第一篇:相交线与平行线复习课教案
第二章:相交线与平行线复习教案
长田初中:梁晓润
教学目标:
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质。教学重点、难点:
重点: 复习在同一平面内两条直线相交和平行两种位置关系,以及相交平行的综合应用.难点: 垂直、平行的性质和判定的综合应用.教学准备:PPT 教学过程:
(开心一笑)导出课题:——第二章:相交线与平行线复习课 大猩猩为什么不喜欢平行线?没有相交(香蕉)知识点1:两种位置关系
在同一平面内,两条直线的位置关系有:()
易错点:同一平面内两条直线的位置关系有相交,垂直,平行三种。知识点2:相交线的相关知识 一
特殊情况:垂直(课件呈现)垂直的定义:两条直线相交成四个角,如果有一个角是直角,那么称两条直线互相垂直。直线外一点与直线上各点连接的所有线段中,垂线段最短。3 平面内,过一点有且只有一条直线与已知直线垂直。
易错点:直线m外有点P,它到直线m上点A,B,C的距离分别是6厘米,3厘米,5厘米,则点P到直线m的距离是()A : 等于6厘米
B :
等于3厘米
C :
等于5厘米
D : 不大于3厘米
二
一般情况:相交(课件呈现)两直线相交共有几个角,它们分别是什么关系? 2 这些特殊关系的角分别有什么性质? 邻角性质:
邻角互补。对顶角性质: 对顶角相等。知识点3:平行线的相关知识 一:
三线八角(课件呈现)如何找同位角,内错角,同旁内角? 二:
平行线的判定方法 1 同位角相等,两直线平行。2 内错角相等,两直线平行。3 同旁内角互补,两直线平行。同以平面内,平行于同一条直线的两条直线互相平行。易错点:两条直线被第三条直线所截,则()
A 同位角相等
B 同旁内角互补
C 内错角相等
D 以上都不对 三:
平行线的性质 两直线平行,同位角相等。2 两直线平行,内错角相等。3 两直线平行,同旁内角相互补。
平行线判定和性质的例题精讲,综合练习。(课件呈现)课堂小结:整章知识结构图见课件。布置作业:
第二篇:相交线与平行线复习课
相交线与平行线的复习课
学习目标:复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线;
加深理解推理证明,提高学生分析问题解决问题能力。
学习重点:使学生形成知识结构,并运用所学的知识进行简单的推理证明。
学习难点:证明题的思考分析过程学习方法:自主探索 合作交流
自主学习
1、如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2互为______角; ∠1和∠4互为______角;∠2和∠3互为______角; ∠1和∠3互为______角; ∠2和∠4互为______角.
(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠____=____°-____°=_____°; ∠4=∠____-∠1=____°-____°=_____°.
C
B
(第1题)(第2题)
2、如图所示, AC⊥BC, C为垂足, CD⊥AB, 点D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_______,点A到BC的距离是点B到CD 的距离是,A、B两点的距离是;
3、若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?
(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;
(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;
(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;
(10)∠6与∠2是______.
(第3题)(第4题)(第5题)(第6题)
4、如图所示,图中用数字标出的角中,同位角有______;
内错角有______;
同旁内角有______.
5、如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
(5)如果∠4+∠6=180°,那么____________.(____________,____________)
(6)如果∠6=∠3,那么____________.(____________,____________)
6、如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
(1)如果AB∥EF,那么∠2=______.理由是____________________________________.
(2)如果AB∥DC,那么∠3=______.理由是
(3)如果
(4)如果AF∥BE,那么∠1+∠2=______.理由是AF∥BE,∠4=120°,那么∠5=______.理由是
三、合作探究
1、在下列四个图中,∠1与∠2是同位角的图是().
图①图②图③图④
(A)①②(B)①③C)②③(D)③④
2、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()
A.a∥bB.b⊥dC.a⊥dD.b∥c3、已知点P在直线m外,点A、B、C均在直线m上,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离是()A等于2cm B小于2 cm C大于2cm D不大于2cm4、(选作)如图,直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为____.
