第一篇:有理数混合运算教案
一、教学目标是:
1、知识与技能目标
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。
2、过程与方法目标
经历实验、操作、探索、等数学活动过程,发展合作交流的意识,提高有条理地、清晰地阐述自己观念的能力;
3、情感与态度目标
在解决问题的游戏活动中,体验数学学习的兴趣,在解决疑难问题的过程中,体会克服困难获得的欢欣。
二、教学重点:
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。教学难点:
熟练进行四步以内有理数的混合运算。教学方法: 启发引导发现法 教具: 小黑板,扑克牌
三、教学过程设计:
本节课设计了五个环节:第一环节:复习回顾,引入新课;第二环节:例题练习,掌握新知;第三环节:游戏活动,巩固提高;第四环节:课堂小节;第五环节:布置作业;
第一环节:复习回顾,引入新课
教师出示问题:
(1)请同学们回顾学过的加、减、乘、除四则运算的法则如何叙述?
(2)请同学们观察下列各题,各包含了哪几种运算?
(1)18-(-12)÷(-2)2×(-1/3);(2)-42 ×[-3/4+(-5/8)]。
学生思考,并举手发言,教师鼓励学生的说法,并导入新课:今天我们将学习有理数的加、减、乘、除以及乘方的混合运算(通过活动(1)复习回顾小学四则运算法则“先算乘法,再算加法,如果有括号,先算括号里面的.”为有理数四则运算的法则的学习铺设台阶;通过活动(2)引入本节课的学习课题:有理数的混和运算,并为下一环节的进行提出问题。)
第二环节:例题练习,掌握新知 教师提问:这种运算应该怎么进行? 学生活动:
(1)观察、类比、概括有理数混和运算的法则,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
例1 计算:
1252.52
562例2 计算:
(-3)2×[-2/3+(-5/9)]
(2)由学生独立完成第一环节活动(3)以及课本P48的随堂练习,请四名学生上台板演,教师巡视指导,关注待进生的点滴进步,及时鼓励他们,并及时讲评学生的板演,对格式、计算过程等进行评价。
(1)18-(-12)×(-2)2×(-1/3);
(2)-42 ×[-3/4+(-5/8)];
(3)8+(-3)2×(-2);
(4)100÷(-2)2-(-2)÷(-2/3).(活动(1)是为了培养学生的观察能力,类比能力,概括能力,语言表达能力;其中例1的教学是为了巩固有理数的运算法则,并让学生了解小数和带分数再乘除运算中一般化为分数或假分数进行乘除更容易约分;例2的教学是为了对比两种运算方法的不同之处,体会运算律可以简化运算。突出本节课的重点和难点;活动(2)一方面是为了熟练有理数混和运算的法则,并培养说明意识和表达能力;突出本节课的重点,突破本节课的难点;另一方面是为了让学生自己去验证自己概括的有理数混和运算的法则的正确性,并体验成功的欢欣。)
第三环节:游戏活动,巩固提高 教师介绍“24点”游戏规则:
从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J、Q、K分别代表11、12、13。
同时教师举例:若抽到的四张扑克牌分别是方块
2、红桃
2、黑桃 A和黑桃3,我们该怎样运算使结果是24或-24呢?
