第一篇:多功能天车打壳机的工作原理及常见故障(DOC)
多功能天车打壳机的工作原理及常见故障分析
摘要:为了降低电解多功能天车打壳机头的故障率,全面了解造成打壳机故障的原因,通过对多功能天车打壳机头的振动原理进行了阐述,并对其常见的几种故障进行了分析,有效的提升维修质量,从而降低对电解生产的延误。
关键词:打壳机头;振动原理;故障分析; 引言
电解多功能天车(PTM)是大型预培电解槽专用的关键工艺加工作业设备,其用于铝电解生产的换极、出铝、抬母线、打壳、添加氧化铝、覆盖阳极及厂房内设备检修、安装的物品吊运等工作。在电解铝生产中,自焙电解槽中电解质的表面会凝固一层妨碍下料和熄灭阳极效应的硬壳,必须定时将其打掉,才能保持生产的正常进行。多功能天车打壳机被运用于此,完成电解换极作业时的壳面打洞作业,打壳机头是其中的一个关键部件,其使用频率高,维护保养难以跟上,使得故障率较高。而在实际工作中,许多维修工对其振动原理不甚了解,不能很好的对故障原因进行判断,这既延误生产的正常进行又加大备件的消耗。本文通过对打壳机头的振动原理进行阐述,并对其常见的几种故障进行分析,以促进维修工作质量的提高。1 打壳机结构特点及工作参数分析 1.1 结构特点
如图1 所示,四连杆式打壳装置包括固定机架
图1 四连杆打壳示意图
1、机架
2、倾斜油缸
3、上连杆
4、下连杆
5、打壳机
四连杆打壳机构的固定机架安装在工具小车的回转装置上,活动框架设置在固定机架上,连接架的上端通过螺栓与活动框架下端相连接,连接架的下端通过销轴与上、下连杆的后端相连接,上、下连杆的前端与打壳机相连接,连接架上设置有升降液压缸和倾斜液压缸,升降液压缸通过缸筒轴与固定机架相连接,倾斜液压缸的活塞杆通过销轴与下连杆相连接。固定机架在升降液压缸与倾斜液压缸之间,使打壳机构整体重心位于固定机架中心;连接架的下端连接上、下连杆的2个销轴均位于固定机架下方。1.2 工作参数分析
四连杆打壳机工作特点,打壳机头高频打击,每分钟打击铝硬壳1200 次,即打击频率为20Hz;打击功率为110 J,打击行程26 mm,打击气压为0.4 ~0.8 MPa。据此分析,打壳机的工作力并不是很大,静力不足于把四连杆机构、打壳机构及固定架座等损坏。1.3 打壳机头简介
打壳机头主要由配气机构、气缸、活塞及缓冲块、锤头等组成。配气机构由上盖、阀体、阀片及挡板组成。1.4 打壳机振动原理
打壳机头的振动主要是利用其配气机构对压缩空气流向的改变使得活塞上下高速往复运动形成的。配气机构工作的好坏,直接影响打壳机头振动的好坏。先就配气机构如何工作进行介绍。图2为打壳机头结构示意图,图中虚线为活塞上升位置。打壳机头开始工作时,压缩空气从上盖1的进风口a进入上盖内,这时阀片3(振动片)因重力作用落在挡板的气缸上腔进风口b上,靠平面密封将其关闭。压缩空气经上盖小孔e通过挡板进入气缸f孔,f孔直通气缸下缸,此时气缸下腔由活塞、中间套、缓冲块形成一个密闭区间。孔d被活塞封住,气缸上腔通过孔c排空。
图2 打壳机头结构示意图
1-上盖 2-阀体 3-阀片 4-挡板 5-气缸 6-活塞 7-缓冲块 8-中间套 9-锤头
活塞在压缩空气的推动下向上运动,当活塞上升至c孔位置时,上腔形成密闭空间,随着活塞继续上升,上腔内气压不断上升。当活塞通过d孔时,从e孔进入下腔的压缩空气通过d孔一部分向外排空,一部分向下吹向缓冲块、锤头,防止料灰进入气缸。这时阀片3在上腔压力作用下向上运动,打开b孔,关闭e孔,于是压缩空气进入气缸上腔,活塞向下运动。当活塞通过c孔时,上腔排空,活塞在惯性作用下高速冲击缓冲块,缓冲块再将冲击功传递给锤头,作用在壳面上。同时阀片在下腔气流及重力作用下向下运动,关闭b孔,开启e孔。压缩空气从e孔进入气缸下腔,活塞新一轮往复运动开始。当压缩空气不断从a孔进入打壳机头中时,活塞在气缸中不断上下往复运动,冲击缓冲块,于是便形成了振动。这就是打壳机头的振动原理。2 常见故障分析
2.1 打壳机四连杆断裂变形
