工程材料及成型工艺学习心得5篇

时间:2019-05-12 15:11:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《工程材料及成型工艺学习心得》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《工程材料及成型工艺学习心得》。

第一篇:工程材料及成型工艺学习心得

2017-2018学年第一学期

工 程 材 料 及 成 形 工 艺 学习心 得

时光飞逝,转眼间我已是大三学生的一员了,距离毕业的时间已寥寥无几,课程也变得更加“高深莫测”,开始接触更多的专业课程。这学期我们学习了《工程材料及成形工艺》这门课程。作为测控技术与仪器专业的学生,我深知这门课程对我们的重要性,也对这门课程产生了极大的兴趣。

刚开课时,老师就给我们讲了这门课的重要性:身为测控专业的学生,以后绝对离不开质检方面的工作,而了解工程材料各方面的性能是必不可少的知识。这门课程的知识点很多也很碎,老师为了让我们更好的记忆,在课堂上耐心的为我们讲解各个知识点,用生动形象的语言和例子更好的诠释知识点,是原本可能会枯燥乏味的死记硬背变得鲜活起来。课后,老师还会给我们布置下一堂课要记忆的重点,督促我们不要松懈。而第二堂课会让我们默写上节课的重点,循环记忆。在老师的引导下,我们记得更牢固,学的更扎实。

人类生活在材料组成的世界里,材料是我们赖以生存并得以发展的物质基础。而工程材料属于材料中的人造材料,主要指用于机械工程、建筑工程以及航空等领域的材料。既然工程材料这么重要,当然首先要了解下它的分类了。

一:工程材料的分类

工程材料按其化学组成分类,可以分为金属材料、高分子材料、无机非金属材料、复合材料四类。

金属材料常指工业上所使用的金属或合金的总称。金属及合金具有下列共同的特性:①固体状态下具有晶体结构;②具有独特的金属光泽且不透明;③是电和热的良导体;④强度高。由于金属材料具有良好的力学性能、物理性能、化学性能及加工工艺性能,能采用较简单和经济的方法制成零件,因此金属材料是目前应用最广泛的材料。

无机非金属材料主要指水泥、玻璃、陶瓷材料和耐火材料等。它们不可燃,不老化,而且硬度高,耐压性能良好,稳定性高,在电力、建筑、机械等领域有广泛应用。

复合材料是由两种以上物理、化学性质不同的物质经人工合成的多相材料。复合材料的组成包括基体和增强材料两个部分。复合材料范围广,品种多,性能优异,有很大的发展前逾其应用领域在迅速扩大,品种、数量和质量都有了飞速发展。

二:工程材料的力学性能

工程材料的力学性能是材料性能的重点,分为强度、弹性、塑性、硬度、疲劳强度等。其中硬度是衡量材料软硬程度的一个性能指标,工业中常采用的硬度试验方法有布氏硬度(HBS/HBW)、洛氏硬度(HR)、维氏硬度(HV)等几种。

1、布氏硬度实验是用一定大小的试验力F,把直径为D的淬火钢球或硬质合金球压入被测金属的表面,保持规定时间后卸除试验力,用读数显微镜测出压痕平均直径d,然后按公式求出布氏硬度HB值,或者根据d从已备好的布氏硬度表中查出HB值。

HBS表示压头为淬硬钢球,用于测定布氏硬度值在450以下的材料,如软钢、灰铸铁和有色金属等。HBW表示压头为硬质合金,用于测定布氏硬度值在650以下的材料。

2、洛氏硬度是以顶角为120°的金刚石圆锥体或直径为Φ1.588㎜的淬火钢球作压头,以规定的试验力使其压入试样表面。试验时,先加初试验力,然后加主试验力。压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。

根据实验材料硬度的不同,可分为三种不同标度来表示: HRA是采用60Kg载荷和钻石锥压入器求的硬度,用于硬度较高的材料。例如:硬质合金、渗碳层。

HRB是采用100Kg载荷和直径1.58mm淬硬的钢球求得的硬度,用于硬度较低的材料。例如:软钢、有色金属、退火钢、正火刚等。

HRC是采用150Kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料。例如:淬火钢、调质钢等

3、维氏硬度是用120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用载荷值除以材料压痕凹坑的表面积,即为维氏硬度值(HV)。

材料的硬度是权衡材料用途的一大标准,选好材料,才能事半功倍。当然,材料的力学性能不止是硬度,只有全面考虑,才能选出更适合的材料。

三:对铁碳合金相图的总结与感想

铁碳合金相图是本门课程中着重笔墨讲解的一部分,这部分包含了本门课程的大部分知识点。从某种意义上讲,铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。

铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是 间隙固溶体。由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。

铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示, 体心立方晶格;α-Fe溶碳能力极差,在727℃时溶碳量最大。

奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示, 面心立方晶格;在一般情况下, 奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高。

渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式“Fe3C”表示.它的碳质量分数Wc=6.69%,熔点为1227℃,质硬而脆,耐腐蚀.渗碳体是钢中的强化相,根据生成条件不同渗碳体有条状,网状,片状,粒状等形态,它们的大小,数量,分布对铁碳合金性能有很大影响。

