第一篇:植物保护生物技术课程感想
植物保护生物技术课程感想
经过了一个学期的学习,我对植物保护生物技术课程有了一定的了解与感想。我认为现代生物技术的发展,为从根本上保护植物,解决环境问题提供了无限的希望。现代生物技术的广泛应用必将大大提高植物的生产水平与技术水平加速我国农业现代胡的进程,利用植物生物技术能够选育和培育出各种抗病虫害的心得植物品种,用植物生物技术能够选育和培育出各种抗病虫害的新的植物品种,同时生物技术对植物病毒和病源进行了快捷而有效的诊断,基因工程农药的使用免除了病虫的危害,也有效的避免了过度使用有机农药产生的恶果。因此,充分利用各种生物技术,能够有效的起到植物保护作用,从而保护了物种的多样性,保护了生态环境,实现了人与自然的可持续发展。
随着科学技术的快速更新,生物技术已经被广泛地应用于植物保护方面。21世纪,生物技术将成为植物保护的主流技术之一,生物技术的运用极大地促进了植物的保护,生物技术的发展,对植物保护产生了革命性的影响。利用生物技术可分离出生物的某一基因,然后转移到另一生物体内,同一基因在这里自我复制,从而产生更强壮、更适应环境的新品种。一批抗虫、抗病、耐除草剂和高产优质的农作物新品种培育成功。植物生物技术不仅从根本上改变了传统农作物的培育和种植,也为农业生产带来了新一轮的革命。植物生物技术涉及细胞、原生质体和组织培养以及基因重组技术,在提高作物产量、珍稀植物的快速繁殖、生产人工种子、创造植物新类型、改良品种 品质和增强植物抗逆性等方面有着广阔的应用前景。
人类自懂得驯化和栽培植物,新品种的选育和良种繁育就一直是维持稳定地发展农业的一个重要方面。在这里常规选育周期长、工作量大,特别是存在提高产量。改良品质和增强抗逆性等难以兼得的问题,在增强抗逆性方面常常难以寻找到用之有效的抗源。植物生物技术的发展和应用对传统的育种工作无疑使提供了新的行之有效的手段,不仅能加速育种的进程,克服常规育种中的种种困难,更 的是它大大拓宽了对有益种质资源的利用。
由此可以看出,生物技术对植物保护的重要意义以及发展的空间,生物技术的发展空间还很大,我记得大二时上的植物组织培养实验课上,我们亲手完成植物组织培养并观察到植物部分组织的生长时同学们都很惊讶。生物技术的各个领域对农业的高产、品种的改良等目标的实现越来越近,将农业带上了一个新的高度空间。所以,上了这门课我受益匪浅,拓宽了我的专业知识和看待农业的眼界,在以后的学习中我会学以致用将所学的联系结合起来运用。
植物保护102班
王凤娇 103133229
第二篇:生物技术导论感想
生物技术导论感想
一学期的生物技术导论课结束了,我也有了许多感想与收获。这一路上虽然没有什么波折与激动,但宋老师的幽默、博学,杨老师的认真都给我留下了深刻的印象。在他们的教导下,我也受益良多。
我主修的专业是药学,这门课是交叉学科,与生物有着颇多的联系,尤其是与生物技术导论这门课更是关系密切,所以我选择了生物技术导论。其实,还有一个重要的原因。时光追溯到选课的时候,在认真的“研究”过结课方式之后,我选择了生物技术导论这门课。我承认,正是因为这门课是开卷考试,所以我才选了这门课。因为专业课比较多,所以我希望能有一个相对轻松有能对自己有所帮助的E类课。令我喜出望外的是,宋老师的课刚好符合我的要求。第一次听宋老师的课时,宋老师幽默风趣的上课风格就吸引了我,而且课上介绍的许多知识和生活经历都让我大涨见识。比如说:宋老师经常提到自己在日本留学时的经历,这也让我对日本有了新的了解,日本药学十分的发达,我以后如果要出国留学,日本也许是个很好的选择。
经过了一学期的学习,我对生物这门学科有了全新的认识。5月17号是生科院开放日,我到思源堂参观了生物解剖室和“显微镜室”,看到那一个个骨的标本,可真是又熟悉又纠结,上课学期解剖课上背的骨头到现在都还感到心有余悸。说到生物,很多人一下就会联想到解剖什么的,其实生物不止有解剖还有基因以及微生物技术,微小的微生物更有着巨大的作用。
生物技术与药学有着密不可分的关系,药是人吃的,那么药物在人体中的代谢过程就现代尤为重要。药学研究的一个重要的课题就是药物的吸收率,我们需要对人体各个器官的受体充分了解,这样才可以通过调整官能团来促进药物快速准确的运输到病变细胞。除此之外,我们也需要考虑药物对人体的副作用。所以在生产新药的过程中,需要进行复杂的临床实验来把药物对人体的伤害降到最小。
生物技术中的基因技术对现代制药有着卓越的贡献。在21世纪的第一年,科学家们完成了人类基因的测序。这一成生物技术产业发展影响将是难以估量的。在探索人类基因的奥秘过程,发现一些新的药物,成为生物技术关注的热点。2001年5月,FDA批准诺华公司开发的Gleevec上市,这是一种治疗慢性白血病的良药。这是依据癌细胞活动机理而设计开发的第一种抗癌新药。传统抗癌药在治疗过程中,同时会影响到正常细胞,对病人产生很大的副作用,而Gleevec仅杀灭基因变异的癌细胞。最新研究表明,Gleevec对血液癌症和肿瘤都有效,它可能成为一种广谱的抗癌新药。治疗癌症的另外一类生物技术药是单克隆抗体。这类抗体的目标是与癌细胞有关一些特定分子。自1980年以来,单克隆抗体魔术般的效果引起众多医药公司的关注。经过十多年的研究,单克隆抗体作为抗癌新药初步得以实现。目前,很多药厂正在开发单克隆抗体,其应用从抗癌扩展到其它疾病治疗方面,到2000年,FDA批准了9个单克隆抗体,另外60多个产品正在进行临床试验。在抗癌方面,单克隆抗体的作用如同人体自身免疫系统,但大多数情况下,人体自身免疫系统不会将癌细胞作为有害细胞而进行阻止,使癌细胞在体内繁殖,危害人体生命。单克隆抗体的作用是瞄准癌细胞,将癌细胞消灭或启动体内免疫系统对癌细胞进行攻击。单克隆抗体也可成为一种“聪明炸弹”,携带放射性或化学介质,选择癌细胞进行攻击。
