口是微控制器必须具备的最基本外设功能。通常在ARM里,所有I/O都是通用的,称为GPIO(通用输入输出);GPIO接口一般至少会有两个寄存器,即控制寄存器和数据寄存器;
58.同步外设接口是由摩托罗拉公司推出的一种高速的、全双工、同步的串行总线; 59.SPI的工作模式有两种:主模式和从模式;
60.字符设备以字节为单位进行读写,而块设备则以块为单位,块设备的I/O请求都有对应的缓冲区并使用了请求队列对请求进行管理,块设备还支持随机访问,而字符设备只能顺序访问。Linux中每一个块设备里请求都有一个I/O请求队列,每个请求队列都有调度器的插口。
61.Bio是底层对部分块设备的I/O请求描述,其包含了驱动程序执行请求所需的全部信息,通常一个I/O请求对应一个bio。I/O调度器可将联系的bio合并成一个请求。
62.MMC/SD卡驱动结构:a.文件结构;b.块设备驱动;c.MMC/SD核心;d.MMC/SD接口;
第四篇:嵌入式系统设计报告
嵌入式系统设计实验报告
班 级:学 号:姓 名:成 绩:指导教师:
20090612 2009112107 侯金钟 武俊鹏、刘书勇 1.实验一
1.1 实验名称
嵌入式系统硬件开发环境
1.2 实验目的
1.熟悉UP-net3000实验平台。
2.超级终端设置及BIOS 功能使用。
1.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
1.4 实验内容及要求
熟悉UP-net3000实验平台的硬件电路和外设,ARM JTAG的安装和使用,利用超级终端检验外设的工作状态。
1.5 实验设计与实验步骤
1.建立工程
(1)运行ARM SDT 2.5 集成开发环境(ARM Project Manager).(2)在新建的工程中,如图1A-2 所示,选中工程树的“根部”。
(3)因为开发板上的嵌入式处理器ARM7TDMI 没有浮点处理器,所以,如图1A-3 所
示,在弹出的对话框中设置Floating Point Processor 为none,并保持其他的设置不变。(4)选中工程树的“根部”,通过菜单Project | Tool Configuration for work1.apj | asmlink | Set,对整个工程的连接方式进行设置。(5)在弹出的对话框中,选中Entry and Base 标签,如图1A-4 所示,设置连接的Read-Only(只读)和Read-Write(读写)地址。
(6)选择Linker Configuration 的ImageLayout 标签,(7)选择Project | Edit Project Tamplete 菜单,弹出Project Template Editor 对话框。
(8)选择Project | Edit Variables for work1.apj,弹出Edit Variables for work1.apj 对话框。
2.进行程序的在线仿真、调试
1.6 实验过程与分析
熟悉UP-net3000实验平台的硬件电路和外设,安装了ARM JTAG,利用超级终端检验了外设的工作状态。
1.7 实验结果总结
软件安装成功,结果显示正常。
1.8 心得体会
通过此次试验,我对ARM的环境的功能有一定的了解与完善。对试验台有了基本的认识与使用。
2.实验二
2.1 实验名称
嵌入式系统软件开发环境
2.2 实验目的
1.熟悉ADS1.2 开发环境,学会ARM 仿真器的使用。
2.使用ADS 编译、下载、调试并跟踪一段已有的程序,了解嵌入式开发的基本思想和过程。
2.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
2.4 实验内容及要求
本次实验使用ADS 集成开发环境。新建一个简单的工程文件,并编译这个工程文件。学习ARM 仿真器的使用和开发环境的设置。下载已经编译好的文件到嵌入式控制器中运行。学会在程序中设置断点,观察系统内存和变量。
2.5 实验设计与实验步骤
(1)运行ADS1.2 集成开发环境(CodeWarrior for ARM Developer Suite)。