师生共同交流,解决问题,可以列式为[(-2)-1]×(-2)3=24 学生竞赛活动:
让学生六人一组从准备好的扑克牌中任意抽出四张牌,并用适当的运算符号连接,使得运算结果为24或者-24,在规定时间内,完成的小组把本组的计算过程一起写在黑板上,教师引导学生检查计算过程是否正确,并当场奖励正确完成的小组。没有完成的小组 在课后以后继续完成。
(竞赛活动是为了培养学生的探究能力,合作能力,交流能力,以及对运算法则、运算律的应用能力,再次突出重点,突破难点;同时也是为了培养学生的逆向思维能力。因为游戏中“已知结果写算式”的过程正好与过去“已知算式求结果”的过程相反;同时展开竞赛可进一步激发学生的活动兴趣,培养集体荣誉感,对没有完成的小组进行鼓励,让学生带着问题走出课堂。同时对学生进行环保教育和养成教育。)
第四环节:课堂小结
由学生自己总结本节课的内容,培养学生的语言表达能力,活跃课堂气氛,表现学生独立、自主、自信的个性.展示学生的聪明智慧。
第五环节:布置作业
习题知识技能1,问题解决1。复习巩固有理数混和运算的知识,训练运算技能和提高解决问题的能力。
四、教学反思
第二篇:有理数混合运算教案doc
2-11.有理数的混合运算
授课教师:黄屿
一、教学目标:
1、知识与技能目标
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。
2、过程与方法目标
经历实验、操作、探索、等数学活动过程,发展合作交流的意识,提高有条理地、清晰地阐述自己观念的能力;
3、情感与态度目标
在解决问题的游戏活动中,体验数学学习的兴趣,在解决疑难问题的过程中,体会克服困难获得的欢欣。
二、教学重点:
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。
三、教学难点:
熟练进行四步以内有理数的混合运算。
四、教学方法: 尝试教学法
五、教具: 扑克牌
六、教学过程: 第一环节:复习回顾,引入新课 教师出示问题:
(1)请同学们回顾学过的加、减、乘、除四则运算的法则如何叙述?(2)请同学们观察下列各题,各包含了哪几种运算?
(1)18-(-12)÷(-2)2×(-1/3);(2)-42 ×[-3/4+(-5/8)]。
学生思考,并举手发言,教师鼓励学生的说法,并导入新课:今天我们将学习有理数的加、减、乘、除以及乘方的混合运算
(通过活动(1)复习回顾小学四则运算法则“先算乘法,再算加法,如果有括号,先算括号里面的.”为有理数四则运算的法则的学习铺设台阶;通过活动(2)引入本节课的学习课题:有理数的混和运算,并为下一环节的进行提出问题。)
第二环节:例题练习,掌握新知 教师提问:这种运算应该怎么进行? 学生活动:
(1)观察、类比、概括有理数混和运算的法则,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
例1 计算:
1252.52
562例2 计算:
(-3)2×[-2/3+(-5/9)]
(2)由学生独立完成第一环节活动(3)以及课本P48的随堂练习,请四名学生上台板演,教师巡视指导,关注待进生的点滴进步,及时鼓励他们,并及时讲评学生的板演,对格式、计算过程等进行评价。
(1)18-(-12)×(-2)2×(-1/3);
(2)-42 ×[-3/4+(-5/8)];
(3)8+(-3)2×(-2);
(4)100÷(-2)2-(-2)÷(-2/3).(活动(1)是为了培养学生的观察能力,类比能力,概括能力,语言表达能力;其中例1的教学是为了巩固有理数的运算法则,并让学生了解小数和带分数再乘除运算中一般化为分数或假分数进行乘除更容易约分;例2的教学是为了对比两种运算方法的不同之处,体会运算律可以简化运算。突出本节课的重点和难点;活动(2)一方面是为了熟练有理数混和运算的法则,并培养说明意识和表达能力;突出本节课的重点,突破本节课的难点;另一方面是为了让学生自己去验证自己概括的有理数混和运算的法则的正确性,并体验成功的欢欣。)
第三环节:游戏活动,巩固提高 教师介绍“24点”游戏规则:
从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J、Q、K分别代表11、12、13。
同时教师举例:若抽到的四张扑克牌分别是方块
2、红桃
2、黑桃 A和黑桃3,我们该怎样运算使结果是24或-24呢?
