人教版新课标六年级上册数学教案

时间:2019-05-12 17:10:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版新课标六年级上册数学教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版新课标六年级上册数学教案》。

第一篇:人教版新课标六年级上册数学教案

人教版新课标六年级上册数学教案(1)

第一单元 位置 教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。2.使学生能在方格纸上用数对确定位置。教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

一、导入

1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、新授

1、教学例1(1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)(3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、小结例1:

(1)确定一个同学的位置,用了几个数据?(2个)

(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、练习:

(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、教学例2(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)(3)同桌讨论说出其他场馆所在的位置,并指名回答。(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、练习

1、练习一第4题

(1)学生独立找出图中的字母所在的位置,指名回答。

(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、练习一第6题

(1)独立写出图上各顶点的位置。(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点A的方法平移点B和点C,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、作业

练习一第1、2、5、7、8题。教学追记:

本堂课,我能充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。

第二单元 分数乘法

1、分数乘法

(1)分数乘整数 教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

1、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:

一、复习

1.出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么? 5个12是多少? 9个11是多少? 8个6是多少?(2)计算:

+ + =

+ + = 2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、新授

1、利用 + + 教学分数乘法。

(1)这道加法算式中,加数各是多少?(都是)

(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,×3)

(3)+ + =9,那么 + + = ×3,所以 ×3=____________=9。同学们想想看,×3=9计算过程是怎样的?谁能把它补充完整。

2、出示例1,画出线段图,学生独立列式解答。

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 =)

3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、练习:练习完成“做一做”第2题。

5、教学例2(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、练习

1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

三、作业

练习二第1、2、4题。

(2)一个数乘分数 教学目标:

1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。

2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。教学难点:推导算理,总结法则。教学过程:

一、导入

1、计算下列各题并说出计算方法。

×

×

×

2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。

3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。

二、新课

1、教学例3(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式“工作效率×工作时间=工作总量”,学生列式: ×

(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出 小时粉刷这面墙的面积,即 的,由此得出 × 这个乘法算式表示“ 的 是多少?”

(3)根据直观的操作结果,得出 × =,根据刚才操作的过程和结果推导出计算方法: × = =。

(4)提出问题: 小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。

2、相关练习:练习二第5题。

3、小结一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。

4、教学例4(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式: ×。

(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式:(km)

(3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。

5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约分,再着手计算)。

三、练习

1、练习三第6题

(1)求2枝长多少分米,就是求2个 是多少?算式: ×2

(2)求 枝或 枝长多少分米,就是求 的 是多少,或 的 是多少。

2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)

四、作业

练习二第3、7、8、10题。教学追记: 分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。(3)分数混合运算和简便运算 教学目标:

1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。教学重点:

理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。教学过程:

一、复习

1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)

2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)

3、观察下面各题,先说说运算顺序,再进行计算。

(1)36×2+15(2)5×6+7×3(3)15×(34-27)

二、新授

1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。

(1)+ ×(2)× -(3)- ×(4)× +

2、复习整数乘法的运算定律(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c

(2)这些运算定律有什么用处?你能举例说明吗?(3)用简便方法计算:25×7×4 0.36×101

3、推导运算定律是否适用于分数。

(1)鼓励学生大胆猜测并勇于发表自己的个人意见。

(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)

(3)各四人小组汇报讨论和计算结果。

4、教学例6(1)出示: × ×,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)(2)出示: + ×,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)

(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。

三、练习

P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。

(4)练习课 教学目标:

1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。

2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。教学难点:熟练掌握运算定律,准确、合理地进行简便计算。教学过程: 一、复习

1、复习分数混合运算的运算顺序。

2、复习乘法的简便运算定律

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c

二、巩固练习

1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。

2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: - × = ×(1-); ×(5-)既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。

3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 ×9,另一个同学做了11朵,列式 ×11,他们一共做了 ×9+ ×11(朵),学生还可能这样列式: ×(9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。

4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。

5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。

6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。

三、布置作业

完成相关的练习册。教学追记:

本节课本只是一节计算课,但我不想应用传统的讲授法来告诉学生,整数乘法的运算同样适用分数,然后按部就班的教学例题,强制性地要求学生按照老师的教法来解题。我认为这样的教学剥夺了学生学习的主动性和自主性。因而这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。

2、解决问题

(1)分数乘法一步应用题 教学目标:

1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。教学过程:

一、复习

1、先说下列各算式表示的意义,再口算出得数。12×

× 2、列式计算。

(1)20的 是多少?