(2)在新建的工程中,选择Debug 版本,使用Edit | Debug Settings菜单对Debug 版本进行参数设置。(3)在Debug Settings 对话框中选择Target Settings 项。在Post-linker一栏中选择ARM from ELF。
(4)在Debug Settings 对话框中选择ARM Linker 项
(5)在第四步中如果选择简单的地址连接设置,在Debug Settings 对话框中选择ARM Linker 项
(6)回到的工程窗口中,选择Release 版本,使用Edit | Release Settings 菜单对Release 版本进行参数设置。(7)参照第(3)、(4)、(5)、(6)步在Release Settings 对话框中设置Release版本的Post-linker、连接地址范围、入口模块和输出文件。(8)回到如图1B-3 所示的工程窗口中,选择Targets 选项卡,如图1B-11 所示。选中DebugRel 版本,按Del 键将其删除。DebugRel 子树是一个折衷版本,通常用不到,所以在这里删除。
2.6 实验过程与分析
1)回到工程窗口选中Debug 版本,执行菜单Project | Make 对工程进行编译连接。(2)在ADS 中执行菜单Project | Debug 启动ADS1.2 的调试工具AXD。(3)在AXD 中执行菜单Options | Configure Target 对AXD 进行设置。(4)点Select 按钮选择远程连接为ARM ethernet driver,点Configure 按钮输入仿真器的IP 地址。
(5)等待程序装载完毕以后,通过Execute | Go 菜单以及Execute | Stop(或者工具栏中的相应按钮)运行或暂停程序。程序暂停后在窗口中将显示出程序暂停的位置。(6)通过Execute | Step 菜单(或者工具栏中的相应按钮)可以单步运行程序。
(7)程序停止后可以通过Processor Views | Sources 菜单查看源文件,并可在适当位置按F9 设置端点。
(8)使用在Processor View 菜单下的Registers、Variables 和Memory 命令可以查看工作寄存器或者内存变量。读者可以逐一地尝试,为以后调试程序打下基础。
2.7 实验结果总结
超级终端输出“Hello World!”。
2.8 心得体会
基本了解了ADS1.2的配置条件,学会了ARM仿真器的使用方法。
3.实验三
3.1 实验名称
键盘及LED实验
3.2 实验目的
1.学习键盘及LED 驱动原理。
2.掌握ZLG7289芯片串行接口的使用方法,用ZLG7289芯片驱动17键的键盘和8个共阴极LED。
3.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
3.4 实验内容及要求
通过ZLG7289芯片驱动17键的键盘和8个共阴极LED,将按键值在LED上显示出来。要求从右至左循环显示至少四位数字。
基本功能实现之后可考虑实现从左至右显示四位及四位以上数字(最大八位),并可设置清零键等扩展功能。
3.5 实验设计与实验步骤
利用所给的基础代码进行调试,观察输出结果,结合指导书和教材掌握基本原理和源代码的编写方式。根据实验的要求设计函数流程,并反复调试,实现功能。1.新建工程,将“Exp3 键盘及LED 驱动实验”中的文件添加到工程。2.定义ZLG7289 寄存器(ZLG7289.h)
#define ZLG7289_CS(0x20)//GPB5 #define ZLG7289_KEY(0x10)//GPG4 #define ZLG7289_ENABLE()do{ZLG7289SIOBand=rSBRDR;ZLG7289SIOCtrl=rSIOCON;rSIOCON=0x31;rSBRDR=0xff;rPDATB&=(~ZLG7289_CS);}while(0)#define ZLG7289_DISABLE()do{rPDATB|=ZLG7289_CS;rSBRDR=ZLG7289SIOBand;rSIOCON=ZLG7289SIOCtrl;}while(0)3.编写ZLG7289 驱动函数(ZLG7289.c)4.定义键盘映射表:(Keyboard16.c)
