第一篇:通信实验心得体会
在做实验之前以为并不难做像以前做过的实验一样完实验以
后两下子就可以把实验报告写完。直到做完了实验以后才真正的认识到其 实这并不容易一件很挑战的事情而学到的知识与难度却成正比我 受益匪浅。
由于自己的理论知识基础并没有十分牢固实验过程中我遇到了许多难
题也使我感到了理论知识的重要性。但是我并没有气馁实验中每当发 现了问题自己看书者是与小组同学讨论他还不会的经过老师 的讲解以后终解决了问题而也就加深了我对课本理论知识的理解 到了“双赢”的结果。
通过本次铁路信号的实验我学习到了很多知识。首先我对于铁路信号及通
信有了更加深刻的认识彻得了解了其基本原理和科学方法且在电脑上 进行了中间站微机连锁模拟实验和编组站信号控制系统模拟的操作以及模拟站 场上的列车走位。最终基本掌握了此类设备的原理及操作方法到的不仅是 之前在书本上学到的条条框框是理论与实践相结合的情况下实际的操作经 验。实验培养了我在实验中研究问题、分析问题和解决问题的能力以及培养了 良好的工程素质和科学道德。例如团队精神、交流能力、独立思考等提高 了自己的动手能力养了理论联系实际的作风强了创新意识。我把实验的过程分为了三个阶段。
实验前我只是复习了一下书本上所提到的相关知识致了解了基本的内
容、原理、实验过程及注意事项等要凭借记忆完成实验没有在网上搜 索知识点进行更加全面的复习者是提前用计算机联锁仿真培训系统做好预习一点就导致了我在做实验的时候有一点不明所以的状况是很不应该 的后在其他事情上一定要杜绝此类事情的发生。
在实验进行的过程中我发现仅仅依靠书本上学到的知识是完全不够的。实
验时遇到了很多问题电脑端的有些按钮不知道是什么意思站股道图及 某些色灯信号机的表示方法及意义由于没有记得很清晰而造成了混淆或者不知 其意的状况发生开始时点击了始终端可是股道上的信号机并不变色而无法 办理进路等问题。有些问题是看书者是小组成员之间经过讨论就可以解决 的有一些问题只有在问过老师之后才找到了原因而解决了问题得 实验得以顺利完成。这次的实验让我对联锁有了新的认识脑里对信号、道 岔以及进路等理论上的概念形成了更加形象的轮廓。而我们的同组的六个成员 各有各的优势热烈的讨论中把实验完成个人也都有了不同的进步 会了彼此的更加好的方法或者新的知识。
在实验结束后经过了长时间的反思认为自己在这次实验中出现了一些
问题。比如在实验前的预习工作做的不好应该认真看书课本上的知识 学透在脑子里后再用仿真模拟软件进行熟悉和练习验时才能做到 从容应对验时在不知道按钮表示的意义的情况下应该乱点一气该 问老师有就是实验时列车不可以离开轨道不可以随意的后退须调 车才可以返回。知道了这些进之后能使实验完成的更好。
最后们组举行了小组讨论顾了实验时用到的理论知识析了实
验时我们出的错以及做的好的地方且交流了对此次实验的感想别说了 说在这次实验中获得的知识以及经验。下面就是我在这次实验过后经过了认真 的思考以后总结了我从中收获的一些经验 在做实验前须要认真做好预习定要将课本上的知识识透为这
是实验的基础则老师讲解时就会听不懂将使得在做实验时的难度 加大费做实验的宝贵时间。如果什么都不清楚做实验时才去摸索 将是极大的浪费时间得事倍功半。更要了解实验的各项注意事项等样 在做实验时才会沉着冷静道什么该做么不该做少了很多不必要的 损失。做实验时定要亲历亲为必要将每一个步骤个细节弄清楚 弄明白。实验后得复习考样印象才深刻得才牢固则过后 不久你就会忘得一干二净。做实验时师还会根据自己的亲身体会一些 课本上没有的知识教给我们宽我们的眼界我们认识到这门课程的应用 是多么的重要。实验前必须做好充分的准备能够应对实验过程中可能发生 的各种状况着应对。
当然此之外们不仅要在课堂上认真的学习理论知识是要在实