(2)6的 是多少?

3、学生得出:求一个数的几分之几用乘法。

二、新授

1、教学例1(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。

(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是 表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是 求2500的 是多少)

(3)在分析题意的基础上,学生独立列式、计算。

2500× =1000(平方米)

2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

三、练习

1、练习四第2题:让学生先找出分率句中隐藏的单位“1”——全世界的丹顶鹤数2000只。

2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。

四、总结

解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)教学追记:

本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的 是多 少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

(2)两步分数乘法应用题 教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。教学重点:理解数量关系。

教学难点:根据多几分之几或少几分之几找出所求量的对应分率。教学过程:

一、复习

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。(3)一条路,已修了。(4)水结成冰,体积膨胀。(5)甲数比乙数少。

2、口头列式:

(1)32的 是多少?(2)120页的 是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应 用题”。

二、新授

1、教学例2(1)运用线段图帮助学生分析题意,寻找解题方法。

(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

(3)四人小组讨论,根据线段图提出解决办法,并列式计算。解法一:80-80× =80-10=70(分贝)

(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

解法二:80×(1-)=80× =70(分贝)

(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

2、巩固练习:P20“做一做”

3、教学例3(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)

(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。

(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

解法一:75+75× =75+60=135(次)

解法二:75×(1+)=75× =135(次)

4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

三、练习

1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。

2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

四、布置作业

练习五第7、8、9、10题。教学追记:

例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

3、倒数的认识 教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。教学重点:

理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法 教学过程:

一、导入

1、口算:

(1)×

×

×40(2)× × 3× ×80

2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

二、新授

1、教学倒数的意义。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。(2)学生汇报研究的结果:乘积是1的两个数互为倒数。

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

2、教学求倒数的方法。

(1)写出 的倒数: 求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。6=

3、教学特例,深入理解

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

3、巩固练习:课本24页“做一做”(1)学生独立解答,教师巡视。

(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

三、练习

1、练习六第2题:同桌互说倒数。

2、辨析练习:练习六第3题“判断题”。

3、开放性训练。

×()=()× =()×()

四、总结

你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么? 教学追记:

倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

4、整理和复习复习目标:

1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。

2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。

3、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。复习重点:

引导学生找准单位“1”,分析应用题的数量关系。复习难点:

让学生正确、独立地分析应用题的数量关系。复习过程:

一、复习分数乘法

1、学生独立计算P26第1题,并思考式子的意义及计算法则。

2、分数乘法的意义

(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)

(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)

3、分数乘法的计算法则

(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母不变。(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。

4、练习:练习七第1题。

二、复习计算及简便计算

1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的要先算小括号里面的,再算中括号里面的。

2、复习乘法的运算定律:

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c

3、观察P26第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。

4、练习:练习七第4题。

三、复习分数乘法应用题

1、复习解答分数乘法应用题的步骤:

(1)找到题目中的分率句,确定单位“1”。(2)根据题目中的数量关系,求出所要求的部分量。

2、P26第3题

(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?(2)根据题意分析数量关系,然后列式计算,全班讲评。

3、练习:练习七第6题。

四、复习倒数

1、复习倒数的意义:乘积是1的两个数互为倒数。

2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)1的倒数是多少?0有没有倒数?