unsigned char KeyBoard_Map[]= {4,8,11,0,0,0,0,0,5,9,12,15,1,0,0,0,6,10,13,16,2,3,0,0,7,0,14,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};//64 键值映射表,通过查找键盘映射表来确定键盘扫描码对应的按键值。
5.定义键值读取函数。(Keyboard16.c)6.编写主函数,将按键值在数码管上显示。
3.6 实验过程与分析
利用键盘驱动函数实现基本数字输入,然后利用循环左移函数实现输入数字做一样功能,并通过改变函数中相应delay的值来消除键盘按键带来的抖动。
3.7 实验结果总结
按键值可以在LED上显示出来。要求从右至左循环显示八位数字,同时可以复位清零。达到实验的效果。
3.8 心得体会
通过本次实验,我了解了LED的显示屏幕的数字的移位功能,这个功能不止可以用一个方法实现,而循环左移是其中比较巧妙且省力的一种,在遇到类似情况的时候,可以优先考虑能不能利用到文件中已经存在的函数,这样可以不必自己编写函数,省时省力。是一种可靠的方法。4.实验四
4.1 实验名称
电机转动控制及中断实验
4.2 实验目的
1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。
2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。
3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。
4.了解44B0处理器上中断的应用。5.学习在44B0处理器上中断的应用。
6.进一步熟悉平台外围硬件及其驱动程序的编写。
4.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
4.4 实验内容及要求
1.学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM 知识,掌握 PWM 的生成方法,同时也要掌握 I/O的控制方法。
2.编程实现ARM芯片的一对PWM输出用于控制直流电机的转动,通过A/D旋钮控制其转动方式。
3.编程实现ARM的四路I/O通道,实现环形脉冲分配用于控制步进电机的转动,通过A/D旋钮控制步进电机的转角。
4.通过键盘控制直流电机与步进电机的切换。5.设置并启动定时器。
6.设置中断,编写定时器中断服务程序,对中断次数进行计数并在LED上显示结果。
4.5 实验设计与实验步骤
1.添加并打开工程。
2.进行直流电机初始化设置和代码编写。3.进行步进电机初始化设置和代码编写。
4.对Timer3编程,编写定时器中断服务程序,完成对中断次数的计数。5.编写LED计数显示函数,使LED能正确计数并显示0-9999。6.编写中断初始化函数和中断响应函数。7.终端下载测试。
4.6 实验过程与分析 1.对直流电机进行编程和测试,掌握转速和旋转方向的设定方法。
2.对步进电机进行编程和测试,掌握ARM的四路I/O通道,实现环形脉冲分配用于控制步进电机的转动,通过A/D旋钮控制步进电机的转角。
3.对主函数进行编程,用键盘响应直流电机与步进电机的切换控制。
4.掌握中断相关语句的应用,弄清定义的中断向量、中断向量号,编写中断响应函数,并完成中断响应控制。
4.7 实验结果总结
实现了直流电机与步进电机的基本设置和控制,可以通过键盘控制电机之间的切换。完成了中断的响应和定时中断。当对其中一个旋钮转动时,就可以由直流电机转换成步进电机的转换,达到实验的效果。
4.8 心得体会
通过本次实验,我了解了直流电机和步进电机的工作原理,同时也知晓了电机间的转换过程,了解其中的道理内涵,熟悉了ARM自带的A/D转换器的工作原理及编程方法,了解了中断的意义和实现方法,实现了简单了中断处理程序。同时我也收获了很多关于ARM处理机的相关知识。