(第4题)(第5题)
5、如图,DC∥EF∥AB,EH∥DB,则图中与∠DGE相等的角有________________________________.
6、在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有().
(A)3个(B)2个
(C)1个(D)0个
(第6题)(第7题)
7、如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个C)4个(D)3个
8、以下五个条件中,能得到互相垂直关系的有().
①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线
④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线
(A)1个(B)2个(C)3个(D)4个
9、把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°
(A)1个B)2个(C)3个(D)4个
10、如图,直线l1,l2被l3所截得的同旁内角为,,要使l1∥l2,只要使().
(A)+=90°(B)1160(C)=(D)0°<≤90°,90°≤<180°3
3(第10题)(第11题)
11、如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().
(A)180°-(B)90°+(C)180°+(D)270°-
12、把命题“对顶角相等”写成“如果„,那么„”的形式为:;
13、把命题“等角的补角相等”写成“如果„,那么„”的形式为:;
四、反馈检测
1、如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.
2.如图,CD⊥AB,EF⊥AB,∠E=∠EMC;
求证:CD是∠ACB的平分线.
3.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
4.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.求证:AB∥DC.
5.如图,∠E=∠3,∠1=∠2,求证:∠BAP 与∠4互补
6.已知AD与AB、CD交于A、D两点,EC、BF与AB、CD交于E、C、B、F,且∠1=∠2,∠B=∠C.试判断
∠A与∠D的数量关系并说明原因。
7.已知∠ABE+∠CEB=180,∠1=∠2,则∠F与∠G相等吗?为什么?
8.试讨论下列各种情况下∠A、∠C、∠E三者之间的关系。
①;②;
③;④;
⑤;⑥;
第三篇:相交线与平行线复习教案
相交线与平行线复习教案
教学目标
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.重点、难点
重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:垂直、平行的性质和判定的综合应用.教学过程
一、复习提问
本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.二、回顾与思考
按知识网展开复习.1.对顶角、邻补角。
(1)教师提出问题,由幻灯片出示.①两条直线相交、构成哪两种特殊位置关系的角?指出图(1)中具有这两种位置的角.(1)(2)(3)②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何? ③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?(2)学生回答.(3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。
(4)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等, 你得到什么结论? 让学生明确,对顶角总是相等,邻补角一定互补, 但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为90°角, 这时两条直线互相垂直.2.垂线及其性质.(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用.作判定用时写成:如图(2),因为∠AOD=90°,所以AB⊥CD, 这是一个角的“数”到两直线垂直的“形”的判断。
作为性质用时写成:如图(2),因为AB⊥CD,所以∠AOD=90°。这是由“形”到“数”的说理。
(2)如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.(4)(5)(6)鼓励学生用不同方法求解.(3)垂线性质1和性质2.让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已知直线的垂线存在并且唯一的.学生思考: ①请回忆一下后体育课测跳远成绩时,教师是怎样测量的? 如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一②条直线上吗?为什么? ③点到直线的距离、两条平行线的距离.初中阶级学习了三种距离,即是距离,就要懂得的共同点:距离都是线段的长度,又要懂得区别:两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是某条直线上的一点到另一点平行线的距离.学生练习:①如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.②请归纳一下与垂直有关的知识中,有哪些重要结论? 如垂线的性质1、2,又如两种直线都垂直于第三条直线,这两条直线平行, 一条直线与平行线中一条垂直,也与另一条垂直……
3.同位角、内错角、同旁内角.只要求学生从图形中找出同位角,内错角,同旁内角.练习:如图(7),找出∠
1、∠
2、∠3中哪两个是同位角、内错角、同旁内角.(7)4.平行线判定与性质
(1)怎样判别两条直线是否平行.(2)平行线有什么特征?(3)对比平行线的性质和直线平行的条件,它们有什么异同?(4)为什么研究平面内两直线的位置关系总是与角联系起来?围绕这些问题展开讨论,交流.教师使学生进一步明确:平行线的判定也是由“数”即角与角的关系到“形”的判断,而性质则是“形”到“数”的说理,在研究两条直线的垂直或平行时共同点是把研究它们的位置关系转化为研究角或角之间的关系。
学生练习:①填空:如图(8),当_______时,a∥c,理由是________;当______时, b∥c,理由是_________;当a∥b,b∥c时,______∥______,理由是_________.(8)(9)(10)②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系?为什么? 教师根据学生情况酌情给予引导.5.关于平移,让学生思考:(1)图形平移时,连接对应点有什么关系?(2)如何确定图形平移的方向和平移的距离?(3)你能用平移设计一些图案吗? 练习:如图(10),平移四边形ABCD,使点B移动到点B′,画出平移后的四边形A′B′C′D′.三、作业
1.课本P39.1~8.2.补充作业:
一、判断题.1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.()2.平面内,一条直线不可能与两条相交直线都平行.()3.两条直线被第三条直线所截,内错角的对顶角一定相等.()4.互为补角的两个角的平行线互相垂直.()5.两条直线都与同一条直线相交,这两条直线必相交.