师生共同交流,解决问题,可以列式为[(-2)-1]×(-2)3=24 学生竞赛活动:
让学生六人一组从准备好的扑克牌中任意抽出四张牌,并用适当的运算符号连接,使得运算结果为24或者-24,在规定时间内,完成的小组把本组的计算过程一起写在黑板上,教师引导学生检查计算过程是否正确,并当场奖励正确完成的小组。没有完成的小组 在课后以后继续完成。(竞赛活动是为了培养学生的探究能力,合作能力,交流能力,以及对运算法则、运算律的应用能力,再次突出重点,突破难点;同时也是为了培养学生的逆向思维能力。因为游戏中“已知结果写算式”的过程正好与过去“已知算式求结果”的过程相反;同时展开竞赛可进一步激发学生的活动兴趣,培养集体荣誉感,对没有完成的小组进行鼓励,让学生带着问题走出课堂。同时对学生进行环保教育和养成教育。)
第四环节:课堂小结
由学生自己总结本节课的内容,培养学生的语言表达能力,活跃课堂气氛,表现学生独立、自主、自信的个性.展示学生的聪明智慧。
第五环节:布置作业
教科书第90页习题2.15知识技能1,问题解决1。复习巩固有理数混和运算的知识,训练运算技能和提高解决问题的能力。
四、教学反思
第三篇:有理数加减混合运算教案
一:教学目标
让学生了解代数和的定义以机会进行加减混合运算。二:教学重点
将加减混合运算理解为加法的运算。三:教学难点
把省略加号与括号的形式按照有理数的加法进行运算。四:教具
小黑板。五:教学过程
创设情境,复习引入
师:我们以前学习了有理数的加法和减法,同学们学的都很好,我们来看看几道题还记得怎样做?(出示小黑板)(1)(-32)-(-8)-(+15)+(-16/2)(2)(-6/4)-(+5/2)-7+(-12)(第一题薛明星,第二题吴俊,其他学生练习本上写)
师:好,他们写好了。下面的同学也写完了吗?我们一起看看他们两人做的。你们和他们做的一样吗?(讲解:还是先找简便方法,运用加法交换律、结合律,还有互为相反数的,把他们先放到一起,然后根据有理数的加法法则、减法法则计算结果。)正解:
解:(1)=-32+8-15-16/2(2)=-6/4-5/2+7-12 =-47 =-9 师:我们还来看第一题,(板书到黑板上)。
(-32)-(-8)-(+15)+(-16/2)我们看到这个式子里面既有加法也有减法,今天我们就来学习有理数的加减混合运算(板书到黑板上)。
师:如果我说根据有理数的减法法则我们可以把它改写以下,怎么写? 生:一起回忆减法法则内容:减去一个数,等于加上这个数的相反数。即式子为:-32+8+(-15)+(-16/2)师:那再去掉括号呢? 生:-32+8-15-16/2
师:我们就可以把这个式子看做是-32,+8,-15,-16/2的和。我们把几个正数或者是负数的和叫做代数和。(板书,让学生更清楚)在一个和里面,通常加好和括号都可以省去,就变成了几个正数与负数的和了。同学们说一个既有正数又有负数的式子。生:(-11)+(-7)+(-9)+6(根据学生说出的式子做改变)。师:我们如果把这个式子写成省略括号的形式,怎样写?
生:-11-7-9+6.(找两个学生说自己的答案,讲解之后给出正确答案)
师:我们把这个式子读作:(板书)负11,负7,负9,正6的和;从运算上还可以读作:负11减7减9加6.我们省略括号以后就变作了-11,-7,-9,+6.讲解例题
板书:(-20)+(+3)-(-5)-(+7)将其写成省略括号的形式。师:这道题该怎样解?(朱峰黑板上写,其他学生练习本)生:直接写出-20+3+5-7
师:(集体讲解)我们采用把剑发辫位加法的运算过程,这是就变成了-20,+3,+5,-7的和。加好跟括号都可以省略。就读做:负20,正3.正5,负7.小总结
今天我们学习了有理数的加减混合运算当中,几个正数或者负数的和叫做代数和。我们也知道了他的读法。
巩固练习
(1)(-5)+(+7)-(-3)-(+1)(2)10+(-8)-(+18)-(-5)+(+6)(3)读出-3+5-6+1的两种读法
第四篇:有理数的混合运算教案
学科:数学
教学内容:有理数的混合运算
【学习目标】
1.掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.