打壳机裂纹主要出在四连杆的上连杆拐弯处,裂纹使马蹄螺丝、打壳升降液压缸、机头座子及固定架等受到破坏,打壳机震动缸伸缩间距过小,不能完成震动作业,打壳机是在高频下工作,打击力并不大。根据四连杆机构销轴铰链联接的特点,可能是由于高频下共振导 致零部件损坏。根据四连杆的工作特点及倾斜液压缸的工作范围,在四连杆拐弯处附近设置一加强筋板,以提高拐弯处的水平弯折共振频率,加强筋板的实际形状根据四连杆振形特点及倾斜液压缸工作空间设计,焊接在连杆厚度的中心位置,加强筋板的厚度由实际工作情况及分析所决定,厚度为12 mm。2.2 打壳机头不振动
根据打壳机头机构及振动原理分析,配气机构故障最有可能造成打壳机头不振动,尤其是阀片由于其在压缩气的作用下长期高频振动,难免会因材料及制造原因产生破损,不能正常工作。在实际维修中,也经常发现阀片碎裂现象。另外,挡板承受着阀片高频冲击,也常因材料、强度问题产生磨损,使得阀片无法关闭b孔,造成不能振动。这时需要对损坏零件进行更换。第三,由于打壳机头上盖、挡板及气缸导向套之间靠两根螺杆压紧密封,如果螺杆松动或者配合面中夹有杂物使得各零部件密封不正常,压缩空气从配合缝隙中逸出,也会造成不能振动。检查时应将手置于上盖、挡板、气缸配合面处感应是否有泄漏,若有则检查螺杆是否松动,或者打开上盖,清除异物。第四,在现场中,由于环境原因,难免会有灰尘、异物进入打壳机头。如果灰尘或异物堵住小孔造成下腔进气不畅,也会产生振动故障,这时必须对各通气孔进行清理。第五,在实际工作中,打壳机头使用频繁而且高温作业,所以难以保证对其及时润滑,加上灰尘侵入,有可能造成活塞卡死,此时应打开气缸对其清洗,同时检查气缸内壁是否有划痕,严重的应更换气缸。2.3 振动时断时续
这种故障主要表现为打壳头时而振动完好,时而不能振动。因此,分析其主要问题出现在配气机构上。在日常维修中发现挡板孔周围压痕不均匀,这说明阀片不能正常地均匀地压在孔上将孔关闭。由于阀片同挡板上b孔相对位置发生变化,使得阀片时而对b孔关闭正常,时而不能正常关闭,造成振动时断时续。要排除这种故障,必须弄清楚阀片位置发生移动的原因。在打壳机头结构中,上盖、挡板及气缸之间靠短销定位,阀片由阀体定位,阀体镶嵌在上盖中,因此,阀片的位置是由上盖确定的。当上盖与挡板之间相对位置发生改变时,阀片与b孔相对位置必然改变。所以,应检查定位短销是否磨损严重,若磨损严重则对其进行更换。此外,在实际工作中由于阀片与挡板接触面较小,为b孔周围2mm宽的圆环。在阀片打击下,b孔边缘常会打下一凹槽,使得阀片不能正常关闭b孔。因此考虑对挡板b 孔的原有设计进行一些改进,例如将b孔内径由原来¢49.5缩小到¢45,这样既加大阀片与挡板的接触面积,减少对挡板表面的冲击压强,又能补偿定位短销磨损造成的阀片偏移,同时又不影响气缸上腔进气。保证了打壳机头在不利情况下的正常工作。2.4 振动无力
在实际工作中,还会出现另外一种情况:打壳时振动正常,却不能正常打下壳面,即振动无力。对于这种情况应首先考虑打壳机头工作压力是否足够。检查空气压缩机供气压力大小,检查管路是否有泄漏,并根据情况进行处理。第二,小孔e堵住,气缸下腔通气不畅,活塞上升速度慢,或者气缸上、下腔排空孔堵塞,活塞下降受到影响,造成活塞振动慢,活塞冲击力小。这时应打开气缸清理气缸中通风孔使之畅通。第三,活塞与气缸磨损严重,间隙大,密封不严,也会造成活塞振动慢,活塞冲击力小。检查活塞与气缸间隙,必要时更换活塞或气缸。第四,在维修中经常发现缓冲块由于材料或制造缺陷发生碎裂现象,这会使活塞冲击力不能完全传递给锤头,使得无法打碎壳面,造成打壳无力。对于这种情况只要更换缓冲块就行了。3 结束语
以上就是打壳机头振动原理及其常见故障的原因分析和排除方法。故障的发生不仅会影响生产,还会加剧备件的损耗。因此,日常保养尤其是润滑工作一定要跟上,才能减少故障发生的频率;同时维修故障的前提是要弄明白其原理,正确分析和判断其发生原因,才能迅速消除故障,保障生产的顺利进行。
参考文献:
[1]张来斌,机械设备故障诊断技术及方法,石油工业出版社2000.04.[2]丘竹贤,预焙槽炼铝(第三版),北京:冶金工业出版社,2005.06.[3] 张质文,虞和谦,王金诺,等.起重机设计手册[M].中国铁道出版社,1998.[4] 丁科,陈月顺.有限单元法[M].北京大学出版社,2006.[5] 何定源,顾洪枢.打壳机工作机构的设计[J].有色金属(冶炼部分)2002(3).[6] 石瑞伟.机械动力学[M].中国电力出版社,2007.