能够治疗癌症的药物!这绝对是药学史上质的飞越,而且生物制药不同于化学,利用大分子和微生物对疾病进行治疗的副作用是微乎其微的。如果基因技术能进一步发展,癌症也许就不是绝症了。
Herceptin由美国基因技术公司研制,该公司成立于1976年,是最早成立的生物制药公司。美国基因技术公司是全球十大生物技术公司之一,有十个基于蛋白质的生物医药产品上市,正在开发的产品有20多个,主要是癌症、心血管和免疫系统疾病的治疗药。该公司有从业人员5000多人。人类基因公司成立于1992年,是生物技术领域领域首家开发人类基因的公司。该公司首先研究探索人类基因与疾病的关系,目标是发现与疾病有关的基因,开发相关的治疗药物。该公司现有8个产品正在进行临床试验。
其它的生物医药产品有基因治疗法、干细胞和疫苗等。随着人们对人体生物学认识的进一步深入,药物发现变得更加复杂。生物技术和制药业不得不依靠更先进、复杂的工具来开发新药。历史上,Agilent一直是医药测试设备的主要生产厂,该公司与世界十大制药公司有着十分密切的商业往来。今天,Agilent也能提供新的科学仪器,用于疾病诊断和新药研究。
除去制药,基因工程也可以对人体进行直接改造。世界上第一例成功的基因治疗是对一位4岁的美国女孩进行的,她由于体内缺乏腺苷脱氨酶而完全丧失免疫功能,治疗前只能在无菌室生活,否则会由于感染而死亡。经治疗,这个女孩可进入普通小学上学。这种技术登峰造极了,也就是克隆。也许在未来,人们可以把自己的器官克隆出来冷藏起来,等到生病时拿过来直接进行器官移植,就可以治好病了。
抛开药学不谈,生物技术对农学也有着深刻的影响。生物技术在农业中的应用是基于对植物、动物基因学和蛋白质学的认识。很多专家认为只有依靠生物技术,发展中国家才能战胜饥饿,全球因人口增长而产生的食品短缺才有望得以缓解。通过利用动植物中的特定基因,可以实现用更少的土地种植更多的作物,同时减少农药的使用。利用生物技术,可以在恶劣的气候环境下生产作物。利用生物技术,还可以改善食品的营养和口感等。美国的St.Louis是全球农业生物技术发展最快的地区。该地区被认为是生物产业带,著名的农业生物技术公司孟山都即在该地区。生物技术用于育种是一种快捷、有效的育种方法。通过引入特定的基因,以改变动植物的品质。例如,科学家在西红柿中植入抗成熟的基因,可以延长西红柿的货架期。在植物中引入对人体无害的抗虫基因,可以防止病虫害,减少农药的使用,在水稻中介入产生维生素A的基因,可以提高稻米的营养价值。生物技术在农业中的另一个可能的应用是生产食用疫苗,利用水果、蔬菜生产抗肝炎、霍乱等传染病的疫苗。克隆技术用于动物,可以保留高品质动物的高产性能。
除了细胞工程与基因工程,酶工程和发酵工程也有着重要的应用。酶和发酵工程可以用于酿酒、可以催化反应进程、甚至可以用于污染的治理。酶甚至也可以用于医疗,酶疗法已逐渐被人们所认识,广泛受到重视,各种酶制剂在临床上的应用越来越普遍.如胰蛋白酶、糜蛋白酶等,能催化蛋白质分解,此原理已用于外科扩创,化脓伤口净化等。发酵可以用于制作酵素,当今科学界对酵素与健康的密切关系,形成了统一的认识,基本上,身体酵素越多,越健康,越年轻,酵素就是生命。美味的葡萄酒、味精都是由发酵工程生产的。在医药工业上的应用:基于发酵工程技术,开发了种类繁多的药品,如人类生长激素、、某些种类的单克隆抗体、白细胞介素-
2、等。在食品工业上的应用:主要有三大类产品,一是生产传统的发酵产品,如啤酒、果酒、食醋等;二是生产食品添加剂;三是帮助解决粮食问题。[在环境科学领域的应用:污水处理中微生物的强化。
生物技术与我们的生活息息相关,通过这门课,我对生物技术的了也进一步加深了。也许我以后不会学习生物,但这门课带给我的知识与思想会令我受益无穷。
第三篇:食品生物技术课程论文
食品生物技术课程论文
——转基因食品的发展现状及安全性探究
转基因食品的发展现状及安全性探究
摘要:随着转基因技术的迅猛发展,转基因食品逐渐走上了老百姓家的餐桌,与此同时,转基因食品的安全性问题也成为了热议话题。本文详细分析了转基因食品的利与弊,通过案例对转基因食品的安全性做出了评价。
关键字:食品
转基因
安全性
一.转基因食品的含义
转基因食品是利用现代分子生物技术,将某些生物的基因转移到其他物种中去,改造生物的遗传物质,使其在形状、营养品质、消费品质等方面向人们所需要的目标转变。以转基因生物为直接食品或为原料加工生产的食品就是“转基因食品”。
二.转基因食品的种类
1.植物转基因食品
植物性转基因食品很多。例如,面包生产需要高蛋白质含量的小麦,而目前的小麦品种含蛋白质较低,将高效表达的蛋白基因转入小麦,将会使做成的面包具有更好的焙烤性能。番茄是一种营养丰富、经济价值很高的果蔬,但它不耐贮藏。为了解决