5.实验五
5.1 实验名称
触摸屏驱动实验
5.2 实验目的
1.了解触摸屏的基本概念与原理。
2.理解触摸屏与LCD的关系。3.编程实现对触摸屏的控制。
4.熟悉用 ARM 内置的 LCD控制器驱动 LCD。
5.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
5.4 实验内容及要求
1.了解触摸屏基本原理,理解对触摸屏进行输出标定、与LCD显示器配合的过程。2.通过编程实现触摸两点自动在两点间划直线。3.通过编程实现在触摸屏上动态画出曲线。5.5 实验设计与实验步骤
1.添加并打开工程。
2.在头文件中定义宏和常量及驱动函数。
#define ADS7843_CTRL_START 0x80 #define ADS7843_GET_X 0x50 #define ADS7843_GET_Y 0x10 #define ADS7843_CTRL_12MODE 0x0 #define ADS7843_CTRL_8MODE 0x8 #define ADS7843_CTRL_SER 0x4 #define ADS7843_CTRL_DFR 0x0 #define ADS7843_CTRL_DISPWD 0x3 // Disable power down #define ADS7843_CTRL_ENPWD 0x0 // enable power down #define ADS7843_PIN_CS(1<<6)//GPF6 #define ADS7843_PIN_PEN(1<<5)//GPG5 /////////触摸屏动作//////// #define TCHSCR_ACTION_NULL 0 #define TCHSCR_ACTION_CLICK 1 //触摸屏单击 #define TCHSCR_ACTION_DBCLICK 2 //触摸屏双击 #define TCHSCR_ACTION_DOWN 3 //触摸屏按下 #define TCHSCR_ACTION_UP 4 //触摸屏抬起 #define TCHSCR_ACTION_MOVE 5 //触摸屏移动
#define TCHSCR_IsPenNotDown()(rPDATG&ADS7843_PIN_PEN)(ADS7843_CTRL_START|ADS7843_GET_X|ADS7843_CTRL_12MODE |ADS7843_CTRL_DFR|ADS7843_CTRL_ENPWD)//采样x 轴电压值,数据为12 位,参考电压输入模式为差分模式,允许省电模式
#defineADS7843_CMD_Y(ADS7843_CTRL_START|ADS7843_GET_Y|ADS7843_CTRL_12MODE |ADS7843_CTRL_DFR|ADS7843_CTRL_ENPWD)int TchScr_Xmax=1840,TchScr_Xmin=176, TchScr_Ymax=195,TchScr_Ymin=1910;//触摸屏返回电压值范围 #defineADS7843_CMD_X 3.校准触摸屏坐标,进行坐标转换。
4.实现触屏取点并显示功能。
将触摸动作及触摸点坐标在超级终端上显示出来。5.实现两点间自动划线功能。6.实现触摸屏动态划线功能。
可以使用TchScr_GetScrXY()函数(第三个参数为0)来获得液晶屏的x、y 方向的电压
范围,分别点触摸屏有效面积的左上角和右下角,得到下列参数:
TchScr_Xmax=1840;TchScr_Xmin=176;TchScr_Ymax=195;TchScr_Ymin=1910;//此数值仅供参考,请以实际校对为准
5.6 实验过程与分析 1.在定义触屏响应功能的函数中对点击触屏进行响应函数的修改,在其中添加修改点颜色的函数,修改得到的触摸点的颜色,并显示在LCD上。
2.获取第一个点坐标并储存,获取第二个点坐标并储存,由编写的划线函数取得储存的两点间直线上所有点的坐标,并对其改变颜色,显示在LCD上,即完成划直线功能。