验的过程中理论结合实际能达到实验的预期。我们必须要坚持理论联系实 际的科学思想和科学方法实践来证实理论实践中加深对理论知识的理 解和掌握。所以验是我们快速认识和掌握理论知识的一条十分重要的途 径。在实验过程中免的会遇到很多问题己解决不了的时候一定要通过 请教老师能了解到问题的所在然后再得以解决对不可以想当然的根据 自己的想法在电脑上胡乱的操作样的结果会发生什么谁都不知道许会 出现不可控制的局面。
这次实验还有一个地方做的不好是应该提前用模拟仿真的软件在自己 的电脑上与小组成员一起进行模拟实验前学习如何操作自己能够更加 熟练的运用实验室模拟软件样就可以节省很多的时间到不浪费资源。然后是要及时和同学讨论实验析清楚实验的目的验器材验过 程等自己不会的明白的知识过讨论或者是老师时搞懂要 让它遗留在心里样永远都是疑问不到解答。最后我觉得十分重要的事 情是实验过后一定要及时的做好总结则过段时间对于实验过程多少都 会有所遗忘多出现的问题或者是精彩的地方都无法清晰的呈现在实验报告 里会是很大的损失。当然是要从总结中发现自己的不足与缺点下 一次的实验中予以改正取不再犯同类的错。
第二篇:通信报告通信原理实验心得体会
通信原理实验心得体会
091180024代岳 通信工程
众所周知,《通信原理》是电子、通信、计算机、自控和信息处理等专业的重要基础课,所以我们通信工程专业的同学在本学期除了平时要上每周2次,每次2节的通信原理理论课程外,还要上每周1次持续3个小时的实验课来帮助我们理解通信原理课的知识,使同学们掌握和熟悉通信系统的基本理论和分析方法,为后续的学习打下良好的基础。
在做本学期的实验前,我以为跟以往的电子类实验差不多,以验证为主,不会很难做,就像以前做物理实验一样,课上按照要求做完实验,然后课后两下子就将实验报告写完,下次课上一交,就OK了。直到做完本学期所有的通信原理实验时,我才知道其实并不容易做,因为自主设计占了很大一部分,需要查找资料和跟不断跟同学讨论问题来解决难点,但学到的知识与难度成正比,使我获益良多.首先,在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就很可能会听不懂,这将使我们在做实验时的难度加大,浪费课上完成实验的宝贵时间。比如做BPSK自行设计的实验,你要清楚BPSK系统的传输特性以及输入输出序列的原理,如果我们不清楚,在做实验时才去探索讨论,这将使你极大地浪费时间,使你事倍功半。同时,做实验时,一定要亲力亲为,不要钻空子,务必要将每个步骤,每个细节弄清楚,最好能理解明白。在完成实验后,还要进行一定的复习和思考。只有这样,你的才会印象深刻,记得牢固。否则,过后不久,也许是半个学期,就会忘得一干二净,这是很糟糕的一种情况。在做实验时,老师还会根据自己的经验,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到通信原理实验的应用是那么的广泛,可以大大增强我们的探索的兴趣。
通过完成本学期的通信原理实验,使我学到了不少实用的通信知识,加深了对通信系统的理解,加强了动手的能力,与理论课完成了很好的互补。更重要的是,在做实验的过程,我们收获了思考问题和解决问题的各种角度以及方法, 提高了在实践中研究问题,分析问题和解决问题的能力,这与做其他的实验是通用的,让我受益匪浅,对以后的学习更加有信心。
第三篇:移动通信ADS实验
《移动通信系统》
—— 实验报告
基于PI/4-DQPSK调制方式的发射机与接收机
学院:通信工程
专业班级:08电子信息工程7班 姓名:何峰 学号:20085025 指导老师:李明玉
2011年12月29日
一、实验目的