课程中由于老师将铁碳合金相图分成几个部分,并且逐一讲解,最后将他们犹如拼图般拼接起来,这就使得我们对于铁碳合金相图并非是死记硬背,而且先有一个框架和大概的认识之后,将内容填充进去。在框架绘制的过程中,我们要牢记几个温度和碳含量的点,这是铁碳合金相图的一个重点,因为在这些转折点时,我们获得的产物会有发生改变,这是我们应该牢记的。温度在1538°是纯铁的熔点,在1148°时开始有共晶点转变产生A+Fe3C(高温莱氏体Ld),1227°这时是Fe3C的熔点。1148°此时这是钢与生铁的分界线。912°纯铁同素异晶转变,还有717°。在牢记温度的时候也要记住含碳量,因为这是钢和铁的标志。因此铁碳合金相图可以说是做到了理解而非死记硬背的程度。

铁碳合金相图

在学习了这门课程之后,我对我们的专业有了更深刻的了解,同时也更加明白了自身知识的不足。结合实际,现在我国的材料加工方面还有欠缺,有很大的进步改善空间。身为新一代祖国的建设者,我们应该更加明白自身的重担,用我们的知识和能力,去为祖国的建设努力。

第二篇:【技术】浅谈整体成型工艺

【技术】浅谈整体成型工艺

背景

复合材料由于具有高比强度、高比刚度、性能可设计、抗疲劳性和耐腐蚀性好等优点,因此越来越广泛地应用于各类航空飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。复合材料的应用部位已由非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量已成为航空器先进性的重要标志。复合材料整体成型是指采用复合材料的共固化(Co-curing)、共胶接(Co-bonding)、二次胶接(Secondary bonding)或液体成型等技术和手段,大量减少零件和紧固件数目,从而实现复合材料结构从设计到制造一体化成型的相关技术。在复合材料结构的设计和制造过程中,将几十甚至上百个零件减少到一个或几个零件,减少分段、减少对接、节省装配时间,可大幅度地减轻结构质量,并降低结构成本,而且充分利用了固化前复合材料灵活性的特点。国内外航空领域广泛地采用整体成型复合材料主构件,如诺·格公司的B2轰炸机、波音(Boeing)公司的787飞机和洛·马公司的F35战斗机均在机身和机翼部件中大量运用整体成型复合材料,整体成型结构已经成为挖掘复合材料结构效率,实现复合材料功能结构一体化以及降低复合材料制造成本的大方向。一某轻型公务机整体化复合材料中机身 01 成型材料02 成型方法上半模、下半模分别铺贴完成后合模,并进行接缝补强,最后固化成型。综合考虑工装的重量及与复合材料热膨胀系数的匹配性,选择复合材料工装,为了减轻增压舱上半模重量,上半模型面只采用复合材料型板进行加强,与金属结构支架的连接是可卸的,以利于翻转组合及吊装,图2 为工装示意图。目前,夹层结构的成型方法可以根据面板与蜂窝夹层结构的成型步骤分为共胶接法、二次胶接法和共固化法,对特殊要求的结构还可以采取分步固化。通过对机身结构铺层设计分析,对上、下半模合模位置进行了铺层补强设计,这就排除了采用上、下半模分别成型,然后二次胶接方法的可能。另外,由于整体性要求,若采用分步固化技术,机身外蒙皮固化粘结后形成内部机身舱腔体,局部位置内蒙皮的铺叠操作难度太大,几乎无法实现,所以针对中机身整体结构,采用共固化技术。同时根据结构特点、材料特性及质量要求等对主要工艺展开研究如下:(1)预浸料铺层及剪口优化技术;(2)蜂窝芯加工及定位技术;(3)蜂窝夹层结构的共固化工艺参数确定。二工艺路线及主要工艺措施

01 工艺流程中机身整体成型工艺采用共固化技术,即分别在上、下半模铺叠外蒙皮;然后铺放胶膜,定位蜂窝芯及预埋件;最后铺叠内蒙皮,合模,固化。主要工艺流程如图3 所示。02 主要工艺措施(1)铺层展开及优化。采用CATIA 软件CPD 模块对中机身铺层进行可制造性分析,发现整层设计的预浸料层在结构突变的位置无法展开,并且纤维角度变化非常大,远远偏离了设计给出的铺层角度,如图4 所示。这是因为中机身型面复杂,而对于复杂曲面上的铺层,进行二维展开时,既要保证铺层能够展开,还要保证展开的铺层与3D 模型上边界一致,往往存在较大的困难。只有当制造可行性分析表明纤维变形在可接受范围内才可以进行铺层展开。所以在对复合材料分层数模进行工艺分析时,对不同位置作为起铺点的纤维角度变化进行分析,找出变形面积最小的铺叠起始位置,再通过铺层拼接及开剪口技术找到最优且满足设计铺层角度公差的工艺设计方案,图5 为经过优化后的铺层展开分析图。(2)蜂窝芯预处理。整个增压舱除了防火墙和翼盒外均使用19.05mm 过拉伸NOMEX蜂窝芯,其主要特点是蜂窝纵向柔性较大,易变形,贴模性好,适合成型曲度较大的零件。此种蜂窝芯的理论外形尺寸为2.44m×0.99m,而增压舱上下两部分的蜂窝芯展开尺寸约4m×2.5m,其尺寸远远超出蜂窝芯的外形尺寸,且蜂窝芯外形复杂,如图6 所示。制造过程中蜂窝芯需要拼接,常规蜂窝芯拼接是将蜂窝按位置要求分块后进行型面铣切,然后拼接。但过拉伸蜂窝芯收缩性较大,采取先铣切后拼接的方式,由于收缩会造成实际拼接时比理论外形小15~20mm,所以研制过程采用拼接胶先将蜂窝芯拼接,同时进行稳定化处理,如图7 所示,然后进行外形铣切,可以把误差控制在±3mm 范围以内,符合设计要求。(3)蜂窝芯及预埋件定位。