3.将划线函数应用到响应触屏移动消息的函数下,即可对连续获得的触摸坐标进行连续的画短直线,连接成曲线,完成动态划线功能。
5.7 实验结果总结
了解了触摸屏响应动作消息的函数的工作原理,通过修改实现了触摸屏响应不同动作进行画点、划线、动态划线的功能。验证触摸屏的灵敏度的实验。
5.8 心得体会
通过这次实验,我基本掌握了通过编程驱动触摸屏以及触摸屏响应时间,实现了触摸屏对不同动作消息的响应。同时也知晓了在触摸屏上的描点画线的实现,但是由于不知名的原因,描点画线的误差较大,位置偏差较大,同时触摸屏有时会不灵敏,出现时好时坏的现象,但是由于我们的辛勤钻研,最终克服了这个困难,实现了最后的触摸屏的实现。
6.实验六
6.1 实验名称
UCOS-Ⅱ在ARM微处理器上的裁剪
6.2 实验目的
1.了解UCOS-Ⅱ内核的主要结构。
2.掌握UCOS-Ⅱ裁剪的基本原理与嵌入式编程实现方法。3.学习如何根据具体情况对UCOS-Ⅱ操作系统进行裁剪。
4.通过对UCOS-Ⅱ配置文件(OS_CFG.H)中相关的配置常量进行设置,实现对UCOS-Ⅱ的裁剪。
6.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
6.4 实验内容及要求
对UCOS-Ⅱ内核进行裁剪并移植到ARM7微处理器上。
6.5 实验设计与实验步骤 1.按照要求,载入STARTUP目录下文件,完成系统初始化、环境配置。2.载入UCOS-Ⅱ的全部源码,与处理器架构相关的文件位于arch目录下。3.在os_cpu.h中编写与处理器和编译器相关的代码。
4.编写os_cpu_c.c等6个与操作系统相关的函数。5.编写os_cpu.asm等4个与处理器相关的函数。
6.6 实验过程与分析
按照实验步骤进行,得到了需要的系统。
6.7 实验结果总结
按照要求进行了裁剪,得到了满足需要又紧凑的应用软件系统。
6.8 心得体会
通过本次实验,我了解了UCOS-Ⅱ内核的主要结构,掌握UCOS-Ⅱ裁剪的基本原理与嵌入式编程实现方法,学会了如何根据具体情况对UCOS-Ⅱ操作系统进行裁剪。
7.实验七
7.1 实验名称
UCOS-Ⅱ在ARM微处理器上的移植和编译
7.2 实验目的
1.了解UCOS-Ⅱ内核的主要结构。
2.掌握将UCOS-Ⅱ内核移植到ARM7处理器上的基本方法。
7.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
7.4 实验内容及要求
1.将UCOS-Ⅱ内核进行移植到ARM7微处理器上。
2.编写两个简单任务,在超级终端上观察两个任务的切换。
7.5 实验设计与实验步骤
1.该实验的文件分为两类,其一是 STARTUP 目录下的系统初始化、配置等文件,其二是 UCOS-Ⅱ的全部源码,arch 目录下的 3 个文件是和处理器架构相关的。
2.设置 os_cpu.h 中与处理器和编译器相关的代码。
3.用 C 语言编写 6 个操作系统相关的函数(OS_CPU_C.C)。4.用汇编语言编写 4 个与处理器相关的函数(OS_CPU.ASM)。5.编写一个简单的多任务程序来测试一下移植是否成功。6.编译并下载移植后的 UCOS-Ⅱ。
7.6 实验过程与分析
1.按照实验步骤进行,将µC/OS-II 内核移植到了ARM7 微处理器上。2编写了两个简单任务,在超级终端上观察两个任务的切换。
7.7 实验结果总结
将µC/OS-II 内核顺利移植到了ARM7 微处理器上。
7.8 心得体会
通过本次实验,使我更加了解了µC/OS-II 内核的主要结构,掌握了ARM的C语言和汇编语言的编程方法,了解了ARM7处理器结构,掌握了将µC/OS-II 内核移植到ARM 7 处理器上的基本原理与嵌入式编程实现方法。
8.实验八
8.1 实验名称
综合实验
8.2 实验目的
对前七次实验进行总结,应用之前所学的知识,将前几次实验内容结合起来,完成键盘,LED,触摸屏,直流电机,步进电机各种功能的组合。实现一个较为全面的功能结构。
8.3 实验环境
硬件:ARM 嵌入式开发平台、用于ARM7TDMI 的JTAG 仿真器、PC 机Pentium100 以 上、串口线。