1.熟悉ADS软件的使用、能用该软件进行原理图设计和原理图仿真。2.了解PI/4-DQPSK调制方式的原理及调制过程。3.了解发射机、接收机的结构及工作原理;
4.进一步了解移动通信信道对信号的衰落特性,了解信道中的3类损耗和4种效应;
二、实验器材
硬件条件:PC机一台 软件环境:ADS软件
三、实验原理
π/4DQPSK调制和基带差分解调的工作原理,解决了内插、脉冲成形、位定时恢复等几个关键问题,在此基础上对整个通信系统进行了计算机仿真。仿真结果证明了基于样点绝对值比较的位定时恢复算法应用于数字化解调中可获得较好的效果,并且给出了调制解调中脉冲成形滤波器的滚降因子α和位定时恢复算法中的M值对系统误码性能的影响,从而为实际系统的设计提供了有效的依据PI/4-DQPSK调制调制原理对输入数据经串/ 并变换、差分相位编码、内插和成形滤波器后,再经过正交调制就得到已调π/4sin(ω1 t)sinθk式中,k为第k个码元内信号的初相。上式展开为
e4DQPSK(t)coskcosctsinksinctIkcosctksinct(*)当前码元内初相k是前一码元初相k1与当前码元相位跳变量k之和,即
kk1k
(*)式中的Ik和Qk分别表示为
Ikcosk1cosksink1sinkQksink1coskcosk1sink
令cosk1Ik1,sink1Qk1,上面两式可以表示为
IkIk1coskQk1sinkQkQk1coskIk1sink(△)(△)式是PI/4-DQPSK信号的基本关系式,它表明了当前码元的两个正交信号Ik、Qk与前一码元Ik
1、Qk1及当前码元相位跳变量k之间的关系。
PI/4-DQPSK解调
可以用相干检测、差分检测或鉴频器等方法解调PI/4-DQPSK信号。其中中频差分检测原理框图如下所示。
a(t)cos(ctk)cos[c(tTs)k1]b(t)cos(c(tTs)k1)[sin(ctk)]
当cTs2n时,两个低通滤波器的输出分别为
ek0.5coskfk0.5sink
根据上表可制定如下判决抽样规则:
ek的抽样值ek的抽样值fk的抽样值f的抽样值k0,xk为“1 0,xk为“-1 0,yk为“1 0,yk为“-1
四、实验内容
1、顶层原理图的设计
如下图所示是整个工程的原理图。分为三部分:信源、信道和信宿。
信源部分:由比特发信号发成器产生随二进制的随机码,经过串并转换之后,对两路信号分别进行差分相位编码形成I、Q两路信号,再用I、Q信号分别对两个正交载波进行调制,最后由发射机送至信道。
信道部分:软件模拟实际信道的移动、衰落等特性,并通过基站接收转发至信宿。信宿部分:首先由接收机从空中信道接收来自于基站的微弱信号,经过高频放大、中频放大、解调后,显示所接收的比特信息,并分析误差向量幅度。
2、主要模块的原理图及分析
1.PI/4-DQPSK信号调制器
2.发射机
发射机的作用是对PI/4-DQPSK信号进行上混频(至射频)、滤波和放大,提高发射信噪比,尽可能提高信号在移动信道中的传输距离。发射机首先对PI/4-DQPSK信号进行上混频,混频器由乘法器和带通滤波器构成,本振频率为766.5MHz,上混频至836.5MHz;滤波器采用切比雪夫带同滤波器,中心频率为射频836.5MHz,通频带为30MHz,滤除带外噪声;放大器由两级构成,提供足够的信号增益。如下图所示其原理图:
3.接收机
信号经过移动信道的传输,由阴影效应、多径效应所引起的慢衰落和快衰落损耗,使得有用信号变得十分微弱。对于所接收到的信号,接收机收件进行高频滤波,提高信噪比,紧接着进行16dB的高频放大,使信号有足够大的幅度进行瞎混频的操作。对混频后的信号做低频滤波和低频放大处理,PI/4-DQPSK信号便从高频信号中解调出来了。如下图所示:
4.PI/4-DQPSK信号解调