第四篇:相交线与平行线教案
第七章 相交线与平行线
7.1相交线
【教学目标】
1.了解两条直线相交形成四个角;2.理解对顶角、邻补角的概念;3.掌握对顶角的性质及它的推导过程;4.能运用对顶角的性质解决一些问题.5.培养识图能力.【教学重点】
1.对顶角、邻补角的概念;2.对顶角的性质及应用.【对话设计】
〖探究1〗 两条直线相交所得的角
B(1)如图,直线AB、CD相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)? 2(3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,C D 4 3 ∠2的对顶角是______,邻补角是_______________.O 〖了解邻补角及对顶角的特征〗(见P5)
A 〖探究2〗“顾名思义,如果两个角的顶点重合,这两个角是对顶角.”这句话对吗?画图说明.〖探究3〗如图,C是直线AB上一点,CD是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗? A 〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一条射线组成的两个角.C 〖探究4〗判断下列语句是否正确: B D(1)互补的两个角一定是邻补角.(2)一个角的邻补角一定和它互补.A(3)邻补角是有特殊位置关系的两个互补的角.〖补充练习〗
D 1.如图,D、E分别是AB、AC上的一点,BE与CD交于点G,若∠B=∠C,猜测图中哪些角是相等的.B 2.如图,E是AD上一点,图中有互补的角吗?有相等的角吗?为什么? A(注意:什么叫对顶角?)3.说明下列语句为什么是错误的:(1)一个锐角和一个钝角一定互补;(2)若两个角互补,则这两个角一定是一个锐角,一个钝角.C 〖作业〗
E G C B E D
7.2相交线与垂线(第一课时)【教学目标】
1.理解垂线、垂线段的意义;2.会用三角尺或量角器过一点画已知直线的垂线;3.掌握垂线的性质1.【教学重点】
1.区分垂线和垂线段;2.用三角尺或量角器过一点画已知直线的垂线;A 3.垂线的性质1.2 【教学难点】 C D 4 3 怎样画一条线段或射线的垂线.O 【对话设计】
B 〖探究1〗 两条直线相交的特殊情况
如图, 直线AB、CD相交于O,若∠1=90º,求其它3个角.〖阅读〗了解垂直、垂线和垂足(见P6).〖理解〗日常生活中, 两条直线互相垂直的情形很常见(见P6图5.1-6).你能再举出其它例子吗? 〖探究2〗 过一点画直线的垂线
B(1)用三角尺画已知直线的垂线,这样的垂线能画出几条?(2)如图,过直线AB上的已知点P,用三角尺画AB的垂线;过直线上一点,可以画几条直线与这条直线垂直? P A(3)如图,过直线AB外的已知点P,用三角尺画AB的垂线,并注明垂足.· B P 过直线外一点,可以画几条直线与这条直线垂直?(4)从直线AB外的已知点P,到直线AB画垂线段,与(3)比较,注意区分垂线和垂线段.A 〖阅读归纳〗你知道垂线的第一条性质吗(见P7)?请注意理解“有” 与“有且只有”的区别.· P 〖探究3〗 怎样画一条线段或射线的垂线
规定:画一条线段或射线的垂线,就是画线段或射线所在直线的垂线.A(1)过线段AB外的已知点P,画线段AB的垂线;
B(2)过射线AB外的已知点P,画射线AB的垂线.P · 〖探究4〗点到直线的距离
这是一幅比例尺为1:500 000的地图,你能分别求出李庄A到火车站B和吴镇D的距离吗?你认为铁路上是否存在到李庄距离最近的点? 〖作业〗 A B P37练习
习题
A · B
c D
7.2 垂线(第二课时)【教学目标】
1.理解点到直线的距离的意义,并会度量点到直线的距离;2.掌握垂线的性质2;3.感受简单推理.【教学重点】
1.点到直线的距离;2.度量点到直线的距离;3.垂线的性质2.【教学难点】
区分垂线段与点到直线的距离.【对话设计】
〖探究1〗怎样测量跳远的成绩
如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺
起 的位置.跑
线 〖归纳〗你能说出垂线的第二条性质吗? 什么叫做点到直线的距离(见P8)?