第二篇:多功能天车液压系统工作原理
多功能天车液压系统工作原理
1、系统供油及起动
系统由闭式等压油箱给双联液压泵供油。主泵具有流量补偿和压力补偿功能,压力分别由流量分配块和压力分配块换向阀确定。系统液压油经流量分配块导出提供给各执行机构,主泵工作压力21Mpa,副泵出口通向工具回转台回路,换向阀压差有工具回转供油系统液压阀确定,设定压力为12 MPa,副泵工作压力为16 MPa。
2、阳极板手油缸动作(参考电磁阀动作程序表)
a、慢速下降:压力块中换向阀24的YVIP、阀25的YV3P得电,流量块YV12g得电,主回路液压油经换向阀52(双阳极动作时还要经过分流集流阀53到换向阀32的1(2)— YV14 n得电,此时流量3升/分,压力为3 MPa。
b、快速下降:压力块中换向阀24的YVIP、YV3P得电,流量块11的YV8g和YV12g得电,此时流量35升/分,压力为3 MPa,主回路液压油经换向阀32以Y方式与油缸相连接,活塞高速下降,主活塞杆下限为开关转为低速下降。
c、快速上升(中力):换向阀24的YVIP,换向阀25的YV5P得电,阀21的YV8g,YV9g得电,阀32的1(2)— YV13 n得电,活塞高速升至上限位开关,转为低速上升。此时压力为10 MPa。d、慢速上升(中力):换向阀24的YVIP,换向阀25的YV5P得电,阀21的YV9g和阀32的1(2)— YV13 n得电,此时压力为10 MPa,流量38升/分。
e、慢速上升(小力):换向阀24的YVIP,换向阀25的YV4P得电,阀21的YV9g,阀32的1(2)— YV13 n得电,此时压力为5MPa,流量9升/分。
f、慢速上升(大力):换向阀24的YVIP,阀21的YV9g,阀32的1(2)— YV13 n得电,此时压力为21MPa,流量6升/分。说明:2#板手电磁阀动作于1#板手相同,如双阳极同时工作,阀52的1YV30和2YV30均得电,如单独工作1YV30和2YV30均不得电。
3、阳极板手旋转
a、松开卡具(液压马达逆时针反转):阀24的YV2P,阀21的YV7g,阀35的1(2)— YV18 n得电,此时压力7.5 MPa,流量为24升/分。
b、扭紧卡具(液压马达顺时针正传):阀24的YV2P,阀21的YV7g,阀35的1(2)— YV19 n得电,此时压力7.5 MPa,流量为24升/分。2#阳极板手动作为1#基本相同。
4、阳极板手升降
a、扳手下降:阀24的YV1P,阀21的YV7g,阀37的1(2)— YV16 n得电,此时压力3.5 MPa,流量为24升/分。b、扳手上升:阀24的YV1P,阀25的YV3P,阀21的YV11g得电,此时压力3 MPa,流量为16升/分。
5、阳极夹具开启:阀24的YV1P,阀25的YV3P,阀21的YV-12g,阀47的1(2)— YV17 n得电,此时压力3 MPa,流量3升/分。
6、打壳机构油缸动作
a、慢速下降:阀24的YV1P,阀25的YV5P,阀21的YV9g,阀32的YV21 d得电,此时压力10 MPa,流量为6升/分。b、快速下降:阀24的YV1P,阀25的YV5P,阀21的YV8g,阀21的YV9g,阀32的YV21 d得电,此时压力10 MPa,流量为38升/分。
c、慢速上升:阀24的YV2P,阀21的YV5P,阀21的YV9g,阀32的YV20 d得电,此时压力7.5 MPa,流量为6升/分。d、快速上升:阀24的YV2P,阀21的YV8g,阀21的YV9g,阀32的YV20d得电,此时压力7.5MPa,流量为38升/分。
7、打壳倾斜
a、打壳倾斜下降:阀24的YV1P,阀25的YV4P,阀21的YV7g,阀35的YV23 d得电,此时压力5 MPa,流量为24升/分。b、打壳倾斜上升:阀24的YV1P,阀25的YV4P,阀21的YV11g,阀35的YV22 d得电,此时压力5 MPa,流量为16升/分。