为了准确定位蜂窝芯和预埋件,在工装制造过程中就通过数控加工和定位预埋衬套和螺栓,用于定位蜂窝芯定位样板和预埋件。预埋件主要是翼盒、防火墙、舷窗等已固化零件,预埋件与蜂窝芯之间采用填充胶填充,以起到填充、补强和粘接的作用。(4)制袋。

将铺叠完的上、下半模合模,铺叠补强层后进行制袋,由于中机身尺寸大,机身内部闭角多,排袋困难,容易架桥,局部地区由于导气不畅通,造成假真空。通过模拟和试验的方法,确定整体真空袋尺寸,通过制作“子母袋”的方法,将上、下半模整体包覆。另外,采用3/4”的抽气嘴分布于机身内部各处闭角附近,并确保各抽气嘴之间透气层的连续性,避免假真空。图8 为合模后制袋。(5)固化。复合材料结构在升温固化过程中经历复杂的热-化学变化,温度、压力及保温时间等工艺参数的确定对结构成型过程有着重要的影响,最终关联着质量问题。如果工艺参数选择不当,常常使复合材料形成不同类型的缺陷,如分层、孔隙、脱粘等。在中机身的成型过程中,按简单的材料工艺进行固化,即室温升至130℃,保温2h,降温至60℃,结果发现固化保温过程中局部位置温度突变,存在集中放热的现象,如图9 所示,检测发现部分区域存在大面积气孔和疏松现象。分析原因,主要是由于中机身模具是一个一端封闭的结构,且机身模具各部位厚度差别较大,整体温度场均匀性不好,造成成型过程温度场难以保证,直接影响固化质量。为解决这一问题,需进行工艺参数的调整,以材料规范中材料本身的固化参数为基础,通过对典型结构零件固化炉成型工艺研究,采用双台阶固化曲线(见图10),结果表明,在树脂凝胶点87℃保温1.5h(第一台阶),在树脂进行了部分固化反应,释放了一定的固化反应热,这样,能够减小在最终固化温度130℃固化过程中的固化反应热释放,减小了温度场差异,有利于排除挥发分,保证固化度一致性。(6)外形铣切及检测。

中机身的风挡、舷窗、舱门等处采用外形铣切型架及靠模的方式进行铣切,如图11 所示。经无损及型面检测,均能满足设计要求。三结束语

通过对某型公务机中机身整体成型技术的研究,证明了该结构采用蜂窝预处理及定位,上、下模组合成型及共固化工艺的制造方案是可行的。本研究也是对我国通用飞机复合材料主结构整体成型工艺的一次有益探索,提升了我国通用飞机复合材料技术设计和制造水平,对推动我国通用飞机产业的发展具有重要的作用和意义。

第三篇:压缩成型工艺教案

第三节

压缩成形工艺

一、压缩成形原理及特点

压缩成形又称压塑成形、模压成形、压制成形等,将松散状(粉状、粒状、碎屑状或纤维状)的固态成形物料直接加入到成形温度下的模具型腔中,使其逐渐软化熔融,并在压力作用下使物料充满模腔,这时塑料中的高分子产生化学交联反应,最终经过固化转变成为塑料制件。

压缩成形的优点有可采用普通液压机,压缩模结构简单(无浇注系统),生产过程较简单,压缩塑件内部取向组织少、性能均匀,塑件成形收缩率小等。其缺点是成形周期长,生产效率低,劳动强度大,生产操作多用手工而不易实现自动化生产;塑件经常带有溢料飞边,高度方向的尺寸精度难以控制;模具易磨损,因此使用寿命较短。

压缩成形主要用于热固性塑料,也可用于热塑性塑料(如聚四氟乙烯等)。其区别在于成形热塑性塑料时不存在交联反应,因此在充满型腔后,需将模具冷却使其凝固才能脱模而获得制件。典型的压缩制件有仪表壳、电闸板、电器开关、插座等。

二、压缩成形工艺过程

压缩成形工艺过程一般包括压缩成形前的准备及压缩过程两个阶段。(1)压缩成形前的准备

主要是指预压、预热和干燥等预处理工序。a)预压

利用预压模将物料在预压机上压成质量一定、形状相似的锭料。在成形时以一定数量的锭料放入压缩模内。锭料的形状一般以能十分紧凑地放大模具中便于预热为宜。通常使用的锭料形状多为圆片状,也有长条状、扁球状、空心体状或仿塑件形状。

b)预热与干燥

成形前应对热固性塑料加热。加热的目的有两个:一是对塑料进行干燥,除去其中的水分和其他挥发物;二是提高料温,便于缩短成形周期,提高塑件内部固化的均匀性,从而改善塑件的物理力学性能。同时还能提高塑料熔体的流动性,降低成形压力,减少模具磨损。