解调器采用的是中频差分检测解调。输出的信号是I、Q两路正交信号。这两路信号由后面的“RectoCx”模块将并行转换为串行输出。
五、实验结果及分析
1、PI/4-DQPSK信号功率谱
-20dBm(Mod_Spectrum)-40-60-80-100-120-14069.8569.9069.9570.0070.0570.1070.15freq, MHz
2、I路调制信号和解调信号
I_ref(blue)& I_out{recovered}(red)21Iref, VIout, Vm20m1-1-20.60.70.80.91.01.11.21.31.41.51.61.7time, msec
3、发射信号功率谱
20dBm(Xmit_Spectrum)0-20-40-60-80-100836.35836.40836.45m4m3m3freq=836.5MHzdBm(Xmit_Spectrum)=-12.764m4freq=836.5MHzdBm(Xmit_Spectrum)=4.132836.50836.55836.60836.65freq, MHz
4、接收机前端信号功率谱: dBm(Recv_In_Spectrum)-60-80-100-120-140-160836.35836.40836.45836.50836.55836.60836.65freq, MHz
5、接收机后端信号功率谱:
Receiver IF SpectrumdBm(Recv_Out_Spectrum)200-20-40-60-80-10069.85m6m5m5freq=69.98MHzdBm(Recv_Out_Spectrum)=-39.365m6freq=70.01MHzdBm(Recv_Out_Spectrum)=-3.34469.9069.9570.0070.0570.1070.15freq, MHz
RCVR_power14.12522.543XMTR_power
6、接收机后端信号波形:
IF Trajectory DiagramRecv_IF_Timed, V-3-2-10123time(0.0000sec to 3.457msec)
7、I路解调信号眼图:
Eye Diagram21Eye0-1-
2六、设计心得
《移动通信系统》这门课总共做了四次实验,总的来说,虽然收获不是很大,但至少还是有那么一点点收获的。这让我有多了解了一种强大的软件—ADS,一种强大的通信系统仿真软件,对于设计通信模式,基站等有很大的理论基础。通过从频域和时域电路仿真到电磁场仿真的全套仿真技术。不过短短的四次实验对我而言还没能学会用它完整的设计一套系统。对于老师给出的10次实验,我只是一一浏览了一遍,了解了一下其仿真结果,对于其中的设计原理自己还是表示比较抽象。本次实验我选择了第9次的实验工程—基于PI/4-DQPSK调制方式的发射机与接收机,对其中我仿真结果及实验原理进行了了解,虽然到现在还是没有完全弄清楚是怎么回事,但至少还是实践过了,还是有一定的收获的。那么虽然以后也许不会接触到这方面的知识了,但还是在自己人生的知识阅历上增加了不少的东西。希望在接下来的课程考试中有个比较好的发挥,为这门课——《移动通信系统》划上一个圆满的句号。
0.008.2316.4624.6932.92time, usec41.1549.3857.6165.8474.0782.30
第四篇:单片机串行通信实验
实验四 单片机串行通信实验
一、实验目的
1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。
2、了解实现串行通讯的硬环境、数据格式的协议、数据交换的协议。
3、学习串口通讯的中断方式的程序编写方法