2.在运算过程中能合理使用运算律来简化运算.
【基础知识精讲】
1.有理数混合运算的运算顺序.
先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的. 如:(-2)3+8×2 =-8+16——先算乘方,再算乘法 =8——最后算加法 2.24点游戏.
24点游戏是利用扑克牌中的52张(去掉大王、小王),任意抽取4张(红色代表负数,黑色代表正数),根据这几张牌进行混合运算,使运算结果为24.
对于混合运算,可以是加、减、乘、除法,也可以是乘方(底数、指数均是这4个数之中的),只要结果得到24即可.
如:有4张牌黑7,黑3,红3和黑7,将它们凑成24.
这四张牌可用+7,+3,-3,+7表示,则可用式子:7×[3-(-3)÷7]得到24.
【学习方法指导】
[例1]计算4×(-3)2+6 点拨:这道计算题是有乘法、乘方,还有加法的混合运算,先搞清运算顺序:先乘方,再乘除,最后算加减,再进行运算.
解:4×(-3)2+6. =4×9+6——先算乘方 =36+6——再算乘法 =42.——最后加法
[例2]计算:(-1)3+(-2)3+(-3)3
点拨:这道题只有乘方和加法两种运算.先算乘方——将乘方转化为乘法,再算加法. 解:(-1)3+(-2)3+(-3)3
=(-1)+(-2)(-2)(-2)+(-3)(-3)(-3)=-1+(-8)+(-27)=-36.
[例3]计算:
-111+(0.3×3+)÷4.
3312 点拨:本题中有分数、小数的混合运算,通常把小数化为分数,带分数化为假分数,这样计算比较简单.
11111310+(0.3×3+)÷4=-+(×+)÷4
***11=-+(1+)÷4=-+×=-+
31212341231=. 4解:-[例4]采用两种不同的方法,将四个有理数(每个数都要用且只能用一次)3,4,-6,10通过加减乘除四则运算,使其结果等于24.
点拨:本题答案不惟一,只要使这四个数进行运算后的结果为24即可. 解:现给出其中的两种答案.
第一种:3×(10-4)-(-6)=24,第二种:4-(-6)÷3×10=24.
【拓展训练】
试确定252000+1的个位数字. 点拨:先算乘方,再算加法.252000表示2000个25相乘,即25×25×……×25(共2000个);因为只求个位数字,所以不必算出真正252000的结果.由于5×5=25,个位数字为5,;25×5=125,个位数字是5,……所以当个位数是5时,不管几个数相乘,个位数字仍是5.即252000个位数字是5,那么252000+1的个位数字就是5+1=6.
第五篇:有理数的加减混合运算教案
有理数的加减混合运算教案
作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编整理的有理数的加减混合运算教案,欢迎阅读,希望大家能够喜欢。
有理数的加减混合运算教案1教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点
重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程
什么叫代数和?说出-6+9-8-7+3两种读法。
1.计算下列各题:
2.计算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:
(4)-16+25+16-15+4-10.
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:
(1)两个数相加,和一定大于任一个加数.()
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()
(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()
(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()
(5)两数差一定小于被减数.()
(6)零减去一个数,仍得这个数.()
(7)两个相反数相减得0.()
(8)两个数和是正数,那么这两个数一定是正数.()
2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
(2)若a<0,那么a和它的相反数的差的绝对值是______.
(3)若|a|+|b|=|a+b|,那么a,b的关系是______.
(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分别根据下列条件求代数式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?