生产中预热与干燥的常用设备是烘箱和红外线加热炉。

(2)压缩成形过程

模具装上压机后要进行预热。一般热固性塑料压缩过程可以分为加料、合模、排气、固化和脱模等几个阶段,在成形带有嵌件的塑料制件时,加料前应预热嵌件并将其安放定位于模内。a)加料

加料的关键是加料量。定量的方法有测重法、容量法和计数法三种。测重法比较准确,但操作麻烦;容积法虽然不及测重法准确,但操作方便;计数法只用于预压锭料的加料。物料加入型腔时,需要合理堆放,以免造成塑件局部疏松等现象。

b)合模

加料后即进行合模。合模分为两步:当凸模尚末接触物料时,为缩短成形周期,避免塑料在合模之前发生化学反应,应加快加料速度;当凸模接触到塑料之后,为避免嵌件或模具成形零件的损坏,并使模腔内空气充分排除,应放慢合模速度,即所谓先快后慢的合模方式。c)排气

压缩热固性塑料时,在模具闭合后,有时还需卸压将凸模松动少许时间,以便排出其中的气体。通常排气的次数为一至两次,每次时间由几秒至几十秒。d)固化

压缩成形热固性塑料时,塑料依靠交联反应固化定型,生产中常将这一过程称为硬化。在这一过程中,呈黏流态的热固性塑料在模腔内与固化剂反应,形成交联结构,并在成形温度下保持一段时间,使其性能达到最佳状态。对固化速率不高的塑料,为提高生产率,有时不必将整个固化过程放在模具内完成(特别是一些硬化速度过慢的塑料),只需塑件能完整脱模即可结束成形,然后采用后处理(后烘)的方法来完成固化。模内固化时间应适中,一般为30秒至数分钟不等。时间过短,热固性塑件的机械强度、耐蠕变性、耐热性、耐化学稳定性、电气绝缘性等性能均下降,热膨胀、后收缩增加,有时还会出现裂纹;时间过长,塑件机械强度不高、脆性大、表面出现密集小泡等。e)塑件脱模

制品脱模方法分为机动推出脱模和手动推出脱模。带有侧向型芯或嵌件时,必须先用专用工具将它们拧脱,才能取出塑件。

(3)压后处理

塑件脱模后,对模具应进行清理,有时对塑件要进行后处理。a)模具的清理

脱模后必要时需用铜刀或铜刷去除残留在模具内的塑料废边,然后用压缩空气吹净模具。如果塑料有黏膜现象,用上述方法不易清理时则用抛光剂拭删。

b)后处理

为了进一步提高塑件的质量,热固性塑料制件脱模后常在较高的温度下保温一段时间。后处理能使塑料固化更趋完全,同时减少或消除塑件的内应力,减少水分及挥发物等,有利于提高塑件的电性能及强度。

三、压缩成形工艺参数

压缩成形的工艺参数主要是指压缩成形压力、压缩成形温度和压缩时间。

(1)压缩成形压力

压缩成形压力是指压缩时压力机通过凸模对塑件熔体在充满型腔和固化时在分型面单位投影面积上施加的压力,简称成形压力。

施加成形压力的目的是促使物料流动充模,提高塑件的密度和内在质量,克服塑料树脂在成形过程中因化学变化释放的低分子物质及塑料中的水分等产生的胀模力,使模具闭合,保证塑件具有稳定的尺寸、形状,减少飞边,防止变形。但过大的成形压力会降低模具寿命。

压缩成形压力的大小与塑料种类、塑件结构以及模具温度等因素有关,一般情况下,塑料的流动性愈小,塑件愈厚以及形状愈复杂,塑料固化速度和压缩比愈大,所需的成形压力亦愈大。

(2)压缩成形温度

压缩成形温度是指压缩成形时所需的模具温度。它是使热固性塑料流动、充模并最后固化成形的主要工艺因素,决定了成形过程中聚合物交联反应的速度,从而影响塑件的最终性能。

压缩成形温度高低影响模内塑料熔料的充模是否顺利,也影响成形时的硬化速度,进而影响塑件质量。随着温度的升高,塑料固体粉末逐渐融化,黏度由大到小,开始交联反应,当其流动性随温度的升高而出现峰值时,迅速增大成形压力,使塑料在温度还不很高而流动性又较大时充满型腔的各部分。

在一定温度范围内,模具温度升高,成形周期缩短,生产效率提高。如果模具温度太高,将使树脂和有机物分解,塑件表面颜色就会暗淡。由于塑件外层首先硬化,影响物料的流动,将引起充模不满,特别是模压形状复杂、薄壁、深度大的塑件最为明显。同时,由于水分和挥发物难以排除,塑件内应力大,模件开启时塑件易发生肿胀、开裂、翘曲等;如果模具温度过低,硬化不足,塑件表面将会无光,其物理性能和力学性能下降。