多功能天车主要液压元件的功能
一、电磁换向阀(21.24.25.29.32.35.37.47.52)
电磁阀29.32.35.37均为三位四通电磁换向阀,其中29电磁铁不得电时,四个油口互通,马达不动,油泵卸荷,32.35.37中位机能位y型,电磁铁不得电时,油路中剩余油液回油箱。
二、分流集流阀(53)
53的作用是按照一定的流量比例同时向两个液压缸或液压马达供油(分流),或接受回油(集流)。为了使流量不致受负载压力变化的影响,分流集流阀具有压力补偿的功能。
三、板式平衡阀(33)
33是顺序阀和单向阀组合成作为背压阀来防止负载因自重而造成失控下落。
四、双管式平衡阀(30)
当马达需要锁定时,进油分支无压力油作用,两分支的单向阀逆向截止液压油回流。此时,马达保持停止位置不动。
五、液控单向阀(38)
通常情况下,作用与普通单向阀相同,顺向导通,反向截至。当需要允许反向流动时,接通控制油路,液压可以反向流动。
第三篇:NOELL多功能天车空调系统常见故障分析(本站推荐)
NOELL电解多功能天车空调系统常见故障分析
摘要:NOELL电解多功能天车自1997年投入一系列使用以来,以其稳定的性能和优良的制造质量赢得了较好声誉,并在四系列进一步得到推广应用,其操作室的空调系统是改善操作者作业条件的有力措施之一。本人自1997年以来一直操作NOELL天车,通过长期的维护实践,对其空调器的常见故障有了一定的了解,现简要叙述如下。
关键词:空调器、工作原理、常见故障
前言
多功能天车是铝电解工业的关键设备,电解工艺生产流程中的打壳、加料、换极、出铝等作业均须依靠人工操作天车来完成。由于电解工艺特性使然,电解厂房内温度高,工作时位于电解槽上方的天车始终处于高温烟气环境,夏天尤甚,若驾驶室无空调制冷系统则不利于天车操作人员长时间工作,降低工作效率,甚至可能会酿成人身或设备安全事故的发生。NOELL多功能天车为此配有空调器,使操作人员在恶劣的环境条件下获得一个较为舒适的操作环境。
1空调器基本结构和原理
空调器的基本结构和工作原理如图1所示。
***
图1 空调器基本结构示意图
1、空气过滤器
2、压缩机
3、压力开关
4、压缩机电机
5、脱水器
6、储液罐
7、冷凝器
8、散热器
9、吹风扇
10、电磁阀
11、膨胀阀
12、蒸发器
1.1
结构。空调器为一体式,所有部件均安装在一箱形壳体内,但分为两个腔,压缩、冷凝、储液在上腔,蒸发、膨胀阀在下腔。两腔仅有管道连通,中间有隔热层,避免制冷效率降低。
1.2工作原理。我们知道,当液体蒸发为气体时,具有吸收周围物体热量的“蒸发吸热”性质,空调制冷原理就是这一性质的应用。为了环保要求,NOELL多功能天车空调器采用了无氟制冷剂——R134a,制冷过程如下:
a、压缩机将经过压缩的高温高压制冷剂气体送入冷凝器中;
b、进入冷凝器的制冷剂气体被冷却,变成液体,并贮存于储液罐中;
c、制冷剂液体经过膨胀阀毛细管,节流降压成易于蒸发的液体进入蒸发器;
d、进入蒸发器的低温低压制冷剂液体,吸取周围空气中的热量变成气体,再进入压缩机。
以上四个过程如此不断循环反复,即达到制冷之目的。空调器常见故障及处理方法
多功能天车投入使用以来,空调器也多次出现各种故障,冬季犹可,但在炎热的夏季,驾驶室内酷热难当,给天车操作人员带来不利影响。通过日常的空调器维修实践经验,现对其常见故障作出分析并给出处理方法供参考。
2.1 空调器缺制冷剂
空调器缺制冷剂是空调器普遍存在的一种故障,其原因是空调管路系统存在泄漏引起的。制冷剂的缺少将导致不制冷或制冷量不足。可以从以下几个方面来判断系统缺制冷剂:
a、蒸发器结露或结霜面积过小。其原因是由于制冷剂不足,仅仅使部分蒸发器发生了沸腾吸热,使制冷面积相应减少,进出风口温差小。
b、管路表面有油污。有油污则表明有泄漏。其原因是制冷剂与冷冻油有一定的互溶性,制冷剂从漏点逸出后进人大气中,而油则附在漏点周围。