转基因食品——西红柿番茄这类果实的贮藏问题,研究者发现,控制植物衰老激素乙烯合成的酶基因,是导致植物衰老的重要基因,如果能够利用基因工程的方法抑制这个基因的表达,那么衰老激素乙烯的生物合成就会得到控制,番茄也就不会容易变软和腐烂了。美国、中国等国家的多位科学家经过努力,已培育出了这样的番茄新品种。这种番茄抗衰老,抗软化,耐贮藏,能长途运输,可减少加工生产及运输中的浪费。
2.动物性转基因食品
动物性转基因食品也有很多种类。比如,牛体内转入了人的基因,牛长大后产生的牛乳中含有基因药物,提取后可用于人类病症的治疗。在猪的基因组中转入人的生长素基因,猪的生长速度增加了一倍,猪肉质量大大提高,现在这样的猪肉已在澳大利亚被请上了餐桌。
3.转基因微生物食品
微生物是转基因最常用的转化材料,所以,转基因微生物比较容易培育,应用也最广泛。例如,生产奶酪的凝乳酶,以往只能从杀死的小牛的胃中才能取出,现在利用转基因微生物已
转基因食品——草莓能够使凝乳酶在体外大量产生,避免了小牛的无辜死亡,也降低了生产成本。
4.转基因特殊食品
科学家利用生物遗传工程,将普通的蔬菜、水果、粮食等农作物,变成能预防疾病的神奇的“疫苗食品”。科学家培育出了一种能预防霍乱的苜蓿植物。用这种苜蓿来喂小白鼠,能使小白鼠的抗病能力大大增强。而且这种霍乱抗原,能经受胃酸的腐蚀而不被破坏,并能激发人体对霍乱的免疫能力。于是,越来越多的抗病基因正在被转入植物,使人们在品尝鲜果美味的同时,达到防病的目的。
三.转基因食品的优点与缺点
转基因食品有较多的优点:可增加作物单位面积产量;可以降低生产成本;通过转基因技术可增强作物抗虫害、抗病毒等的能力;提高农产品的耐贮性,延长保鲜期,满足人民生 活水平日益提高的需求;可使农作物开发的时间大为缩短;可以摆脱季节、气候的影响,四季低成本供应;打破物种界限,不断培植新物种,生产出有利于人类健康的食品。
转基因食品也有缺点:所谓的增产是不受环境影响的情况下得出的,如果遇到雨雪的自然灾害,也有可能减产更厉害。
四.转基因食品发展现状
近十余年来,现代生物技术的发展在农业上显示出强大的潜力,并逐步发展成为能够产生巨大社会效益和经济利益的产业。1999年,全世界有12个国家种植了转基因植物,面积已达3990万公顷。其中美国是种植大户,占全球种植面积的72%。世界很多国家纷纷将现代生物技术列为国家优先发展的重点领域,投入大量的人力、物力和财力扶持生物技术的发展。但是,转基因食品在世界各个国家和地区之间的发展是不均衡的。
中国有13亿人口,占世界总人口的22%,这意味着中国将以占世界可耕地面积的7%养活世界22%的人口。城市化发展使农业耕地不断减少,而人口又持续增加,对工农业生产有更高的需求,对环境将产生更大的压力。为此,从20世纪80年代初,中国已将现代生物技术纳入其科技发展计划,过去20多年的研究已经结出了丰硕的果实。目前,抗虫棉等五项转基因作物早已被批准进行商品化生产,转Bt杀虫蛋白基因的抗虫棉1998年的种植面积为1.2万公顷。资料显示,到2000年上半年为止,我国进入中间试验和环境释放试验的转基因作物分别为48项和49项。近年来,我国现代生物技术的研究开发已经取得了很多成果。我国的转基因食品技术仅次于美国与加拿大。欧洲国家的转基因食品技术并不是非常的发达,这是因为他们明白转基因食品危害十分大,并通过立法来达到防止转基因食品的过分播种,甚至有些国家完全禁止转基因食品的播种与生产,欧洲各国民众也纷纷抵制,发生过很多起民众破坏转基因实验田的事件,所以我们也要认识到转基因食品所存在的潜在危害,而不能把利益放在民众健康的前面。
五.国外转基因食品现状
(1)美国:小麦主粮的商业化尚未推开
美国是转基因作物种植比较多的国家。据美国农业部的数据,美国2009年转基因玉米种植面积为85%,转基因大豆种植面积为91%,转基因棉花为88%。可是,在美国,至今还没有对主粮小麦进行转基因的商业化种植。美国政府早在2001年就给美国的转基因主粮小麦(硬质红色春小麦)颁发了安全证书。在2004年美国政府准备批准转基因主粮小麦的商业化种植,但是,由于欧洲、日本和其他亚洲国家一直强烈反对转基因小麦,如果美国商业种植转基因小麦,那么这些国家的买家可能会从其他地区寻购小麦。迫于压力,孟山都公司2004年主动撤销了转基因小麦商业化种植的申请。
在加州,2009年有3个县对转基因作物进行了全民公决,决定禁止在自己的县里种植转基因作物。有一家美国企业在加州做药用转基因水稻的田间试验,因为当地农民反对,被迫转移到密苏里州。(2)俄罗斯:反基因专家当官
2006年年末,世界闻名的反食用转基因产品专家、俄罗斯生物学家伊丽娜・叶尔马科娃走马上任,当选为俄罗斯国家基因安全研究会副主席。2005年,伊丽娜・叶尔马科娃博士着手研究小白鼠在食用转基因食品后的健康状况,发现基因食品影响了小白鼠以及它们后代的健康。这一研究结果为转基因食品可能会对活体动物产生一定负面影响提供了有力的证据。每年,俄国家基因安全研究会都会发布很多关于转基因产品潜在危险的报告和论文,但一些西方的跨国公司却因目前还没有确切的研究证据,而对这些报告和论文表示置疑。(3)日本:禁止进口美国转基因大米
日本对转基因作物实行严格管理和慎重对待。根据“Angus Keid Group”发布的调查,82%的日本消费者对转基因作物持否定态度。2006年8月,日本禁止进口美国转基因大米。消费者对转基因作物的否定态度已开始影响日本的食品加工业。例如,几乎所有的酿酒商已开始停止使用转基因产品酿造啤酒;相当一部分生产传统日本食品如豆腐的公司开始使用非转基因原料,并标记上“没有使用转基因大豆”。