(3)压缩时间

热固性塑料压缩成形时,要在一定温度和一定压力下保持一定时司,才能使其充分交联固化,成为性能优良的塑件,这一时间称为压缩时间。压缩时间与塑料的种类(树脂种类、挥发物含量等)、塑件形状、压缩成形的其他工艺条件以及操作步骤(是否排气、预压、预热)等有关。

压缩成形温度升高,塑件固化速度加快,所需压缩时间减少,因而压缩周期随模具温度提高也会减少。对成形物料进行预热或预压以及采用较高成形压力时,压缩时间均可适当缩短,通常塑件厚度增加压缩时间会随之增加。

压缩时间的长短对塑件的性能影响很大。压缩时间过短,塑料硬化不足,将使塑件的外观性能变差,力学性能下降,易变形。适当增加压缩时间,可以减少塑件收缩率,提高其耐热性能和其他物理力学性能。但如果压缩时司过长,不仅降低生产率,而且会使树脂交联过度而使塑件收缩率增加,产生内应力,导致塑件力学性能下降,严重时会便塑件破裂。

第四节 压注成形工艺

一、压注成形原理及特点

压注成形又称传递成形,它是热固性塑料的重要成形方法之一,是在压缩成形基础上发展起来的一种热固性塑料的成形方法。

成形原理:

先将固态成形物料(最好是预压成锭或经预热的物料)加入装在闭合的压注模具上的加料腔内,使其受热软化转变为黏流态,并在压力机柱塞压力作用下塑料熔体经过浇注系统充满型腔,塑料在型腔内继续受热受压,产生交联反应而固化定型,最后开模取出塑件。

压注成形和注射成形的相同之处是熔料均是通过浇注系统进人型腔,不同之处在于前者塑料是在模具加料腔内塑化,而后者则是在注射机的料筒内塑化。压注成形是在克服压缩成形缺点、吸收注射成形优点的基础上发展起来的。

主要优点有:

(1)压注成形前模具已经闭合,塑料在加热腔内加热和熔融,在压力机通过压注柱塞将其挤人型腔并经过狭窄分流道和浇口时,由于摩擦作用,塑料能很快均匀地热透和硬化。因此,制品性能均匀密实,质量好。

(2)压注成形时的溢料较压缩成形时少,而且飞边厚度薄,容易去除。因此,塑件的尺寸精度较高,特别是制件的高度尺寸精度较压缩制件高得多。(3)由于成形物料在进大型腔前已经塑化,对型芯或嵌件所产生的挤压力小,因此能成形深腔薄壁塑件或带有深孔的塑件,也可成形形状较复杂以及带精细或易碎嵌件的塑件,还可成形难以用压缩法成形的塑件。

(4)由于成形物料在加料腔内已经受热熔融,因此,进人模腔时料温及吸热量均匀,所需的交联固化时司较短,致使成形周期较短,生产效率高。

缺点: 成形压力比压缩成形高;工艺条件比压缩成形要求更严格,操作比压缩成形难度大;压注模比压缩模结构复杂;成形后加料腔内 总留有一部分余料以及浇注系统申的凝料,由于不能回收将会增加生产中原材料消耗;存在取向问题,容易使塑件产生取向应力和各向异性,特别是成形纤维增强塑料时,塑料大分子的取向与纤维的取向结合在一起,更容易使塑件的各向异性程度提高。

二、压注成形工艺过程

压注成形的工艺过程和压缩成形基本相似。它们的主要区别在于:压缩成形是先加料后闭模,而压注成形则一般要求先闭模后加料。

三、压注成形工艺参数

压注成形主要工艺参数包括成形压力、成形温度和成形时间等,它们均与塑料品种、模具结构、塑料情况等多种因素有关。

(1)成形压力

成形压力是指压力机通过压注柱塞对加料腔内塑料熔体施加的压力。由于熔体通过浇注系统时有压力损失,故压注时的成形压力一般为压缩时的2~3倍。

(2)模具温度

压注成形的模具温度通常要比压缩成形的温度低一些,一般约为130°C~190°C,因为塑料通过浇注系统时能从摩擦中取得一部分热量。加料室和下模的温度要低一些,而中框的温度要高一些,这样可保证塑料迸人通畅而不会出现溢料现象,同时也可以避免塑件出现缺料、起泡、接缝等缺陷。

(3)成形时间

压注成形时间包括加料时间、充模时间、交联固化时间、脱模取塑件时间和清模时间等。压注成形时的充模时间通常为5~50s,而固化时间取决于塑料品种,塑件的大小、形状、壁厚,预热条件和模具结构等,通常为30~180s。

第四篇:成型工艺主管岗位职责

成型工艺主管岗位职责

1、工作内容

1.1编制和完善成型车间的管理制度。

1.2编制成型车间工艺文件并监督执行。

1.3与烧成工序沟通,做好成型车间月中排产,转产安排计

划工作

1.4组织成型技术人员对成型工艺技术进行研究提高对生产质量、缺陷进行分析。整改和攻关

1.5负责对模具质量验收工作。

1.6负责产品打板、交板工作。

1.7制订成型车间年终检修计划并组织实施。

1.8对成型车间的生产管理情况、生产工艺执行情况进行工作执导,检查和考核。

第五篇:材料成型工艺

问答题

1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么?