c、驾驶室外排水软管排水断断续续或根本不排水。其原因是蒸发器制冷面积减少,结露面积也减少,凝结水量降低。
d、利用压力表测量高压侧的压力,压力比正常时低。其原因是制冷剂不足,经压缩机压缩后的气体压力低。
针对空调器缺制冷剂,唯一的方法是找出泄漏点并治理,然后补足制冷剂。若是泄漏点不明显,可采用肥皂液涂沫法或浸水法来找出。据以往的维修经验,在蒸发器和毛细管焊接处以及管路接口(喇叭口)最容易出现泄漏。
2.2 空调器漏水
空调器漏水也是较为常见的一种故障,由于冷凝水会从吹风口直接被吹入驾驶室,与室内的电气设备接触,往往存在安全隐患,故需尽快处理。漏水的原因为底盘腐蚀、焊接缺陷等,水从腐蚀处或焊接缺陷处流出;也有可能是排水管堵塞,多余的水从底盘中溢出。处理方法是疏通排水管,或更换底盘。2.3 压缩机不能启动
不能启动的原因较多,可从电气和机械两方面入手。电气方面可能是配电盘端子松动,电气接点脏污,或过负荷继电器断开,电机短暂死机,高、低压开关断开等;机械方面可能是过滤器汽水分离器堵塞、膨胀阀堵塞故障等。可根据实际情况逐步判断,直到找出原因。若是电气故障可检查紧固端子,检查是否过流,重新调整压力开关;若机械方面则可更换故障元件。
2.4 压缩机低温或其表面有冷凝水
造成这种现象的原因可能是制冷剂液体没有在蒸发器完全蒸发而回流,或是循环的冷冻油太多。前一种情况可检查液体负荷和膨胀阀开度,加注制冷剂过量可能造成压缩机超负荷工作,降低其使用寿命;膨胀阀开度太大,会造成液击,损坏压缩机。后一种情况可排出过多的冷冻油,但冷冻油也不能过少,否则就会使压缩机因润滑不良过早磨损,甚至烧毁。
2.5 空调器噪声
空调器噪声有两种,一是压缩机有噪声,二是管路有啸叫声。前一种产生的原因可能是联接松动或不对准,固定螺栓或固定架松动,压缩机皮带张力过大或过小,压缩机和电机轴承裂损,可据实际情况紧固联接、调整皮带张力或者更换轴承。后一种啸声产生的原因是膨胀阀流量不足或者液体过滤器堵塞,处理方法是加注氟利昂或清洗过滤器。
空调器也发生过别的故障,如蒸发器破漏、风扇停转等,因不常见,不拟一一列出。结束语
由于从德国进口的NOELL天车原装空调器存在:价格昂贵,维修费用高,进口制冷剂较贵,运行费用高等缺点,因此,在使用过程中现在已经逐渐更换为国产的大金空调。但其原理大同小异,希望对实际维护有所帮助。
[参考文献] 1、NOELL多功能天车操作说明书。
第四篇:电动车充电器工作原理及常见故障维修
电动车充电器工作原理及常见故障维修
电动车如今已进入我们的生活,方便了我们的出行,而且还环保,正是我国目前提倡的“低碳生活”;但它的充电器故障率较高,很是一件令人头疼的事。出于这个缘故,根据本人多年的维修经验,写了这篇文章,希望对电子电器维修人员和广大的电子爱好者,提供维修资料,供维修参考用。为了方便说明,本文还是从原理开始说起。一.工作原理
我们目前用的电动车充电器大部分都是脉冲式充电器。就目前来说,以UC3842为主控芯片的充电器还是占绝大多数,当然也有不少是以TL494为主控芯片的充电器,对于采用这种芯片的充电器本文不做阐述(因这两种充电器的维修基本上是大同小异的)。这类充电器的原理与开关电源的原理是基本相同的220V的交流电经交流滤波电路滤除外来的杂波信号(同时也防止电源本身产生的高频杂波对电网的干扰),再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制控制器(UC3842)输出的脉冲控制信号驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可调的高频脉冲电压。把高频脉冲电压送给高频脉冲变压器,其次级就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波;最后输出一个很平滑的直流电,供给蓄电池充电。由于蓄电池刚开始充电时和充过一段时间后,蓄电池的容量和端电压均不一样,这就由充电器内部取样电路将取样信号通过光电耦合器(PC817)送入控制电路,经过脉宽调制芯片(UC3842)内部调制,由控制电路的输出端将变宽或变窄的驱动脉冲送到开关功率管的栅极,使变换电路产生的高频脉冲方波也随之变宽或变窄,使蓄电池的充电分别进入:恒流充电,恒压充电和浮充充电这三个充电阶段。