3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)

4、练习:练习七第7题。

五、练习

练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)

第三单元 分数除法

1、分数除法

(1)分数除法的意义和整数除以分数 教学目标:

1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点:

使学生理解算理,正确总结、应用计算法则。教学难点:

使学生理解整数除以分数的算理。教学过程:

一、复习

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × × × ×6 ×

二、新授

1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。

×3=(千克)÷3=(千克)÷3=3(盒)

(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

2、巩固分数除法意义的练习:P28“做一做”

3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。A、÷2= =,每份就是2个。B、÷2= × =,每份就是 的。(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、练习

÷3 ÷3 ÷20 ÷5 ÷10 ÷6

四、总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

(2)一个数除以分数 教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:

一、复习

1、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)

2、计算下面,直接写出得数

×4 ×3 ×2 ×6 ÷4 ÷3 ÷2 ÷6

二、新授

1、默读例3,理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷ 如何计算?引导学生结合线段图进行理解。(2)先画一条线段表示1小时走的路程,怎么样表示 小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是 小时走的路程)

(3)引导学生讨论交流:已知 小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求 小时走了多少千米,也就是求2个,算式:2×

再求3个 小时走了多少千米,算式:2× ×3(5)综合整个计算过程:2÷ =2× ×3=2×

2、小结出计算法则:从上面这个推算过程,我们发现——整数除以,分数等于用整数乘这个分数的倒数。

3、计算 ÷,探索分数除以分数的计算方法

(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

(2)学生用自己的方法来验证结果是否正确。

4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、练习

1、P31“做一做”的第1、2题。

2、练习八第2、4题。教学追记:

虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义。针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理

解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。(3)分数混合运算 教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。教学过程:

一、复习

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5(2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)

二、新授

1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用 m 彩带,可以先算出一共做了多少朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。

2、巩固练习:P34“做一做”

(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。

三、练习

1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。

2、练习九第2-4题

(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。

(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷ × ;B、可以先求装完的 有多少千克,综合算式是240× ÷。

四、布置作业

练习九第5-9题。教学追记:

本堂课虽是应用题形式的例题,但实为分数混合运算的计算课,因而在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练习加强计算的训练。

2、解决问题

(1)已知一个数的几分之几是多少求这个数的应用题 教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:

弄清单位“1”的量,会分析题中的数量关系。教学:难点:

分数除法应用题的特点及解题思路和解题方法。教学过程:

一、复习

1、出示复习题:

根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克?

2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。小明的体重× =体内水分的重量

4、指名口头列式计算。

二、新授

1、教学例1的第一个问题:小明的体重是多少千克?(1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重× =体内水分的重量

(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)

(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷ =小明的体重)

2、解决第二个问题:小明的体重是爸爸的,爸爸的体重是多少千克?(1)启发学生找到分率句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸:

小明:

爸爸的体重× =小明的体重

①方程解:解:设爸爸的体重是χ千克。②算术解: 35÷ =75(千克)

χ=35 χ=35÷ χ=75

3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、练习

1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导学生发现250ml的鲜牛奶是多余条件)

2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关系式进行计算)

四、总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。教学追记:

本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例题的第(1)个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。

(2)稍复杂的分数除法应用题 教学目标:

1、通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。教学重点:

弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

(1)吃了 是什么意思?应该把哪个数量看作单位“1”?(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。解:设买来大米X千克。x- x=15

2、教学例2(1)出示例题,理解题意。

(2)比航模组多 是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。

χ+ χ=25(1+)χ=25 χ=25÷ χ=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。教学追记: 本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

3、比和比的应用(1)比的意义 教学目标:

1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

教学重点:比与除法、分数的关系 教学难点:理解比的意义 教学过程:

一、复习。

1. 某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍? 2. 分数与除法有什么关系?

二、新授。

1. 教学比的意义。(1)教学同类量的比。A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽是长的几分之几?)

B、这两个关系都是用什么方法来求的?(除法)

C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

(2)教学不同类量的比。

A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:42252÷90)

B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。(3)归纳比的意义。

A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

B、练习:判断,下面数量间的关系是表示两个数的比吗?

① 甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。③ 足球比赛,甲队和乙队的比分是3比2。2. 教学比的写法、比的各部分名称。比的写法。

15比10 记作15∶10 10比15 记作10∶15 42252比90记作42252: 90 比的各部分名称。

A、学生自学课本,小组讨论概括知识点。B、小组汇报并举例:

“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如: 3 ∶ 2=3÷2=

3.教学比与除法、分数的关系。(1)比与除法的关系

A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什么?(商)。

B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)C、比值通常用分数表示,也可以用小数或整数表示。(2)比与分数的关系。

A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

a)两个数的比也可以写成分数的形式。例如15:10,可写成,读作15比10。结合上面的讲解,板书下表:

除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值 比 前项 :(比号)后项 比值

三、巩固练习。

1. 完成课本“做一做”。2. 练习十一第1、2题。

四、布置作业。1. 课本练习十一的第3题。2. 补充:求出比值。

0.375∶0.875 ∶ 0.75∶ 2.6∶3.9

比的基本性质 教学目的:

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点:理解比的基本性质,掌握化简比的方法 教学难点:化简比与求比值0的不同 教学过程:

一、复习。

1、什么叫做比?比的各部分名称是什么?