(4)印度:停止转基因茄子商业化
2010年2月,印度中止了世界第一批转基因茄子的推广,认为需要进行进一步研究才能在全国种植,以确保消费者的安全。此前,在相关政府委员会于2009年10月份批准转基因抗虫害茄子的商业化后,印度主要种植茄子的几个邦抗议不断。2010年2月6日,Uttarakhand邦第一个表态,称他们将禁止种植转基因作物。不久后,另外两个城邦Himachal Pradesh和Karnataka也作出相同决定。最后,环境部长Jairam Ramesh在2月9日表示,禁止商业种植转基因茄子,要求须先对其进行独立的安全测试,评估其对人类健康和环境的长期影响,并获得公众和专业人士的认可。
六.转基因食品的安全性
1.毒性问题.关于转基因食品的毒性问题,目前只有一些相关的实验报道,尚无人体的研究报告。苏格兰Rowlett研究院的Pitsaw博士曾声称培育出了带凝集素(Latin)基因的改良马铃薯,但是这种马铃薯能够破坏老鼠的肝脏和免疫系统。
2.过敏反应问题.在自然条件下存在许多过敏源。在基因工程中如果将控制过敏源形成red种子公司把巴西坚果中的2S清蛋白基因转入大豆,以使大豆的含硫氨基酸增加,结果对巴西果过敏的人就对转基因大豆产生了过敏反应。3.营养问题.一些研究人员认为,外来基因会以一种人们目前尚不甚了解的方式破坏食物中的营养成分,降低食品的营养价值,引起营养失衡。美国伦更毒性中心的实验报告指出,与一般大豆相比,耐除草剂的转基因大豆中,防癌的成分异黄酮减少了。
4.对抗生素的抵抗作用.抗生素抗性基因是目前转基因植物食品中常用的标记基因,但抗生素标记基因对人体的健康是否会造成不利的影响,例如是否会水平转移到肠道微生物或上皮细胞,从而降低抗生素在临床治疗中的有效性,一直受到人们的关注。
七.结论
虽然迄今为止我们还没有发现转基因食品安全性的问题,但并不表明它就是安全的,也许它的危害需要一定的时间才能反映出来,可能有一个从量变到质变的过程。一旦出了问题就很麻烦,因为它的遗传性可以影响几代。对于有可能出现的潜在风险,必须引起高度重视。所以转基因食品潜在性的安全问题不容我们忽视,所以我们要做好转基因食品安全性的检测,让消费者有知情权、选择权,确保我们人身健康。
八.【参考文献】
[1] 班凌伟,王旗,崔玲玲,陈萍萍.转基因食品利与弊的思考[J].医学与哲学(人文社会医学版).2011(01)[2] 吴易雄.转基因动物商业化的伦理研究[J].武汉理工大学学报(社会科学版).2008(04)[3] 杨通进.预防原则:制定转基因技术政策的伦理原则[J].南京林业大学学报(人文社会科学版).2008(01)[4] 张玲,吴建国,卢建华,李玮,张寄南.转基因食品安全的生态伦理学探析[J].安徽大学学报(自然科学版).2007(03)[5] 刘戈,毛新志.转基因食品安全性的人类健康伦理原则探析[J].武汉理工大学学报(社会科学版).2006(03)[6] 毛新志,刘戈.转基因食品与人类健康初探[J].医学与哲学(人文社会医学版).2006(06)[7] 刘成霞,孙经武.也论转基因食品的伦理学问题[J].中国医学伦理学.2004(01)[8] 王瑞懂.武汉市消费者对转基因食品的认知研究[D].华中农业大学 2010 [9] 吕倩.我国转基因食品安全政府监管工具研究[D].南京农业大学 2011 [10] 吕瑞超.转基因食品信息推广中的传播渠道可信度研究[D].华中农业大学 2010 [11] 周江波.我国转基因食品安全的政府管制研究[D].东华大学 2013 [12] 张雪.朱燕翎诉雀巢公司转基因食品案的法律分析[D].兰州大学 2011 [13] 张玲.转基因食品发展及其影响因素研究[D].南京医科大学 2007 [14] 夏欣欣.转基因食品的消费者购买意愿的影响因素研究[D].暨南大学 2011 [15] 冯巍.英国转基因食品的公共政策研究[D].武汉理工大学 2008 [16] 李静.中美转基因食品公共政策的对比研究[D].武汉理工大学 2008 [17] 刘玲玲.消费者对转基因食品的消费意愿及其影响因素分析[D].华中农业大学 2011 [19] 李一览.中国转基因食品政策研究[D].河南大学 2013 [20] 唐茜.大学生群体对转基因食品认知度与认可度的实证调研[D].南京农业大学 2012 [21] 周慧.公众对转基因食品的认知研究[D].华中农业大学 2012 [22] 周萍入.公众和科学家对转基因食品风险认知的比较研究[D].华中农业大学 2012 [23] 侯丹丹.转基因食品的风险传播研究[D].华中农业大学 2012 [24] 周江波.我国转基因食品安全的政府管制研究[D].东华大学 2013 [25] 王宏宁.转基因食品的公共伦理问题研究[D].渤海大学 2013 [26] 周小宁.转基因食品的潜在风险与伦理探析[D].中共广东省委党校 2013 [27] 吴艳.欧盟转基因食品标识法律制度研究及其对我国的启示[D].中国海洋大学 2013 [28] 杨芳.欧盟转基因食品安全监管研究[D].华中农业大学 2012 [29] 蔡豪祺.我国转基因食品安全监管制度的研究与完善[D].首都经济贸易大学 2012 [30] 徐达.转基因食品安全监管法律制度研究[D].吉林大学 2013