二.常见故障分析及维修
由于电动车充电器的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等;再就是脉宽调制控制器的反馈部分和保护部分。2.1保险丝熔断
一般情况下,保险丝熔断说明充电器的内部电路存在短路或过流的故障。由于充电器工作在高电压,大电流的状态下,直流滤波和振荡电路在高压状态工作时间太长,电压变化相对大。另外电网电压的波动,浪涌都会引起充电器内电流瞬间增大而使保险丝熔断。
维修方法:首先仔细查看电路板上面的各个元件,看这些元件的外表是否被烧糊或有电解液溢出,闻一闻有没有异味。再用万用表进行检查。首先测量一下电源输入端的电阻值,若小于200KΩ,则说明后端有局部短路现象,然后分别测量四只整流二极管正,反向电阻和两个限流电阻的阻值,看其有无短路或烧坏;然后再测量一下电源滤波电容是否能进行正常充放电,再就测量一下开关功率管是否击穿损坏,以及UC3842本身,及周围元件是否击穿,烧坏等。需要说明的一点是:因是在路测量,有可能会使测量结果有误,造成误判。因此必要时可把元器件焊下来再进行测量。如果仍然没有上述情况则测量一下输入电源线及输出电源线是否内部短路。一般情况下,熔断器熔断故障中,整流二极管,电源滤波电容,开关功率管,UC3842是易损件,损坏的概率可达95%以上,一般着重检查一下这些元器件,就可很容易排除此类故障。
2.2无直流电压输出或电压输出不稳定
如果保险丝是完好的,在有负载的情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路,短路现象;过压,过流保护电路出现故障;振荡电路没有工作;电源负载过重;高频整流滤波电路中整流二极管被击穿;滤波电容漏电等。
维修方法:首先,用万用表测量一下高频脉冲变压器次级的各个元器件是否有损坏。排除了高频整流二极管击穿、负载短路的情况后,再测量各输出端的直流电压,如果这时输出仍为零,则可以肯定是电源的控制电路出了故障。最后用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏。如果确实是相关的元件损坏,在更换好新元件后,开机测试,一般故障即可排除。需要说明的是:电源输出线断线或开焊、虚焊也会造成这种故障。在维修时应注意这种情况。
2.3无直流电压输出,但保险丝完好
这种现象说明充电器未工作,或者工作后进入了保护状态。
维修方法:首先应判断一下充电器的主控芯片UC3842是否处在工作状态或已经损坏。判断方法是这样的:加电测UC3842的第7脚对地电压,若测第8脚有+5V电压,1,2,4,6脚也有不同的电压,则说明电路已起振,UC3842基本正常;若7脚电压低,其余管脚无电压或不波动,则UC3842已损坏。UC3842芯片损坏最常见的是7脚对地击穿,6,7脚对地击穿和1,7脚对地击穿。如果这几只脚都未击穿,而充电器还是不能正常启动,则UC3842必坏,应直接更换。若判断芯片未坏,则着重检查开关功率管栅极的限流电阻是否开焊、虚焊或变值以及开关功率管本身是否性能不良。除此之外,电源输出线断线或接触不良也会造成这种故障。因此在维修时也应注意检查一下。
UC3842的各管脚功能及正常工作时的对地电位表 管脚号 功能 对地电位 1 误差放大器的输出端 2.5V左右 2 反馈电压输入端 2.51V左右 3 电流检测输入端 小于1V 4 定时端f=1.8/(RT×CT)2V左右 5 公共地端 0V 6 推挽输出端 15V(方波)7 电源端 15V 8 5V 基准电压输出端 5V