2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么?

3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力?

5.分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围.6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些?

8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性?

9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10.缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?

11.什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?

12.手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14.铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15.什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16.何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17.何谓铸造?它有何特点?

18.既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何?

21.提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22.金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23.纤维组织是怎样形成的?它的存在有何利弊?

24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25.模锻时,如何合理确定分模面的位置? 26.模锻与自由锻有何区别? 27.板料冲压有哪些特点?主要的冲压工序有哪些?

28.间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29.分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30.何谓超塑性?超塑性成形有何特点?

31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么?

32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

33、手工电弧焊与点焊在焊接原理与方法上有何不同? 34.手工电弧焊原理及特点是什么?

35、产生焊接应力和变形的主要原因是什么,怎样防止或减少应力和变形?

36.试说明焊条牌号J422和J507中字母和数字的含义及其对应的国标型号,并比较它们的应用特点。37.什么是焊接热影响区?低碳钢焊接热影响区内各主要区域的组织和性能如何?从焊接方法和工艺上,能否减小或消灭热影响区?

38.为什么存在焊接残余应力的工件在经过切削加工后往往会产生变形?如何避免? 39.铸铁焊接性差主要表现在哪些方面?试比较热焊、冷焊法的特点及应用。40.低合金高强度结构钢焊接时,应采取哪些措施防止冷裂纹的产生? 41.试比较钎焊和胶接的异同点。

42.何谓金属材料的焊接性,其所用的评价方法各有何优缺点? 43.塑料成形主要采用哪种方法?简述其工艺过程。44.塑料的结晶性与金属有何不同?为什么?

45.塑料注射模具一般由几部分组成?浇注系统的作用是什么? 46.分析注射成形、压塑成形、传递成形的主要异同点。47.热塑性塑料注射模的基本组成有那些? 48.橡胶的注射成形与压制成形各有何特点? 49.什么叫模具,其主要组成有那几部分?

50.粉末冶金成形技术包括哪些内容?它主要适用于哪种情况?

51.粉末压制品为什么在压制后,一定要经过烧结才能达到要求的强度和密度? 52.粉末冶金工艺生产制品时通常包括哪些工序?

53.为什么金属粉末的流动特性是重要的?

54.为什么粉末冶金零件一般比较小?

55.粉末冶金零件的长宽比是否需要控制?为什么? 56.为什么粉末冶金零件需要有均匀一致的横截面?

57.怎样用粉末冶金工艺来制造孔隙细小的过滤器?

58.试比较制造粉末冶金零件时使用的烧结温度与各有关材料的熔点?

59.烧结过程中会出现什么现象?

60.怎样用粉末冶金来制造含油轴承?

61.什么是浸渗处理?为什么要使用浸渗处理?

62.采用压制方法生产的粉末冶金制品,有哪些结构工艺性要求?

63.用粉末冶金生产合金零件的成形方法有哪些?

64.试列举粉末冶金工艺的优点。

65.粉末冶金工艺的主要缺点是什么?

66.列举常用的热固性塑料与热塑性塑料,说明两者的主要区别是什么?

67.塑料在粘流态的粘度有何特点?

68.塑料的结晶性与金属有何不同?为什么?

69.热塑性塑料成形工艺性能有哪些?如何控制这些工艺参数?

70.塑料注射模具一般由几部分组成?浇注系统的作用是什么?

71.分析注射成形、压塑成形、传递成形的主要异同点。

72.橡胶材料的主要特点是什么?常用的橡胶种类有哪些?

73.为什么橡胶先要塑炼?成形时硫化的目的是什么?

74.简述橡胶压制成形过程。控制硫化过程的主要条件有哪些?

75.橡胶的注射成形与压制成形各有何特点?

76.陶瓷制品的生产过程是怎样的?

77.陶瓷注浆成形对浆料有何要求?其坯体是如何形成的?该法适于制作何类制品?

78.陶瓷压制成形用坯料为何要采用造粒粉料?压制成形主要有哪几种方法?各有何特点?

79.陶瓷热压注成形采用什么坯料?如何调制?该法在应用上有何特点?

80.复合材料成形工艺有什么特点?

81.复合材料的原材料、成形工艺和制品性能之间存在什么关系?

82.在复合材料成形时,手糊成形为什么被广泛采用?它适合于哪些制品的成形?

83.模压成形工艺按成形方法可分为哪几种?各有何特点?

84.纤维缠绕工艺的特点是什么?适于何类制品的成形?

85.颗粒增强金属基复合材料的成形方法主要有哪些? 86.选择材料成形方法的原则与依据是什么?请结合实例分析。87.材料选择与成形方法选择之间有何关系?请举例说明。

88.零件所要求的材料使用性能是否是决定其成形方法的唯一因素?简述其理由。

89.轴杆类、盘套类、箱体底座类零件中,分别举出1~2个零件,试分析如何选择毛坯成形方法。90.为什么轴杆类零件一般采用锻造成形,而机架类零件多采用铸造成形? 91.为什么齿轮多用锻件,而带轮、飞轮多用铸件? 92.在什么情况下采用焊接方法制造零件毛坯? 93.举例说明生产批量对毛坯成形方法选择的影响。

94.对于中小批量生产的制品是否适宜用粉末压制法制造?为什么? 95.还原粉末和雾化粉末的特点是什么?