二、实验说明
利用单片机串行口,实现两个实验台之间的串行通讯。其中一个实验台作为发送方,另一侧为接收方。发送方读入按键值,并发送给接收方,接收方收到数据后在LED上显示。
三、实验仪器
计算机
伟福实验箱(lab2000P)
四、实验内容与软件流程图 1、8051的RXD、TXD接线柱在POD51/96仿真板上。
2、通讯双方的RXD、TXD信号本应经过电平转换后再行交叉连接,本实验中为减少连线可将电平转换电路略去,而将双方的RXD、TXD直接交叉连接。也可以将本机的TXD接到RXD上,这样按下的键,就会在本机LED上显示出来。
3、若想与标准的RS232设备通信,就要做电平转换,输出时要将TTL电平换成RS232电平,输入时要将RS232电平换成TTL电平。可以将仿真板上的RXD、TXD信号接到实验板上的“用户串口接线”的相应RXD和TXD端,经过电平转换,通过“用户串口”接到外部的RS232设备。可以用实验仪上的逻辑分析仪采样串口通信的波形
4、软件流程图
5、实验电路连接方式
①双机串行通信方式。TXD脚和RXD脚分别用于发送和接收数据。
②单机通信的情况下,只需将自己的TXD脚与RXD脚连接就可以,不用公地操作。
五、思考题
1、接收到的数据加1显示出来;
2、保存前一个接收到的数据,数据向前推动显示。
六、源程序修改原理及其仿真结果 实验结果图 源程序:
加1显示:
接收到的数据先前推送:
七、心得体会
通过这次实验,我掌握了单片机串行口工作方式的程序设计,及简易三线式通讯的方法。了解了实现串行通讯的硬环境、数据格式的协议、数据交换的协议。学习了串口通讯的中断方式的程序编写方法。
第五篇:通信原理实验二
通信原理实验二
数字锁相环
一实验目的
1、了解数字锁相环的基本概念
2、熟悉数字锁相环与模拟锁相环的指标
3、掌握全数字锁相环的设计
二 实验仪器
1、JH5001 通信原理综合实验系统 2、20MHz 双踪示波器
3、函数信号发生器
三 实验原理和电路说明
数字锁相环的结构如图2.2.1 所示,其主要由四大部分组成:参考时钟、多模分频器(一般为三种模式:超前分频、正常分频、滞后分频)、相位比较(双路相位比较)、高倍时钟振荡器(一般为参考时钟的整数倍,此倍数大于20)等。数字锁相环均在FPGA 内部实现,其工作过程如图2.2.2 所示。
在图2.2.1,采样器1、2 构成一个数字鉴相器,时钟信号E、F 对D 信号进行采样,如果采样值为01,则数字锁相环不进行调整(÷64);如果采样值为00,则下一个分频系数为(1/63);如果采样值为11,则下一分频系数为(÷65)。数字锁相环调整的最终结果使本地分频时钟锁在输入的信道时钟上。
在图2.2.2 中也给出了数字锁相环的基本锁相过程与数字锁相环的基本特征。在锁相环开始工作之前的T1 时该,图2.2.2 中D 点的时钟与输入参考时钟C 没有确定的相关系,鉴相输出为00,则下一时刻分频器为÷63 模式,这样使D 点信号前沿提前。在T2 时刻,鉴相输出为01,则下一时刻分频器为÷64 模式。由于振荡器为自由方式,因而在T3 时刻,鉴相输出为11,则下一时刻分频器为÷65 模式,这样使D 点信号前沿滞后。这样,可变分频器不断在三种模式之间进行切换,其最终目的使D 点时钟信号的时钟沿在E、F 时钟上升沿之间,从而使D点信号与外部参考信号达到同步。在该模块中,各测试点定义如下:
1、TPMZ01:本地经数字锁相环之后输出时钟(56KHz)
2、TPMZ02:本地经数字锁相环之后输出时钟(16KHz)
3、TPMZ03:外部输入时钟÷4 分频后信号(16KHz)
4、TPMZ04:外部输入时钟÷4 分频后延时信号(16KHz)
5、TPMZ05:数字锁相环调整信号