2.4有直流电压输出,但输出电压过高
这种故障往往是由稳压取样和稳压控制电路出现故障所致。在充电器中,直流输出、取样电阻、误差取样放大器、光耦合器、电源控制芯片等电路共同构成了一个闭合的控制环路,任何一处出问题都会导致输出电压升高。
维修方法:由于充电器中有过压保护电路,输出电压过高首先会使过压保护电路动作。因此对于这种故障的维修,我们可以断开过压保护电路,使过压保护电路不起作用,在这时,测量开机瞬间的电源主电压。如果测量值比正常值高出1V以上,说明输出电压过高。我们应着重检查取样电阻是否变值或损坏,精密基准电压源(TL431)或光耦合器(PC817)是否性能不良,变质或损坏;其中精密基准电压源(TL431)极易损坏,我们可用下述方法对精密稳压放大器作出好坏的判别:将TL431的参考端(Ref)与它的阴极(Cathode)相连,串10k的电阻,接入5V电压,若阳极(Anode)与阴极之间为2.5V,并且等待片刻还仍然为2.5V,则为好管,否则为坏管。
2.5有直流电压输出,但输出直流电压过低
对于这种故障现象,根据维修经验可知,除稳压控制电路会引起输出电压过低外,还有以下几点原因:(1)输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。
(2)开关功率管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。
(3)开关功率管的源极通常接一个阻值很小,但功率很大的电阻,作为过流保护检测电阻,该电阻的阻值一般在0.2欧到0.8欧之间。该电阻如变值或开焊,接触不良也会造成输出电压过低。
(4)高频脉冲变压器不良,不但造成输出电压下降,还会造成开关功率管激励不足从而屡损开关管。
(5)高压直流滤波电容不良,造成电源带负载能力差。
(6)电源输出线接触不良,有一定的接触电阻,造成输出电压过低。
(7)电网电压过低。虽然充电器在低压下仍然可以输出额定的充电电压,但当电网电压低于充电器的最低电压限定值时,也会使输出电压过低。
维修方法:对于这种故障我们可以根据以上故障原因,来逐一进行排查。但在实际维修时,可根据实际情况来进行排查,不一定要逐一排查。首先用万用表检查一下高压直流滤波电容是否变质,容量是否下降,能否正常充放电。如无以上现象,则测量一下开关功率管的栅极的限流电阻以及源极的过流保护检测电阻是否变值,变质或开焊,接触不良。经判别后,若无问题,再检查一下高频变压器的铁芯是否完好无损。除此之外还有可能就是输出滤波电容容量降低,甚至失容或开焊,虚接;电源输出限流电阻变值或虚接,电源输出线虚接等。在实际维修时,这些因素都不要放过,都应检查一下,以保证万无一失。2.6散热风扇不转
这种故障原因主要是控制风扇的三极管(一般为8550或8050)损坏,或者风扇本身损坏或风叶被杂物卡住。但有些充电器中采用的是智能散热,对于采用这种方式散热的充电器,热敏电阻损坏的概率是很大的。维修方法:首先用万用表测量一下控制风扇的三极管是否损坏,若测得此管未损坏那就有可能是风扇本身损坏。可以把风扇从电路板上拔下来,另外接上一个12V的直流电(注意正负极),看是否转动,并看有无异物卡住。若摆动几下风扇的电线,风扇就转动,则说明电线内部有断线或接头接触不良。若仍不转动,则风扇必坏。对于采用智能散热的充电器来说,除按上述检查外,还应检查一下热敏电阻是否不良或损坏,开焊等。但要注意此热敏电阻为负温度系数的热敏电阻,更换时应注意。三.检修实例
实例一.YG-WY-H型电动三轮车智能充电器有电压输出,但充不进去电