第四篇:生物技术概论课程说明
生物技术概论
课程英文名称:Introduction to Biotechnology
先修课程:微生物学生物化学
适用专业:生物技术及应用食品加工技术
课程类别:必修
开课时间:第二学期
学时:30学分:
1使用教材: 宋思扬、楼士林主编,《生物技术概论》,科学出版社,1999年8月
课程简介:生物技术概论是生物技术类的专业课,先修课程主要有“英语、专业英语、生物学、微生物学、生物化学、酶工程、发酵工程等。本学科综合上述学科的理论基础、方法和技术,通过讲述“现代生物技术的概念和发展简史”、“生物工程各项技术”、“基因克隆、转化、调空及其表达”、以及在“农业、环境、健康和能源”方面的应用,旨在使学生通过本课程的学习了解现代事物技术的基础知识和国内外生物技术各领域发展的来龙去脉、研究现状、发展方向和在国民经济中的应用,为今后开展生物技术相关研究和学习提供基础。
教学目的:通过对本课程的学习,使学生熟练掌握五大工程的基本原理;掌握五大工程中主要的操作技术要点和生产流程,掌握他们在应用中对社会生产和生活的贡献;结合一定的实践教学进行案例分析和深入生产车间,使学生通过切身感受与操作深化对理论知识的理解,掌握基本的工程操作技术要点和基本技能,调动学生学习的主动性和积极性掌握;学会从专业的角度综合分析解决问题。
教学要求:正确认识课程的性质、任务及其研究对象,全面了解课程的体系、结构,对生物技术概论有一个整体的认识。该课程在以发酵工程、基因工程、酶工程、细胞工程、蛋白质工程任一工程为主攻方向的生物技术专业和食品专业等专业领域中均起着举足轻重的作用。掌握学科的基本概念、基本原理和基本方法,紧密联系实际,学会分析案例,解决实际问题,把学科理论的学习融入对工程实践的研究和认识之中,切实提高分析问题、解决问题的能力。
教学方法:课堂讲解,案例分析、参观车间、讨论
作业(报告):课堂作业及课后思考,1、2次/月
课程考核:建议使用平时课堂讨论、期中开卷考察、期末闭卷考试的考核方法,其中平时20%,技术20%,期末60%
第五篇:农业生物技术课程论文
农业生物技术课程论文
题 目:_植物耐盐相关基因克隆与基因工程的研究进展
院(系): 专业: 班级: 姓名: 学号: 成绩: 完成日期:
2011-6-10
农学院
植物耐盐相关基因克隆与基因工程的研究进展
摘要:随着分子生物学技术的不断发展,植物耐盐基因工程已经成为当前研究的热点.植物基因工程为耐盐新品种选育提供新的途径.很多耐盐相关基因相继被克隆和研究,包括离子调节关键基因、渗透调节物质合的关键基因、氧化胁迫调节关键基因、盐胁迫信号传导途径相关基因以及相关调控元件和因子,部分成功应用于植物育种研究.
关键词:耐盐性、基因克隆、基因工程、土壤盐渍化、耐盐基因
随着全球水资源危机以及土壤盐化问题的加剧,盐胁迫已经成为影响植物生长、导致粮食和经济作物减产的主要限制因素。目前,世界盐渍土面积约10亿hm2;中国盐渍土面积约3460万hm2,盐碱化耕地760万hm2,其中原生、次生盐化型和各种碱化型分布分别占总面积的52%、40%和8%。对于盐渍化土壤的利用主要采取两种措施,一是用化学或物理方法改造土壤;二是通过生物技术培育耐盐作物品种。前者不仅耗资巨大,且随着大量化学物质的加入加重了土壤的次生盐渍化,因此培育耐盐的作物品种就日益重要。国内外学者研究了盐分对植物的伤害、植物耐盐的机理,克隆了一些耐盐相关基因,并通过耐盐相关基因转化,获得了一些耐盐性提高的转基因植物,展示了诱人的前景。本文从植物耐盐的机理、耐盐相关基因的克隆及转耐进行了展望。
1、植物耐盐的机理
盐分对植物胁迫分为渗透胁迫、离子伤害、离子不平衡或营养缺乏三类,渗透胁迫和离子伤害目前被认为是对植物危害的两个主要过程。植物的耐盐性环境下的少数耐盐植物进化出特殊器官泌盐和稀盐,如海滩的红树和碱蓬属植物。对多数植物来说,则是生理耐盐。盐胁迫下渗透机制的调节在盐胁迫下,由于外界渗透压较低,植物吸收水分困难,细胞会发生水分亏缺现象。植物为了避免这种伤害,会主动积累一些可溶性物质,降低细胞的渗透势,从而使水分顺利地进入植物体内,保证植物正常生理活动的进行。渗透调节分为无机渗透调节和有机渗透调节。参与无机渗透调节的离子主要是Na+、K+、ca2+和cl。赵可夫等研究发现盐生植物的无机渗透剂以Na+、K+和cl为主,而非盐生植物高梁、芦苇等主要以K+和有机渗透物质为主。说明盐生植物和非盐生植物在渗透调节物质方面的不同。植物在逆境中会主动积累一些有机渗透物质,其中小分子化合物有如下几类:第一类是多元醇,如甘如蔗糖、海藻糖等;第三类是氨基酸及其衍生物,如脯氨酸、甘氨酸、甜菜碱等。这些物质对细胞无毒,对代谢过程无抑制作用,它们的积累在一定范围内可以维持盐胁迫下细胞的正常膨压和代谢功能。这些保护渗透物质在植物抗盐研究中已越来越受重视。