2、比与除法和分数有什么关系? 比 前项 :(比号)后项 比值 除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值

3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16

4、分数的基本性质是什么?举例: = =

二、新授

1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)

2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4

3、小组派代表说明验证过程,其他同学补充说明。

4、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

5、教学例1(1)出示例题:把下面各比化成最简单的整数比 15∶10 ∶ 0.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)

(3)指名学生说出自己化简的方法,全班评判。

三、练习

1、P46“做一做”

2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

四、总结

今天我们学习了什么知识?比的基本性质可以应用在哪些方面? 教学追记:

本堂课,是一节充分体现以学生为主的课。教学中,由除法的“商不变性质”和“分数的基本性质“就能自然而然的联想到是否也存在着“比的基本性”。对此,我没有束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣浓,积极性高,成就感足,理解和记忆也就自然较为深刻。(3)比的应用 教学目标:

1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。

3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。教学重点:

进一步掌握按比例分配应用题的结构特点和解题思路。教学难点:

正确分析解答比例分配应用题。教学过程:

一、复习。

1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)

二、新授。

1、教学例2。(1)出示例2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)① 稀释液平均分成的份数:1+4=5 ② 浓缩液的体积:500× =100(ml)③ 水的体积:500× =400(ml)答:稀释液100ml,水400ml。

(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

2、补充练习

(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人)② 一班应栽的棵数: 280× = 94(人)③ 二班应栽的棵数: 280× = 90(人)④ 三班应栽的棵数: 280× = 96(人)

答:一班栽树94棵,二班栽树90棵,三班栽树96棵。(5)学生进行检验。

(6)学生试做“做一做”中的第2题。

三、巩固练习。

练习十二的第1、3题。

四、布置作业。

练习十二第2、4、5、6、7题。教学追记:

本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。

4、整理和复习整理复习(1)复习目标:

使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。

复习重点:分数除法的计算方法,化简比。复习难点:正确计算分数除法。复习过程:

一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如 ÷5;

(2)一个数除以分数,它又包括整数除以分数,例如20÷ ;和分数除以分数,例如 ÷。

(3)做第52页“整理和复习”的第2题。

2、分数除法的意义(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52“整理和复习”第2题。(4)P53练习十三第2题。

二、复习比的意义和基本性质

1、比的意义

(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)

(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。3∶2 =1.5 ┇ ┇ ┇ ┇

前 比 后 比

项 号 项值

(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式,但仍读作3比2。特别强调比的后项不能为0)(4)比和除法、分数的联系 除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值 比 前项 :(比号)后项 比值

2、比的基本性质

(1)复习概念及化简方法 ①比的基本性质是什么?

②应用比的基本性质,怎样对整数比进行化简? ③不是整数的比应该怎样化简?

(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)

三、课堂练习

1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)

2、做练习十四的第2题.

3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)

4、做练习十四的第7题.

整理复习(2)教学目的:

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力. 教学重点:正确解答分数乘除法应用题 教学难点:分数乘除法应用题的联系与区别 教学过程:

一、推理训练

1、男生占全班人数的,女生占全班人数的()。

2、一堆煤,用去了,还剩下()。

3、今年比去年增产,今年相当于去年的()。

二、对比训练:

1、一步分数应用题

① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几? ② 张大爷养了200只鹅,鹅的只数是鸭的只数的,养了多少只鹅? ③ 张大爷养了200只鹅,鸭的只数是鹅的只数的,养了多少只鸭?(1)比较相同点和不同点

引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么方法解答。

(2)比较完后,学生将三道题的解答过程写在练习本上。

2、出示题组:

① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?

② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?(1)学生自己画线段图,分析,解答。](2)对比:两题有什么异同?你是怎样分析的,如何区别的?

3、出示题组:

① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆? ② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆? ③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆 ④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?(1)学生独立画线段图,分析,解答。](2)对比:

1、2两题有什么异同?

3、4两题呢?你是怎样分析的,如何区别的?(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么? 引导学生归纳出:

㈠ 分析“分率句”,判断单位“1”是哪个数量? ㈡ 画出线段图,找出“量”和“率”的对应关系。

㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。

三、课堂练习:

1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未知?)

2、练习十三第4、5题,独立完成,集体订正。

四、作业:

练习十四的第6--10题 第四单元 圆 1. 认识圆(1)圆的认识 教学目标:

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。教学重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。教学难点:画圆的方法,认识圆的特征。教学过程:

一、复习。

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形平行四边形 三角形 梯形

1、示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)i.举例:生活中有哪些圆形的物体?

二、认识圆的特征。

1、学生自己在准备好的纸上画一个圆,并动手剪下。

2、动手折一折。

(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)(2)再折出另外两条折痕,看看圆心是否相同。

3、认识直径和半径。

(1)将折痕用铅笔画出来,比一比是否相等?

(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)

(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。

4、讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,6、巩固练习:课本58“做一做”的第1-4题。

三、学习画圆。

1、介绍圆规的各部分名称及使用方法。

2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。

四、巩固练习。

1、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。

2、判断,并说为什么。

(1)半径的长短决定圆的大小。()(2)圆心决定圆的位置。()(3)直径是半径的2倍。()(4)圆的半径都相等。()

3、思考题:在操场如何画半径是5米的大圆?

五、布置作业。书P60第1-4题。(2)轴对称图形 教学目标:

1、在前面所学得成轴对称的平面图形的基础上,教学认识圆的对称轴。

2、使学生认识到圆是轴对称图形,且对称轴有无数条。

3、培养学生动手操作能力,在操作中加深对所学平面图形的对称轴的认识 教学重点:圆的对称轴。教学难点:画对称轴的方法。教学过程:

一、观察以前认识对称图形。

1、举例说出轴对称的物体。如:蝴蝶、飞机、门窗、圆中的钟面、月饼等。想一想这些图形有什么特点?

2、观察、概括。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。

二、教学认识圆的对称轴

1、出示例3: 你能分别画出下面两个圆的对称轴吗?你能画出几条?

2、学生尝试画出圆的对称轴,观察、再动手折一折,你发现了什么?

3、小结:圆有无数条对称轴。每一条直径所在的位置都是它的对称轴。

三、巩固练习。

1、在方格上画对称轴,并量出对称轴两边相对的点到对称轴的距离。

2、小结:对称轴两侧相对点到对称轴的距离相等。

3、从上面的图形可以看出,正方形、长方形、等腰三角形和圆都是轴对称图形,这些对称图形各有几条对称轴?画出来。

4、下面的图形是轴对称图形吗?它们各有几条对称轴? 长方形 等边三角形 等腰三角形 正方形 圆 环形

四、总结:

今天我们学习了哪些知识?

五、布置作业: 练习十四第5—9题。教学追记:

本堂课是对圆的初步认识,概念较多,也能会较乏味。为了避免学生学得枯燥、没兴趣,我采用了课件与动手操作相结合的方式进行教学,充分调动起学生的学习积极性,并让学生在动手操作的基础上,自主探索和发现圆的有关特性。但在教学“画圆”时,我的讲授部分似乎就多了一些,如能让学生自己来讲述、演示画圆的步骤,有何不足在相互补充的话,这样的教学似乎会更好一些。

2、圆的周长和面积(1)圆的周长 教学目标:

1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能 正确计算圆周长。

2、培养学生的观察、比较、概括和动手操作的能力。

3、对学生进行爱国主义教育。教学重点:

圆的周长和圆周率的意义,圆周长公式的推导过程。教学难点:

圆周长公式的推导过程。教学过程:

一、认识圆的周长。

1、出示一个正方形。

这是什么图形?什么是正方形的周长?怎样计算?这个正方形周长与边长有什么关系? C=4a

2、什么是圆的周长?