〖探究2〗
如图,要从A处到河边B挖一道水渠AB引水,B点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?
〖课堂练习〗
1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段)叫做三角形的高.请用三角板分别画出下面三角形的三 条高(各用三种颜色).A · A A A B
2.书上40-41页习题
C C B B
C
7.3平行线
平行线(第一课时)
【教学目标】 1.知道三线八角;2.知道同位角、内错角和同旁内角.【对话设计】 〖复习〗
两条直线相交所成的角共有四个,这四个角之间有哪几种关系? 〖有关三线八角的介绍〗
一条直线分别同两条直线相交(或者说两条直线被第三条直线所截), 构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB、CD与直线EF相交,∠1和∠5,∠2和∠6,∠3和∠7,∠F 和∠8都是同位角,共有4对;2 ∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同D C 4 3 旁内角,共2对.5 6 A B 〖探索1〗 8 7 如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是E 内错角?哪几对角是同旁内角?
F C 1 3 5 D A 6 8 7 B E 〖探索2〗
如图,直线AB、CD与直线EF相交,∠5和_____是同位角,和____是内
B D 错角,与______是同旁内角.1 2 5 6 E F 4 8 7 3 C A 〖探索3〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?
E 哪几对角是内错角?哪几对角是同旁内角? 2
D C 4 3
A 5
B 〖探索4〗 F 如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像
A D 英文字母“N”, 再指出它们是哪两条直线被哪一条直线所截而成.1 〖探索5〗 B C
如图,已知四边形ABCD是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?
B
〖探索6〗 D 如图,直线EF、CD与直线AB相交, 任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两
E 个角吗?
A A D C B C F 7.3平行线(第二课时)【教学目标】
1.了解空间两条直线的位置关系;2.了解平行线的概念,理解同一平面内两条直线的位置关系;3.认识平行线的性质1、2.P 【对话设计】 · 〖复习交流〗
如图,已知直线AB和直线外一点P,你能过点P画一条直线与AB平行A B 吗?把你的画法与同伴交流,看谁的方法好.〖介绍空间两条直线的位置关系〗
D' C' 如图,与长方体的棱AB平行的棱有__________________等____条,它们都B' A' 和AB在同一平面内;与AB相交的棱有______________等____条, 它们也和AB在同一平面C DD 内;A B 棱AB与棱B'C'不相交也不平行,像这样的两条直线叫做异面直线,与AB异面的直线还有______________等____条.〖归纳〗在同一平面内,两条直线的位置关系只有_____、_______两种.〖探索1〗在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗?试一试,并把你的折法与同伴交流.E D P · 〖探索2〗经过直线外一点,可以画两条直线和这条直线平行吗? C F 〖平行公理1介绍〗 经过直线外一点,有且只有一条直线与这条直线平行.A B 〖释义〗本书中所说的基本事实是人们在长期实践中总结出来的结论, 基本事实也称为公理.〖想一想〗如图,P是直线AB外一点,CD与EF相交于P.若CD与ABC D平行,则EF与AB平行吗?为什么? E F 〖探索3〗如图,若CD∥AB,且 EF∥AB,则CD与EF能不平行吗?为
A B 什么? 〖平行公理2介绍〗
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.〖友情提示〗
若a=b=c(字母表示数),那么,a=c ,根据的是等式的性质.若a∥b,b∥∥c(字母表示直线),那么a∥b.根据的是平行公理2.7.4平行线的判定(第一课时)【教学目标】
1.掌握平行线的判定方法;2.了解从平行的判定公理得出其它两种判定方法的过程;3.感受逻辑推理;4.感受把未知化为已知的思想.【教学重点与难点】
探索并掌握平行线的判定方法.【对话设计】 〖探索1〗
P 我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以· 吗?如果可以,请用这种方法过点P画一条直线与AB平行.你能够说明你所画的直线一定与AB平行吗? A B 〖介绍平行线的判定方法1〗
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.〖说明〗方法1也是基本事实(公理).〖探索2〗
木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的一个锐角)行吗?