根据此故障现象,初步判断电源输入整流电路部分可能有故障,也有可能是输出电源插头与充电插座接触不良所致。用十字旋具将充电器的四颗紧固螺钉拆下,打开上盖。首先看到输入整流电路中的电源滤波电容已炸裂,漏液(C5 82Uf/400V)。然后用万用表的“RX1”欧档测量一下输出电源插头和充电插座,发现阻值很小,几乎为0欧,这说明它们接触良好。为了万无一失,再用万用表测量其它易损坏的元件及充电保险,经测量均未损坏。最后换上一个与原来电压(耐压可大于原来的值,但绝对不能小于原来的值)和容量相同的电解电容(82uf/400V),焊好,插上电源插头和充电插头。经数小时的充电,充电器上的“充满”指示灯亮,表明蓄电池已充满,故障排除。部分电路图及故障点见图1所示:
第五篇:家用燃气热水器基本工作原理及常见故障判断(模版)
家用燃气热水器基本工作原理及常见故障判断
家用燃气热水器基本工作原理及常见故障判断
城市家庭大多数都使用燃气热水器。了解燃气热水器的基本工作原理以及常见故障判断方面的知识,会给家庭生活带来许多方便。
家用燃气热水器尽管生产厂家众多,品牌型号繁多,还有石油气与管道煤气之分,但基本工作原理都是一样的。平时打开热水笼头或淋浴器开关,水便从自来水管进入热水器内部,流经加热铜管被加热,然后流出,就得到热水了。由于燃气泄漏是很危险的事情,所以热水器对煤气的控制有两个闸门,一个是水控阀门,一个是电磁阀。有足够压力的水从内部的水管流过时,水压便会推动一个横杆,顶开水控阀门,煤气就可以通过第一道关卡。横杆同时还会打开打火器的水控电源总开关,打火器得电工作,开始打火,同时打开电磁阀。电磁阀也打开了,煤气就可以通过第二道关卡进入燃烧盘,遇到火花燃烧,开始烧水。以上是基本的启动过程。平时最常见的故障是不燃烧。碰到这个问题时可以按照以下思路去推断:
如果水压正常,但热水笼头或淋浴器水压异常,有可能是热水笼头或淋浴器脏堵,清理一下恢复正常水压即可。
如果出水口水压正常,就看打不打火。如果听不到打火的声音,先看电池是否接触不良或者没有电,电池没有问题的话,多数是水控电源总开关接触不良。打开热水器外壳,很容易看到装在热水器下部的水控电源总开关,黑色塑料的,右侧面还有一片小铁片压着一个小触点,压着是关,松开是开。可以用指甲往右掰小铁片,人为松开开关,正常的话就会立即打火,如果没有打火,多数是该开关坏,这一开关的损坏率很高。这一开关价格不贵,买一个换上即可。
如果是听到打火声,就要看是燃烧一下就熄灭,还是一点动静也没有。如果是前者,说明电磁阀打开了一下,然后又关起来,靠近热水器一般都可以听到电磁阀打开的很小的“笃”声。如果是后者一般是电磁阀根本没有打开,多数是打火器坏了,换一个即可,电磁阀一般不会损坏,也就是损坏率低。但是由于劣质热水器使用劣质材料做电磁阀拉杆,容易生锈,产生拉杆运动不畅,致使电磁阀无法打开,不过可以拆开刮锈放摩托车机油,滑动滑动就可以恢复正常。燃烧一下就熄灭说明打火器能够正常工作一下子。出现这种现象与打火器的节能设计有关。学过电工学的人就会知道,电磁铁启动的时候需要较大的电流,启动后只要较小的维持电流即可。打火器控制电磁阀的打开就有两个路电流,而电磁阀也是有两组工作线圈的。刚启动时一般是两路都有电流流出,这样能够让电磁阀顺利打开,打开后就不需要这么大的电流了,就把叫做启动电路的那路关掉。启动电流一般较大,单独就可以启动电磁阀。讲到这里大家就应明白了燃烧一下就熄灭应该是维持电流有问题。维持电路异常要么是电池电压太低,要么是打火器有问题,换一个。市场上一些抵挡的燃气热水器经常会出现这一故障。如果你有电器维修的本领,也可以自己维修打火器。
如果碰到开水后燃烧正常,同时打火指示灯亮,但打火不断,然后过十秒种左右打火停止,同时停止燃烧。一般是打火器的燃烧检测回路有问题,多数是探针与导线接触不好。打火器为了防止煤气进入燃烧器后没有燃烧溢出造成危害,在燃烧器旁边除了有两个打火针外,还有一个燃烧检测探针。这一探针并不是什么特别材料做成的,而是利用火焰与燃烧器连接,破坏打火器内部高压振荡器的振荡条件,起到火起便停止打火的作用,可以节能,同时让维持电流一直输出维持电磁阀打开。如果不起火,内部振荡器定时时间到,停止打火,并且关闭电磁阀