96.粉末压制制品为什么在压制后,一定要经过烧结才能达到所要求的强度和密度?

97.粉末压制机械零件、硬质合金、陶瓷都是用粉末经压制烧结而成。它们之间有何区别?各适用于哪些制品?

98.硬质合金中的碳化钨和钴各起什么作用?能否用镍、铁代替钴?为什么? 99.粉末压制件设计的基本原则是什么?为什么要这样规定?

10.试述注射成形、挤出成形、模压成形原理及主要技术参数的正确选用。101.塑料成形特性的内容及应用有哪些? 102.热塑性塑料注射模的基本组成有哪些?

103.何谓分型面?正确选择分型面对制品品质有哪些影响?

104.热塑性注射模普通浇注系统由哪些部分组成?各个组成部分的作用和设计原则是什么? 105.注射模成形零件设计包含哪些基本内容?

106.压塑模按凸凹模结构特征分类可分几类?它们各有什么特征? 107.压塑模的半闭合式凸凹模结构组成、储料槽、排气槽的结构有哪些? 108.挤出机头的分类及特点有哪些?机头设计的主要内容是什么?

109.塑料制品的结构技术特征包括哪些内容?针对具体的塑料制品,如何分析其技术特征 110.简述影响橡胶注射成形的主要技术因素及注射成形的应用特征。111.压延成形技术能够生产哪些橡胶制品?其生产过程与塑料压延有何异同? 112.挤出成形在橡胶加工中有何作用?影响挤出成形的主要因素是什么? 113.橡胶制品的成形特性包括哪些内容?

114.模具的结构一般由哪几部分组成?何谓模具的封闭高度?有何作用? 115.对模具材料有哪些性能要求?选择模具材料的原则和需要考虑的因素有哪些? 116.什么是模具寿命?有哪些因素会影响模具寿命? 117.模具的主要失效形式有哪些?它们的失效机理是什么? 118.模具制造的特点有哪些?模具的制造一般分为几个阶段? 119.模具电火花加工的基本原理是什么?它必须满足哪几个基本条件? 120.如何拟定材料成形方案?

121.材料成形过程与材料的选择有什么关系? 122.如何考虑材料成形过程的经济性与现实可能性? 123.如何控制成形件的品质?

124.什么叫做再制造技术?再制造技术的发展趋势如何? 125.制造技术的主要研究内容是什么?

名词解释

1.液态金属的充型能力

2.铸件的收缩

3.铸件的缩孔和缩松

4.铸件的化学偏析

5.铸造应力

6.低压铸造

7.金属的可锻性

8.体积不变定理

9.最小阻力定律

10.加工硬化

11.落料和冲孔

12.焊接热影响区

13.金属材料的焊接性

14.碳当量ωCE 15.熔化焊接

16.压力焊

17.粉末压制塑料注射成形

18.塑料的流动性

19.注射过程

20.模具基本组成填空题

1.影响金属充型能力的因素有:()、()和()。

2.浇注系统一般是由(),(),(),和()组成的。3.壁厚不均匀的铸件,薄壁处易呈现()应力,厚壁处呈现()应力。

4.粗大厚实的铸件冷却到室温时,铸件的表层呈()应力,心部呈()应力。5.铸造应力有()、()、()三种。

6.纯金属或共晶成分的铸造合金在凝固后易产生();结晶温度范围较宽的铸造合金凝固后易产生()。7.铸铁合金从液态到常温经历()收缩、()收缩和()收缩三个阶段;其中()收缩影响缩孔的形成,()收缩影响内应力的形成。

8.为防止产生缩孔,通常应该设置(),使铸件实现()凝固。最后凝固的是()。9.合金的流动性大小常用()来衡量,流动性不好时铸件可能产生()和缺陷。10.浇注位置的选择原则是;();分型面的选择原则为:()。

11.铸件上质量要求较高的面,在浇注时应该尽可能使其处于铸型的()。12.低压铸造的工作原理与压铸的不同在于()。

13.金属型铸造采用金属材料制作铸型,为保证铸件质量需要在工艺上常采取的措施包括:()、()、()、()。

14.影响铸铁石墨化的主要因素有()。

15.球墨铸铁的强度和塑性比灰铸铁(),铸造性能比灰铸铁()。16.铸件的凝固方式有()。

17.铸造应力的种类有(),()和()。18.浇注系统的作用是()。

19.常用的铸造合金有(),()和()三大类,其中()应用最广泛。

20.应用最广泛而又最基本的铸造方法是()铸造,此外还有()铸造,其中主要包括(),(),()和()等。

21.锻造时,对金属进行加热的目的是使金属的()升高,()降低,从而有利于锻造。22.最小阻力定律是()。

23可锻性用金属()和()来综合衡量。24.锻件图与零件图比较不同在于()。

25.锤上模锻的锻模模膛根据其功用不同,可分为()模膛、()模膛 两大类。26.预锻模膛与终锻模膛不同在于()。27.金属塑性变形的基本规律有()和()。28.对金属塑性变形影响最明显的是()。