软件:PC 机操作系统win98、Win2000 或WinXP、ARM SDT 2.51 或ADS1.2 集成开发 环境、仿真器驱动程序、超级终端通讯程序。
8.4 实验内容及要求
对前七次实验进行总结,应用之前所学的知识,完成自拟的嵌入式系统,要求综合前期基础实验的各种功能。
8.5 实验设计与实验步骤
1.添加并打开工程。2.进行LCD设计,在LCD显示屏输出文本。
3.进行LED及键盘设计,完成LED输出显示功能和键盘输入功能。4.进行电机控制设计,完成键盘控制电机转动功能。5.进行中断设计,完成定时中断功能。
6.进行触摸屏设计,完成触摸屏感应和划线功能。7.进行裁剪和移植功能设计和完成。
8.6 实验过程与分析
1.完成LCD显示功能,在LCD显示屏上输出文本:“Hello World!”。2.进入界面触屏控制选择功能,实现触屏选择功能。
3.自定义四种种功能,第一为电机控制,从键盘读取命令,并将功能编号显示在LED上,LED显示的是计数的数据,同时旋转按钮完成电机转速的控制选择。
4.第三种功能为划线,功能编号显示在LED高四位上,同时LCD屏幕清屏,为划线功能做准备,可以实现划线功能。
5.第四种功能为定时中断,当由键盘控制时,LED显示数值清零,实现了中断。6.实现裁剪与移植功能。
8.7 实验结果总结
完成了各种基本功能,并通过自拟的系统将各种功能整合起来,完成了一个小的嵌入式系统,对前七次的功能有了更深入的了解。通过LED的计数,当在计数值在前30秒之内,由键盘控制LED的数值及显示,按键盘上的某一个按键,实现对LED上的数值清零,后30秒由触摸屏控制清零,并且在前30秒之内,旋转按钮,实现对直流电机的运转,并且到步进电机的转换。
8.8 心得体会
通过这次实验,我更加深刻地掌握了前几次实验中的基本功能的实现方法,并且把几种功能联合在一起,实现一些功能,把LED 显示屏,LCD触摸屏,键盘,直流电机,步进电机等等设备联合在一起,对该实验有一定的帮助与提高,而我和我的队友也对嵌入式系统有了更深入的了解,在此期间,也学习了关于ARM处理器的开发与实践,了解了关于手机的嵌入式设备的产生过程,我也深深的对此充满了兴趣,对未来的嵌入式课程设计奠定了深厚的基础,可是令我遗憾的是,我和队员的水平所限,没有完成中断优先级的控制。本来想完成更多的功能,可是最后由于时间紧迫,也有一些其他的事情来分神分心,所以就只能完成这些,但是在未来的几周内,嵌入式课程设计也给了我们很大的空间去做未完成的事情。我相信我们会做的更加完美,功能更强大,用于未来的生活中去实践。
第五篇:《嵌入式系统设计》教学大纲
《嵌入式系统设计》课程教学大纲
嵌入式系统设计(Design of Embedded Systems)
一、课程教学目的和基本要求
教学目的:
嵌入式系统技术已被广泛地应用于工业控制系统、信息家电、通信设备、医疗仪器、智能仪器仪表等众多领域。如手机、PDA、MP3、手持设备、智能电话、机顶盒等,可以说嵌入式系统无处不在。本课程讲述当前主流的嵌入式处理器—ARM的微处理器和实时操作系统µC/OS,介绍嵌入式系统的基本原理和应用及设计方法。通过本课程的学习,着重培养学生的实际动手能力,使学生掌握ARM的系统结构、指令系统、程序设计方法、系统扩展方法、应用及开发技术等。使学生在工作中具有利用嵌入式系统开发产品和解决实际问题的基本能力。
基本要求:
1、掌握嵌入式系统技术的基本原理。
2、了解并掌握ARM的系统结构、指令系统、程序设计方法、系统扩展方法、应用及开发技术等。
3、比较熟练地用ADS进行ARM实验箱的编程及调试。
4、了解并掌握实时操作系统µC/OS,并学会用µC/OS开发小型应用系统。
二、先修课程及本课程总学时
先修课程:C程序设计语言、单片机原理 本课程总学时:36
三、课程章节及各章节学时安排
第一章 嵌入式系统概述(2学时)
第二章 嵌入式系统硬件基础(2学时)
第三章 设计方法及ADS集成开发环境(4学时)
第一节 嵌入式系统的设计方法(2学时)第二节 ADS集成开发环境(2学时)第四章 ARM7体系结构(4学时)
第一节ARM7体系结构介绍(2学时)第二节ARM7TDMI(-S)指令集简介。(2学时)第五章 ARM指令集(8学时)