(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。
(1)若a,b同号,则a+b=|a|+|b|.()
(2)若a,b异号,则a+b=|a|-|b|.()
(3)若a<0、b<0,则a+b=-(|a|+|b|).()
(4)若a,b异号,则|a-b|=|a|+|b|.()
(5)若a+b=0,则|a|=|b|.()
6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。
有理数的加减混合运算教案2把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算
按教师要求口答并读出结果
师生共同小结:
有理数加减法混合运算的题目的步骤为
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
这两个题目是本节课的重点.采用测验的方式来达到及时反馈。
归纳小结
教师提问:
1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
学生讨论后口答小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
布置作业必做题:(一)计算:
(1)-8+12-16-23;
(2)- + - -
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小?
(2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?综合考察
学以致用
体现分层次教学使不同学生得到不同的发展
附板书设计:
2.7有理数的加减混合运算
例题:计算: 练习处
1.(+3)-(-9)+(-4)-(+2)
2. - + - +
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
有理数的加减混合运算教案3一、知识回顾
(1)有理数的加、减法法则;
(2)特别值得注意的问题(同号、异号、相反数)
二、新课导入
计算:-5-(+3)+(-7)-(—15)
解:原式=(-5)+(-3)+(-7)+(+15)=0
另解:原式=-5-3-7+15=0
强调:①省略“+”②省略“()”③更简化
读法:①读代数和;②直接读+、-
板书课题:有理数的加减混合运算
三、例题讲解
例计算下列各式略
小结:
有理数加减混合运算的步骤:
⑴写成代数和;
⑵观察有无相反数;
⑶运用交换、结合律达到同号相加或同分母运算或凑整
⑷写出结果
四、学生练习
可以在黑板的下方进行。
讲解评析、纠错订正。
数学思考:
计算:1-2+3-4+5-6+7-8+…+99-100
五、课堂小结
师生共同小结本节课的内容。
六、布置作业
A、B、c分层次布置。
有理数的加减混合运算教案4教学目标
1。了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2。 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3。通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2。关于去括号法则,只要学生了解,并不要求追究所以然。
3。任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4。先把正数与负数分别相加,可以使运算简便。
5。在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1。了解:代数和的概念。
2。理解:有理数加减法可以互相转化。
3。应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
二、学法引导
1。教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2。学生写法:练习寻找简单的一般性的方法练习巩固。
三、重点、难点、疑点及解决办法
1。重点:把加减混合运算算式理解为加法算式。
2。难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7。
师:(1)读出这两个算式。
(2)+、-读作什么?是哪种符号?
+、-又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正)。
师小结:减法往往通过转化成加法后来运算。
有理数的加减混合运算教案5一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
有理数的加减混合运算教案6教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于去括号法则,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的`和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7应变成12+7-5,而不能变成12-7+5。
有理数的加减混合运算教案7教学目标
1、让学生能进行包括小数或分数的有理数的加减混合运算。
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点
重点:有理数加法和减法的混合运算。
难点:减法统一成加法再写成代数和的形式。
教学过程
一、复习引入
课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5―(―0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
二、新课的进行
某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:P57议一议
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4
=1.3+1.1-1.4=2.4-1.4=1(千米)
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1 计算(P58例1)
例2 计算:(1) (2)
解:(1)
(2)
三、课堂练习
1、课本P58随堂练习1、(1),(2),(3)
2、计算:(1) (2)
四、课堂小结
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。
1、P58习题2.7 1,3
有理数的加减混合运算教案8教学目的:
1、要求学生理解加减混合运算统一为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
教学分析:
重点:如何更准确地把加减混合运算统一成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
教学过程:
本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
1、知识基础:
其一:有理数的加法法则;
其二:有理数的减法法则。
其三:“+”、“-”在不同情形的意义(运算符号及性质符号)
2、知识形成:
(引例)计算:
根据减法法则,按照运算顺序,有:
原式
在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:
这个式子仍看作和式,有两种读法,
按性质符号:读作“负8、正10、负6、负4的和”
按运算意义:读作“负8加上10减去6减去4”
例:把写成省略加号的和的形式,并把它读出来(两种读法)。
例:按运算顺序直接计算:
P46.1、2
本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。
P471、23
如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?