盐胁迫改变代谢途径在盐胁迫下,一些盐生植物能够通过改变其自身的代谢途径而适应高盐度的生存环境。一些肉质植物,如豆瓣绿属植物、马齿苋科植物以及禾本科植物冰草等,在盐渍或水分胁迫下可以改变光合碳同化途径,途径变为CAM途径。CAM植物在夜间开放气孔进行C02吸收和固定,白天气孔关闭减少蒸腾量。这种转变的机理,赵可夫等认为主要是Cl活化了细胞中的RuBP羧化酶所导致的。并通过测量C02固定和PEP羧化酶活性证实光合作用转变是受盐诱导目前获得的一些转基因植物耐盐性虽有提高,但这只是相对于对照植株而言的,转入均是单个基因或相关的两个基因,并没有得到生产大田能利用的抗盐植株。目前比较一致的观点是:植物的耐盐性是多种生理性状的综合表现,是由位于不同染色体上的多个基因控制的,因此培育有实践意义的转基因植物可能需要同时转入多个基因。植物耐盐基因工程的工具基因植物作为固着生物,为了适应变化的环境就必须对胁迫产生快速应答,盐胁迫也不例外。植物耐盐应答机制主要包括生理和分子细胞两个水平,以下根据不同耐盐机制对相关基因进行分类介绍。1.1离子调节相关基因
Na+是盐渍土壤中主要的有害离子,在植物体中过量积累会破坏细胞膜结构、使膜选择性丧失、降低胞质酶活性、阻碍光合作用和代谢过程,引发离子胁迫。植物要在高盐环境下维持正常生长发育.降低胞质Na+浓度是关键,为此植物细胞采取了限制Na+内流、增加Na+外排、Na+区隔化等策略。高等植物中Na+外排主要依赖于质膜Na+/H+反向转运蛋白,而植物囊泡中Na+区隔化则通过液泡膜Na+/H+反向转运蛋白来实现。GaxiolaRA等人首先在拟南芥中克隆了编码液泡膜Na+/H+反向转运蛋白的AtNHXl基因。Apse等人在拟南芥中超量表达AtNHXl基因提高了植株的耐盐性,并对番茄和油菜进行转化,得到了可在200mMNaCl条件下正常生长结实的转基因植株,获得了世界第一批真正意义上的耐盐作物。此后又分离了多种高等植物NHXl基因.ChenL H等人将AtNHXl基因导人养麦,获得了可在200mMNaCI条件下生长开花且主要营养成分未受影响的转基因植株,此时野生型植株已无法正常生长。Na+大量涌人还会破坏细胞内离子平衡,引发营养胁迫。但是质膜上没有Na+特异转运蛋白,认为Na+吸收是通过高亲和性及低亲和性K+转运系统完成的,而K+又在酶活性调节、蛋白质合成、渗透调节等生理过程中具有重要作用,可见保持胞质K+浓度、维持Na+/Z+比率不仅是植物生长也是抗盐的关键。HKT类蛋白既可作为高亲和K+转运体,又可作为Na+转运体,也可能具有双重功能但选择性不同,认为HKT蛋白在植物抗盐过程中发挥作用。SchachtmanDP等人率先克隆了小麦HKTI基因。此后克隆了多个植物HKT蛋白同源基因。Ren等人从水稻中分离的编码HKT型转运蛋白的SKCl基因,具有选择性转运Na+的功能,有助于维持高盐条件下枝条中高K+含量,促进植物生长。
l.2 高盐环境下,外界渗透势较低会导致植物细胞水分亏缺,即产生渗透胁迫。为了抵御渗透胁迫,植物将积累小分子(糖醇、氨基酸、胺类化合物等)和大分子(水通道蛋白、保护性蛋白、渗调蛋白等)渗透保护物质,认为利用合成渗透保护物质的基因转化植物可以提高耐盐性。甘露糖醇一1一磷酸脱氢酶是甘露糖醇代谢途径中的关键酶,催化果糖合成甘露糖醇的反应。用大肠杆菌中编码甘露糖醇一卜磷酸脱氢酶的mtlD基因转化毛白杨得到的转化株可在75mMNaCI条件下生长,而野生株生长受到抑制。甘氨酸甜菜碱在植物细胞中积累可以增强植物耐盐性。其合成过程涉及胆碱单加氧酶和甜菜碱醛脱氢酶两个关键酶。目前大麦、水稻、菠菜、山菠菜和甜菜中的甜菜碱醛脱氢酶基因都已经被克隆。ShirasawaK等人使水稻超量表达菠菜CMO基因,转化株甘氨酸甜菜碱含量较野生型提高9倍,可在150mMNaCI条件下生长。KumarS等人通过质体转化法使甜菜碱醛脱氢酶基因在胡萝卜中表达获得了可在400mMNaCl条件下生长的转基因植株,此时野生型植株已经无法存活,这是目前已知转基因植物所能耐受的最高盐浓度。LEA蛋白能够在种子成熟干燥过程或渗透胁迫条件下保护细胞免受低水势损伤,LEA基因是第一个鉴定到的在种子成熟和发育阶段表达的基因。HanLM等人利用小麦LEA蛋白编码基因T4——LEAl转化得到的丹参能够在1%NaCl胁迫条件下生长。1.3氧化调节相关基因
离子胁迫和渗透胁迫是高盐毒害的两个主要方面,它们还会诱发次级氧化胁迫,即产生活性氧自由基、破坏膜和酶系统。过氧化物酶、超氧化物歧化酶、过氧化氢酶、维生素E、还原型谷胱甘肽、抗坏血酸还原酶等可作为植物体内保护酶系统协调作用清除膜脂过氧化产生的活性氧类物质,保护膜及细胞内酶系统不受破坏,利用相应编码基因对植物进行转化使抗氧化剂高水平积累可以有效提高耐盐性。GaoX等人用200mMNaCl处理超量表达sDD2基因的转基因和野生型拟南芥,二者发芽率均下降,但转化株发芽率下降水平仅为野生株的1/10~1/3。表达水稻脱氢抗坏血酸还原酶基因的拟南芥能够在100mMNaCI条件下发芽,而此时野生株萌发受到抑制,证实增强植物脱氢抗坏血酸还原酶活性、提高总抗坏血酸盐含量可显著增强植物耐盐性。
1.4调控耐盐基因表达的转录因子
乙烯应答元件是植物中重要的特异转录因子,可以与乙烯应答GCC盒和干旱应答元件发生互作。用编码乙烯应答因子型转录因子的大麦根富集因子基因转化拟南芥,对转化植株进行高盐处理后种子和根仍可正常萌发生长,表明大麦根富集因子基因对植物盐胁迫应答具有调控作用C2Hz型锌指蛋白是真核生物基因组中最丰富的锌指蛋白,其EAR阻遏物结构域在植物非生物胁迫应答调节中具有重要作用。Ciftci YilmazS等人用Zat7转化拟南芥,得到了可在150mMNaCI条件下生长的转化植株,NaCl浓度为100mM时,野生型植株和EAR结构域缺失或发生改变的突变植株就已经无法存活。近几年来,科学家们研究发现了一系列逆境胁迫相关基因,目前多个植物耐盐相关基因已被克隆而且这些基因与植物耐盐性状的关系也得到初步确认。小分子渗透调节物质合成相关基因克隆及基因工程