第一节 ARM处理器寻址方式。(2学时)第二节ARM指令集。(2学时)第三节ARM汇编程序设计。(2学时)第四节C与汇编混合编程。(2学时)第六章 硬件结构与功能(12学时)第一节 LPC2106/2105/2104结构(2学时)第二节 GPIO及引脚连接模块。(2学时)
第三节 UART0和UART1、I2C接口、SPI接口。(2学时)第四节 定时器0和定时器1。(2学时)第五节 脉宽调制器(PWM)。(2学时)
第六节 看门狗及Flash存储器系统和编程。(2学时)第七章 µC/0S-II程序设计(4学时)
第一节 µC/0S-II简介及移植(2学时)第二节 移植µC/0S-II。(2学时)
四、课程主要内容
第一章 嵌入式系统概述(2学时)
1、嵌入式系统简介(包括什么是嵌入式系统,嵌入式系统的特点,嵌入式系统的分类)。
2、嵌入式系统的应用领域。
3、嵌入式系统的现状和发展趋势。
4、嵌入式微处理器和嵌入式操作系统。
5、嵌入式系统中的一些重要概念。难点:什么是嵌入式系统。
第二章 嵌入式系统硬件基础(2学时)
1、嵌入式系统的总体结构。
2、与嵌入式系统相关的硬件知识。难点:总体结构。
第三章 设计方法及ADS集成开发环境(4学时)第一节 嵌入式系统的设计方法
包括嵌入式系统的设计流程,嵌入式系统的一般设计方法,嵌入式系统的硬件/软件协同设计技术。第二节 ADS集成开发环境
1、ADS 1.2 集成开发环境的组成
2、工程的编辑
3、工程的调试
4、仿真器的安装与应用 难点:调试、仿真器。
第四章 ARM7体系结构(4学时)第一节ARM7体系结构介绍
1、处理器模式。
2、内部寄存器。
3、程序状态寄存器。
4、异常。
第二节ARM7TDMI(-S)指令集简介。难点:异常。
第五章 ARM指令集(8学时)第一节 ARM处理器寻址方式。第二节ARM指令集。
第三节ARM汇编程序设计。第四节C与汇编混合编程。难点:ARM汇编程序设计。
第六章 硬件结构与功能(12学时)第一节 LPC2106/2105/2104结构
1、存储器寻址。
2、系统控制模块。
3、存储器加速模块。
4、向量中断控制器。
第二节 GPIO及引脚连接模块。
第三节 UART0和UART1、I2C接口、SPI接口。第四节 定时器0和定时器1。第五节 脉宽调制器(PWM)。
第六节 看门狗及Flash存储器系统和编程。
难点:存储器重新映射,编程实现功能部件的初始化和控制。本章实验:LPC2106/2105/2104功能部件基础实验。
第七章 µC/0S-II程序设计(4学时)第一节 µC/0S-II简介及移植
1、移植规则。
2、编写LPC2106/2105/2104的启动代码。第二节 移植µC/0S-II。难点:移植µC/0S-II。本章实验:学习移植µC/0S-II。
五、教材及主要参考书
教材:
《嵌入式系统设计与开发》,马文华,科学出版社,2006年
主要参考书:
[1] 田苗苗.嵌入式控制系统.北京航空航天大学出版社,2002年 [2] 吕 骏 译.嵌入式系统设计.电子工业出版社,2002年
[3] 周立功等.ARM微控制器基础与实战.北京航空航天大学出版社,2003年
[4] 李驹光等.ARM应用系统开发祥解.清华大学出版社,2003年
[5] 劭贝贝译.uCOS-II-源代码公开的实时嵌入式操作系统.中国电力出版社,2001年 [6] 田苗苗.嵌入式系统设计与实例开发.清华大学出版社,2002年 [7] 袁勤勇等译.嵌入式系统构件.机械工业出版社,2002年 [8] 田苗苗.《实用嵌入式系统设计与开发—基于ARM微处理器与μCOS-II实时操作系统》(第二版),清华大学出版社,2003.9 [9] 邵贝贝译.《源代码公开的实时嵌入式操作系统——μCOS-II》,北京航空航天大学出版社,2003年
六、其他需要说明的情况
1.采用多媒体教学。
2.实验课单列,每周2学时。
3.每周作业量2~3小时,主要针对基本概念、开发环境的操作和编程。
七、成绩评定
1.理论考核
占60% 2.实践考核
占40%(其中包括:实验、作业、课堂提问、学生自行设计制作的作品)。