b 2 〖探索3〗 如图,如果∠1=∠2,由平行线的判定方法1,能得出a∥b吗? a 〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2: c 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.〖归纳〗
遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用“同位角相等,两直线平行”得到“内错角相等,两直线平行”.〖探索4〗如图,现在我们一起来探究: 两条直线(a、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180º),那么这两条直线(a、b)平行吗?
b 〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3: 两条1 a 直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.c
〖练习〗 1 2 a 4 3 如图,分别指出下面各推理的根据:(1)∠2=∠5a∥b;
(2)∠4=∠5a∥b;
b c 5 a∥b.(3)∠3+∠5=180º
〖作业〗 P47-48
7.4平行线的判定(第二课时)【教学目标】
会应用平行线的判定方法.【对话设计】
〖复习思考〗(见P18)
D C 〖探索1〗如图,下面的两个角分别是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠BAC与∠DCA;A B(2)∠DAC与∠BCA.〖探索2〗如图,a、b、c、d是直线,E、F、G、H是交点,(1)若∠1=∠2,可以证明a∥b,而不能证明c∥d.这是因为∠1和∠2是
H E 2 a 直线_______和_____被直线____所截而成,它们与直线____无关.(2)同样的道理,若已知∠1 = ∠3,可以证明______∥______,这是因为3 1 b 它们是直线____和______被直线______所截而成.G F c d
D C 〖探索3〗如图,BE是AB 的延长线,从∠CBE=∠A可以判定_____∥______,这是因为相等的两角是直线____和____被直线____所截 而成(与直线_____无关),判定平行的根据是___________________
A E __________________.B 〖提示〗用彩色笔在图中画出相等的两个角(∠CBE和∠A),理解为什么不能由此推出AB∥CD.〖说明〗学习和运用判定方法1的难点是:
A(1)判定两个角是不是同位角;(2)确定这两个同位角是哪两条直线被那一条直线所截而成;
D E(3)进而判定可以证明哪两条直线平行.B C 〖探索4〗如图,D是AB上一点,E是AC 上一点, ,根据判定方法1,如果知道哪两个角相等,就可以证明DE∥BC? C A 〖探索5〗如图,AE与CD相交于O,若∠A=110º,∠1=70º,就可以E O 证明AB∥CD,这是为什么? B D 〖作业〗
7.5平行线的性质(第一课时)【教学目标】
1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.【教学重点】
平行线的性质以及应用.【教学难点】
平行线的性质公理与判定公理的区别.【对话设计】
〖探索1〗 反过来也成立吗
过去我们学过: 如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗? 再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对? 〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确.〖探索2〗
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想.〖推理举例〗
如果把平行线性质1---“两直线平行,同位角相等”看作是基本事实(公理),3 b 我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.2 1 如图,已知:直线a、b被直线c所截,且a∥b, a 求证:∠1=∠2.c 证明:∵a∥b, ∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等), ∴∠1=∠2(等量代换).b 2 〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.1 请模仿范例写出证明.a c 如图,已知: 直线a、b被直线c所截,且a∥b, 求证:∠1+∠2=180º.证明: b 〖探索4 〗
如图: 直线a、b被直线c所截, a(1)若a∥b,可以得到∠1=∠2.根据什么?
c
(2)若∠1=∠2,可以得到a∥b.根据什么?根据和(1)一样吗? 如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a∥b(_________________).(3)∵a∥b,∴∠1=∠2(__________________);b 2 4(4)∴a∥b,∴∠1+∠4=180º(_____________________________________)a(5)∵∠1=∠2,∴a∥b(___________________);c(6)∵∠1+∠4=180º,∴a∥b(_______________).7.5平行线的性质(第二课时)【教学目标】
掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗
一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?
〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;
C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;B A(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗
同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗 C(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.D B 〖作业〗p51-52 7.5命题(第三课时)
【教学目标】
掌握命题的概念,并能分清命题的组成部分.【对话设计】 〖概念理解1〗
A
前面,我们学过一些对某一件事情作出判断的句子,例如:(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行;(2)等式两边加同一个数,结果仍是等式;(3)对顶角相等.像这样判断一件事情的语句,叫做命题.〖探索1〗下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 有且只有一条直线与这条直线平行.(4)若|a|=-a,则a≤0.〖概念理解2〗
许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式,这时,“如果”后接的部分是题设,“那么”后接的的部分是结论.〖探索2〗命题“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”中,题设是什么? 〖探索3〗
把下列命题改写成“如果……那么……”的形式:(1)互补的两个角不可能都是锐角;(2)垂直于同一条直线的两条直线平行.〖探索4〗指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1.(2)两直线平行,同旁内角互补.(3)同旁内角互补,两直线平行.(4)同角的余角相等.(5)绝对值相等的两个数相等.〖探索5〗判断下列命题是否正确:(1)如果两个数的和为0,这两个数互为相反数;(2)如果两个数互为相反数,这两个数的和为0;(3)如果两个数互为相反数,这两个数的商为-1;(4)如果两个数的商为-1,这两个数互为相反数.(5)如果两个角是邻补角,这两个角互补;(6)如果两个角互补,这两个角是邻补角..57.6图形的平移
【教学目标】 1.理解什么叫平移;2.经历观察、分析、操作、欣赏及抽象、概括的过程;3.进一步发展空间观念,增强审美意识.【教学重难点】
平移的概念与性质.〖理解平移〗
如图,已知线段AB,平移AB,使点A移动到点A,你能画出平移后的线段AB吗(只要画示意图)?如果是使点A移动到点A呢?与同学交流答案.你能从中体会平移吗? 〖练习〗如图,平移ΔABC,使点A移动到点A,画出平移后的三角形
'''“
' A · A' B · A”A'B'C.〖方格与平移〗如图,平移ΔABC,使点A移动到点A,画出平移后的''三角形ABC.(请注意方格的作用.)
''A' · A C B '
'''〖练习〗如图,平移ΔABC,使点A移动到点A,画出平移后的三角形ABC.(请注意方格的'作用.)
〖平移与旋转〗如图,使ΔABC绕点A旋转90º,画出旋转后的三角''形ABC.(这时方格还有用吗?)'
〖平移的过程与结果〗 下列变换属于平移吗?
作业:p57-58习题
第五篇:《相交线与平行线》复习指导
龙源期刊网 http://.cn
《相交线与平行线》复习指导
作者:邹兴平
来源:《语数外学习·上旬》2013年第03期
《相交线与平行线》是平面几何的重点内容,这一章中的对顶角、垂线、互余和互补的概念、命题的真假、平移以及平行线的判定与性质及有关推理计算,是深入学习三角形、四边形等几何知识的基础,在实际生活中有着很广泛的应用.同学们一定要牢固掌握这部分知识,熟练运用它们解决问题.下面举例对知识点进行剖析.知识点
一、与相交线相关的概念和计算
与相交线相关的概念和性质较多,如对顶角相等;两个互为邻补角的角的和为180°;过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短,等等,同学们需要认真辨析,才能熟练运用.例1 如图1所示,由点O引出六条射线OA、OB、OC、OD、OE、OF,且AO⊥OB,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.