在盐胁迫下,由于外界渗透势较低,植物细胞会发生水分亏缺现象,即渗透胁迫。植物为了避免这种伤害,在逆境情况下必须产生一种适应机制,多数植物能够通过积累大量的代谢物质如糖类(果糖、蔗糖、海藻糖等)、氨基酸(脯氨酸)等来调节植物细胞内渗透压与外界平衡,降低体细胞水势,保持膨压。维持高的细胞质渗透压,保证细胞的正常生理功能。Bray认为脯氨酸、甜菜碱等小分子有机物的大量积累不会破坏其它生物大分子的结构和功能,同时表现出良好的亲和性,也具有较强的渗透调节作用,是理想的渗透物质。
2.1 甜菜碱
甜菜碱是一类铵化合物,化学名称为N一甲基代氨基酸。植物中的甜菜碱有12种,最简单的、研究最多的甘氨酸甜菜碱。许多高等植物,尤其是藜科和禾本科穰物,在受到盐胁迫时积累大量甜菜碱,其积累水平与植物抗胁迫能力成正比。其生物合成是从胆碱开始经2步氧化生成的。首先在胆碱加单氧酶的催化下,胆碱合成甜菜碱醛,然后,甜菜碱醛在甜菜碱醛脱氲酶催化下形成甜菜碱。胆碱单加氧酶、甜菜碱醛脱氲酶两种酶都存在于叶绿体基质中,其活性受盐胁迫诱导。盐碱胁迫能使甜菜碱醛脱氲酶活性显著增加,并且与甜菜碱的积累具有相关性,但这方面的研究多限于幼苗或成熟植株以及胁迫诱导下植物体内甜菜碱含量及甜菜碱醛脱氲酶活性的动态变化。Meng等从苋中,克隆了胆碱单加氧酶基因全长cDNA,为一个编码442个氨基酸的多肽,通过DNA印迹分柝该基因在基因组中为单拷贝,受予旱和盐胁迫诱导。甜菜碱醛脱氲酶是一个60kD的多肽二聚体,主要集中在菠菜和甜菜叶绿体基质中。McCue等在对甜菜进行的研究中克隆了3个负责编码甜菜碱醛脱氲酶的eDNA,发现三者的核酸序列差异较小。肖岗等从耐胁追很强的藜科植物山菠菜中克隆了甜菜碱醛脱氲酶的eDNA。Ishitani等从大麦中克隆到了甜菜碱醛脱氲酶基因的eDNA,通过分析发现其与大肠杆菌中的胆碱单加氧酶基因有高度的同源性,同时发现该基因受干旱和盐胁迫诱导。目前甜菜碱醛脱氲酶的编码基因已经被应用到抗逆性基因工程当中:梁峥等将菠菜中的甜菜碱醛脱氢酶基因转入到烟草中,结果发现获得转基因植株中甜菜碱积累量显著增加,植株的抗旱以及耐盐牲均获得提高。郭北海等采爆基因枪法将由菠菜甜菜碱醛残氢酶基因导入小麦品种,并且得以表达。在盐胁迫条件下,多数转基因植株叶片的甜菜碱醛脱氲酶活性比受体亲本提高l~3倍,部分植株相对电导率比亲本明显低,表明转基因植株的细胞膜在胁迫时有受损较轻倾向。孙仲序等将其成功地转入葡萄。
2.2 胃溶性糖
盐胁迫除了诱导一些小分子溶质外,还可诱导可溶性糖的变化,这蝗糖类有果聚糖、海藻糖等。这些可溶性糖类在植物体内也起到了重要的渗透压调节作用。果聚糖广泛存在于植物和微生物的细胞液泡中,而某些植物还能以果聚糖的形式储存光合作用固定的能量。果聚糖在细胞内是可溶的,在植物遭遇到盐胁迫能够降低细胞的水势,参与细胞的渗透调节。Pilon Smits克隆到了枯草杆菌枯草杆菌果聚糖蔗糖转移酶基因,并将枯草杆苏打中枯草杆菌果聚糖蔗糖转移酶基因与液泡定位信号连接,启动子为组成型后,然后转入烟草。外源基因得到表达,转基因植株的非机构性糖类明显高于对照,在转基因甜菜植物中表达枯草杆菌果聚糖蔗糖转移酶基因,在胁迫条件下,能够积累暴聚糖,增强抗旱性。枯草杆菌果聚糖蔗糖转移酶基因基因对植物抗盐性的提高也有帮助,张慧等将枯草杆菌果聚糖蔗糖转移酶基因,与克隆自酵母的羧肽酶A的液泡引导信号序列连接得到嵌合基因构建双元表达载体,经农杆菌介导转化烟草。获得的抗性芽能在含1%NaCl的MS培养基上正常生根,转基因小苗浇灌含1%NaCl的hoaland,S营养液转基因烟草植株生长良好,而未转化苗出现明显萎蔫,结果显示枯草杆菌果聚糖蔗糖转移酶基因基因的植物基因工程可提高烟草植株的耐盐性。海藻糖是一种还原性双糖,一般存在于低等生物(如酵母、细菌等)中,其化学结构和在维管植物中普遍存在的蔗糖的化学结构很相似,在胁迫环境下,海藻糖能够阻止细胞磷脂双分子膜由液晶态向固态转变,能够稳定蛋白质等高分子物质,从而增加细胞对盐胁迫的抵抗力。另外,在一些极端耐旱的复苏植物含有大量海藻糖,对其抵御干旱胁迫起到了至关重要的作用,可以使其桔死后得以复活。在酵母中,海藻糖的合成由海藻糖一6一磷酸合酶和海藻糖一6一磷酸磷酸酶共同完成。通过转基因,使植物产生和积累海藻糖,提高植物抗旱性的工作已经有报道,Holmstrm等将海藻糖一6一磷酸合酶基因转入烟草,转基因植株胁迫后复水可恢复生长,而对照则枯萎了。表现出海藻糖一6一磷酸合酶基因能够提高植物的耐脱水能力。赵恢武的结果证实海藻糖一6一磷酸合酶基因能够提高烟草抗旱性,但发现烟草的正常生长受到影响。王自章等利用农杆菌介导法将海藻糖合酶基因转入甘蔗,获得抗渗透胁迫能力增强植株。酵母的羧肽酶A的液泡引导信号序列连接得到嵌合基因构建双元表达载体,经农杆菌介导转化烟草。