29.金属的可锻性主要取决于()和()两个方面。

30.金属经塑性变形后,其机械性能的变化是(),()升高,(),()下降,这种现象称为()现象。

29.碳钢中含碳量愈多,钢的可锻性愈();这是因钢中含碳愈多,钢的()增高,()变差造成的。30.绘制自由锻件图应考虑的因素有:()、()、()。

31.根据所用设备不同,模锻分为()模锻,()模锻,()模锻和()模锻。32.由于模锻无法锻出通孔,锻件应留有()。

33.绘制模锻件图应考虑的因素有:()、()、()、()。34.锻件坯料质量计算式:()。

35.板料拉深是使板料变成()的工序,板料拉深时常见的缺陷是()和()。36.表示拉深变形程度大小的物理量是()。

37.板料冲压的变形工序有()、()、()和()等。38.板料冲压的基本工序分为()和()两大类。39板料冲孔时凸模的尺寸为(),凹模的尺寸为()。

40板料拉深时,为了避免拉裂,通常在多次拉深工序之间安排()热处理。

41.钢的焊性主要取决于钢的(),其中以()元素影响最大,通常用()来判断钢的可焊性好坏。42.焊接过程中,对焊件进行局部、不均匀加热,是造成焊接()和()的根本原因。43.按组织变化特性,焊接热影响区可分为()、()、()。

44.按照焊接过程的特点焊接方法可分为三大类()、()和();手弧焊属于(),电弧焊属于()。45埋弧自动焊的焊接材料是()和(),它适宜焊接()位置,()焊缝和()焊缝。

46.埋弧焊可用的焊接电流比手弧焊大得多,所以埋弧焊效率比手弧焊的()。

47焊接应力产生的原因是(),减小与消除焊接应力的措施有(),(),()和()。48.焊接变形的基本形式有(),(),(),()和()。49.焊接性包括两方面:()、()。

50.中、高碳钢的焊接一般采取的技术措施:()、()、()。51.使用直流电源实施焊条电弧焊时有()、()两种接线方法。52.铁碳合金中的含碳量愈高,其焊接性能愈(),为改善某些材料的可焊性,避免焊接开裂,常采用的工艺是焊前(),焊后()。

53.二氧化碳气体保护焊,由于二氧化碳是氧化性气体,会引起焊缝金属中合金元素的(),因此需要使用()的焊丝。

54.粉末压制生产技术流程是()、()、()。

3、何谓铸件的浇注位置?其选择原则是什么?浇注位置是指浇注时铸件在铸型中所处的空间

位置。原则:(1)铸件的重要加工面应朝下或位于侧面。(2)铸件大平面应朝下。(3)面积较大的薄壁部分应置于铸型下部或垂直、倾斜位置。(4)易缩孔件,应将截面较厚的部分置于上部或侧面,便于安放冒口。

4、金属在锻造前为何要加热?

加热温度为什么不能过高因为加热使原子运动能力增强,很容易进行滑移,因而塑性提高,变形抗力降低,可锻造性明显改善。加热温度过高,会产生过热、过烧、脱碳和严重氧化等缺陷,甚至坯料报废。

下载工程材料及成型工艺学习心得5篇word格式文档
下载工程材料及成型工艺学习心得5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    材料成型工艺综合复习题

    问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力......

    实习报告——压延成型工艺

    压延成型工艺 压延成型是热塑性塑料的主要成型方法之一,主要是通过压延机来完成的。将树脂(塑料)和各种添加剂经捏合机、密炼机及挤出喂料机(或开炼机)捏合、密炼塑化和过滤掉杂......

    树脂基复合材料成型工艺

    树脂基复合材料成型工艺 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发镇,其老的成型工艺日臻完善,新的成型方法不断......

    材料成型工艺实验室系统分析论文

    材料成型工艺系统分析 一、材料成型定义的理解 材料成形: 所有利用物理、化学、冶金原理使材料成形的方法,称之为材料成形加工工艺。包括金属液态成形、金属塑性成形、金属焊......

    复合材料成型工艺发展综述(模版)

    上海海事大学 先进复合材料成型工艺课程论文学 院: 海洋科学与工程学院 专 业: 班 级: 材料132 姓 名: 学 号:论文题目: 复合材料成型工艺发展综述 指导老师: 二〇一六年 一月......

    PET吹塑瓶成型工艺的探讨

    PET吹塑瓶成型工艺的探讨 近年来,PET吹塑瓶以其质轻(占同等玻璃瓶的1/10)、强度高、透明、无毒等优点被大量用于饮料包装,特别是碳酸性饮料的包装(如可乐等)更是异军突起。另外......

    《塑料成型工艺与模具设计》教学大纲

    《塑料成型工艺与模具设计》教学大纲 总112学时,其中:理论36课时,上机76课时 学分: 先修课程:《机械制图》、《计算机绘图》、《Pro/E塑料制品造型设计》等。适用专业:模具设计及......

    塑料成型工艺与模具设计教案

    《塑料成型工艺与模具设计》教案 长沙职业技术学院机械工程系傅子霞 课题:双分型面注射模(教材第94—97页)。 教学目标:1.识记模具基本结构,理解和掌握模具脱模过程。 2.能动手设......