四 实验内容以及观测结果
准备工作:用函数信号发生器产生一个64KHz 的TTL 信号送入数字数字信号测试端口J007(实验箱左端)。1.锁定状态测量
用示波器同时测量TPMZ03、TPMZ02 的相位关系,测量时用TPMZ03 同步;
由上图可看出,将64KHz 的TTL 信号送入端口J007时,TPMZ03、TPMZ02上升沿对齐,环路锁定。
2.数字锁相环的相位抖动特性测量 数字锁相环在锁定时,输出信号存在相位抖动是数字锁相环的固有特征。测量时,以TPMZ03 为示波器的同步信号,用示波器测量TPMZ02,仔细调整示波器时基,使示波器刚好容纳TPMZ02 的一个半周期,观察其上升沿。可以观察到其上升较粗(抖动),其宽度与TPMZ02 周期的比值的一半即为数字锁相环的时钟抖动。
由上图可看出上升较粗(抖动)宽度约为0.45格,整个周期约是6.2格,因而数字锁相环的时钟抖动为0.45/(6.2*2)=0.0363。
3.锁定过程观测
用示波器同时观测TPMZ03、TPMZ02 的相位关系,测量时用TPMZ03 同步; 复位通信原理综合实验系统,则FPGA 进行初始化,数字锁相环进行重锁状态。此时,观察它们的变化过程(锁相过程)。
在第一项实验内容锁相状态测量时,观测TPMZ03、TPMZ02 的波形上升沿对齐,环路锁定。复位通信原理综合实验系统,波形随即变为两直线,如上图,然后几秒后又重新恢复锁定状态。4.同步带测量
(1)用函数信号发生器产生一个64KHz 的TTL 信号送入数字信号测试端口J007。用示波器同时测量TPMZ03、TPMZ02 的相位关系,测量时用TPMZ03 同步;正常时环路锁定,该两信号应为上升沿对齐。
(2)缓慢增加函数信号发生器输出频率,直至TPMZ03、TPMZ02 两点波形失步,记录下失步前的频率。
(3)调整函数信号发生器频率,使环路锁定。缓慢降低函数信号发生器输出频率,直至TPMZ03、TPMZ02 两点波形失步,记录下失步前的频率。
(4)计算同步带。
同步带=66.12KHz-61.88 KHz=4.24 KHz。
5.捕捉带测量
(1)用函数信号发生器产生一个64KHz 的TTL 信号送入数字信号测试端口J0007。用示波器同时测量TPMZ03、TPMZ02 的相位关系,测量时用TPMZ03同步;在理论上,环路锁定时该两信号应为上升沿对齐。
(2)增加函数信号发生器输出频率,使TPMZ03、TPMZ02 两点波形失步;然后缓慢降低函数信号发生器输出频率,直至TPMZ03、TPMZ02 两点波形同步。记录下同步一刻的频率。
上图同步一刻的频率是66.03KHz。
(3)降低函数信号发生器输出频率,使TPMZ03、TPMZ02 两点波形失步;然后缓慢增加函数信号发生器输出频率,直至TPMZ03、TPMZ02 两点波形同步。记录下同步一刻的频率。
(4)计算捕捉带。
捕捉带=66.03-62.07=3.96KHz。
六 实验总结
(1)分析总结数字锁相环与模拟锁相环同步带和捕捉带的大致关系。
对于这次数字锁相环实验,由实验内容2,还有查阅相关资料,可以了解到数字锁相环在锁定时,输出信号存在相位抖动是数字锁相环的固有特征。也正是由于这个相位抖动特性,使得数字锁相环的同步带和捕捉带的带宽相对较窄,有实验内容4、5加以验证,而且同步带与捕捉带大致相等。
第一次实验模拟锁相环,同步带,捕捉带的宽度都很大,而且我测得的同步带带宽要比捕捉带带宽大了约5KHz,数字锁相环的同步带捕捉带还没有5KHz。(2)实验心得体会
这次实验是紧承着上一次实验的,我觉得自己做实验过程中没有遇到太大障碍,就是在实验原理方面掌握的不是太好,自己觉得对双踪示波器和函数信号发生器的操作还是挺熟练的,没有在波形显示上遇到问题。