获得的抗性芽能在含1%NaCl的MS培养基上正常生根,转基因小苗浇灌含1%NaCl的hoaland,S营养液转基因烟草植株生长良好,而未转化苗出现明显萎蔫,结果显示枯草杆菌果聚糖蔗糖转移酶基因基因的植物基因工程可提高烟草植株的耐盐性。海藻糖是一种还原性双糖,一般存在于低等生物(如酵母、细菌等)中,其化学结构和在维管植物中普遍存在的蔗糖的化学结构很相似,在胁迫环境下,海藻糖能够阻止细胞磷脂双分子膜由液晶态向固态转变,能够稳定蛋白质等高分子物质,从而增加细胞对盐胁迫的抵抗力。另外,在一些极端耐旱的复苏植物含有大量海藻糖,对其抵御干旱胁迫起到了至关重要的作用,可以使其桔死后得以复活。在酵母中,海藻糖的合成由海藻糖一6一磷酸合酶和海藻糖一6一磷酸磷酸酶共同完成。通过转基因,使植物产生和积累海藻糖,提高植物抗旱性的工作已经有报道,Holmstr6m等将海藻糖一6一磷酸合酶基因转入烟草,转基因植株胁迫后复水可恢复生长,而对照则枯萎了。表现出海藻糖一6一磷酸合酶基因能够提高植物的耐脱水能力。赵恢武的结果证实海藻糖一6一磷酸合酶基因能够提高烟草抗旱性,但发现烟草的正常生长受到影响。王自章等利用农杆菌介导法将海藻糖合酶基因转入甘蔗,获得抗渗透胁迫能力增强植株。3与耐盐性相关的调控元件和因子
植物在生长过程中,对各种环境胁迫会做出一系列反应,特异表达一些基因,以适应不利的环境条件。这就要求对各种功能的基因进行精确的调控。透过研究这些基因的表达,发现很多基因的表达受到其启动子附近的顺式作用元件以及与之相结合的反式作用因子的调控。在拟南芥中,Pilon Smits等报道了一批受脱水诱导的基因Rd,其中一个受脱水和低温诱导基因rd29A的启动子中的一个9 bp的脱水响应元件,碱基序列为TACCGACAT,是一种典型的顺式作用元件。刘强等通过对比其它受干旱、高盐以及低温诱导的基因,发现这些基因的启动子都有DRE核心序列。可以认为DRE核心对这些基因在逆境下表达起着调控作用。反式作用因子的编码基因能够促进相应基因的表达。Liu等发现属于一个基因家族的两个转录因子基因DREBIA和DREB2A,表达产物为DRE结合因子,结合在rd29A基因的启动子区域,分析认为DREBlA和DREB2A是相互独立的、在分属不同的干旱和盐胁迫信号传导途径中起着反式作用因子的作用。并发现转整合了组成型启动子35S后的DREBIA和DREB2A基因的拟南芥能够显著提高抗胁迫能力,但DREBIA过量表达,对其的正常生长产生不良影响。当在干旱诱导型启动子rd29A的启动子驱动下,这种负面影响降到最低限度,仍然能观测到增强的抗胁迫能力。
4展望
土壤盐渍化是影响农业生产和生态环境的一个重要的非生物胁迫因素。通过基因工程来培育耐盐的农作物新品种为有效解决这个问题提供了一个薪的思路。对予植物耐盐基因工程来讲,获得关键耐盐基因尤为重要,随着功能基因组学的开展,以及表达序列标签及cDNA微阵列、基于转座子标签和T—DNA标签的反求遗传学技术等新技术的应用,使得关键的耐盐基因的分离及其功能鉴定变得更容易了。相信随着分子生物学技术和方法的不断发展和完善,植物耐盐性的分子机理将逐步被了解,进而使通过基因工程方法提高植农作物耐盐性成为可能。
参考文献
[1]王宝山.植物液泡膜质子泵的研究[J].植物学通报,2006(2)25-30 [2]杨平,蔡小宁等.拟南芥athx1基因克隆和ere(10x)植物表达载体的构建[J].江苏农业科学,2007(6):348—350.
[3]FLOWERS T J.TROKE P F,YEO A R.Themechanism of salttolerancein halophytes[J].Annum Review of Plant Physiology,2007,28:89一121. [4]GRFENWAY H,MUNNS R.Mechanism of.salt tolerance in nonhalophytes[J].Annum Review of Plant,2005,31:149—190. [5]WAINwYdm S J.Plants in relation to salinity[J].Advances in Botanical Research,2008:221—259.
[6]仲崇斌,刘长江 碱蓬CMO eDNA基因克隆、测序及重组植物表达载体的构建[J].中国生物工程杂志,2006,26(7):80—83.
[7]伺晓兰,侯喜林.吴纪中,等 甜菜碱脱氢酶(BADH)基因的克隆及序列分析[J].南京农业大学学报,2004,27(1):15—19.
[8]E红,陶建敏,张红梅,等.盐地碱蓬甜菜碱合成酶基因的克隆及植物共表达载体的构建[J].西北植物学报.2007,27(2):215—222.
[9]张雨良,罗淑萍,杨峰等.新疆盐生植物猪毛菜逆向运输蛋白基因SaNttXI RACE的克隆及序列分析[J].新疆农业科学,2008,45(3):5ll一516.
[10]蔡伦,张富春,马纪等.新疆3种黎科盐生植物NHX基因的克隆与序列分析比较[J].植物生理学通讯,2005,41(3):383—387.
[11]蔡小宁,杨平,责爱玲等.盐芥ThHKTI基因的克隆.江苏农业科学,2006(6):2l——24.
[12]李艳艳,李平华,王宝山.盐胁追下盐地碱蓬叶片液泡膜H+.ATPaseH亚基的克隆与表达分析[J].西北植物学报,2006,26(1):63—67.