让学生上前比划,圆的周长在那?那一部分是圆的周长?

得出定义:围成圆的曲线的长叫做圆的周长。

二、圆周长的公式推导。

1、探索学习。

(1)你可以用什么办法知道一个圆的周长是多少?(2)学生各抒己见,分别讨论说出自己的方法:

A、用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。

B、把圆放在直尺上滚动一周,直接量出圆的周长。

C、用一条小线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗? 用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。

2、动手实践。

(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。(2)引生看表,问你们看周长与直径的比值有什么关系?(3)你有办法验证圆的周长总是直径的3倍多一点吗?

(4)阅读课本P63,介绍圆周率,及介绍祖冲之。

3、解决新问题。

(1)教学例1 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车轮大约转动多少周?

第一个问题: 已知 d = 20米 求:C = ? 根据 C =πd

20×3.14=62.8(m)

第二个问题: 已知: 小自行车d = 50cm 先求小自行车C = ? c=πd

50cm=0.5m 0.5×3.14=1.57(m)再求绕花坛一周车轮大约转动多少周? 62.8 ÷1.57=40(周)

答:它的周长是62.8米。绕花坛一周车轮大约转动40周。

三、巩固练习。

1、求下列各题的周长。书本65页练习十五的第1题

2、判断正误。

(1)圆的周长是直径的3.14倍。()(2)在同圆或等圆中,圆的周长是半径的6.28倍。()(3)C =2πr =πd()(4)半圆的周长是圆周长的一半。()

四、作业。

P64 做一做,练习十五的第5、8题 圆的周长(2)教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。教学重点:求圆的直径和半径。

教学难点:灵活运用公式求圆的直径和半径。教学过程:

一、复习。

1、口答。

4π 2π 5π 10π 8π

2、求出下面各圆的周长。

C=πd c=2πr

3.14×2 2×3.14×4 =6.28(厘米)=8×3.14 =25.12(厘米)

二、新课。

1、提出研究的问题。(1)你知道Π表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)已知:c=3.77m 求:d=? 解:设直径是x米。3.77÷3.14 3.14x=3.77 ≈1.2(米)x=3.77÷3.14 x≈1.2

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

已知:c=1.2米 R=c÷(2Π)求:r=? 解:设半径为x米。

3.14×2x=1.2 1.2÷2÷3.14 6.28x=1.2 = 0.191 x=0.191 ≈0.19(米)x≈0.19

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

2、求下面半圆的周长,选择正确的算式。

⑴ 3.14×8 ⑵ 3.14×8×2 ⑶ 3.14×8÷2+8

3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)45分钟走了多少厘米? 125.6× =94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

四、作业。P65-66 第3、6、7、9题 教学追记:

圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“π”是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“π”的含义就理解得特别透彻,也学得有兴趣。圆的面积

教学内容:圆的面积第67-68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

教学目标:⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

⒊渗透转化的数学思想。

教学重点:圆面积的含义。圆面积的推导过程。教学难点:圆面积的推导过程。教学过程:

一、复习。

1、已知r,周长的一半怎样求?

2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这 些图形的面积计算公式。

s=ab s=a2 s= ah s= ah s=(a+b)h

二、新课。

1、什么是圆的面积?(出示纸片圆让生摸一摸)

圆所占平面大小叫做圆的面积。

2、推导圆的面积公式。

(1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

若分的分数越多,这个图形越接近长方形。

(1)找:找出拼出的图形与圆的周长和半径有什么关系?

圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 长方形面积 = 长 ×宽

所以: 圆的面积 = 圆的周长的一半×圆的半径 S = πr × r

S圆 = πr×r = πr2

3、你还能用其他方法推算出圆的面积公式吗?

(1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。因为:三角形面积= ×底×高 圆面积= × = × ?r×r =πr2

(2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,因为:平行四边形面积=底×高 圆面积 = ×r÷ = ×r×8 =πr2

还可以取3份、4份等,同学们可以一一推算。

三、运用知识解决实际问题。

1、例1 一个圆的直径是20m,它的面积是多少平方米? 已知:d=20厘米 求:s=? r=d÷2 20÷2=10(m)s=Лr2

3.14×102 =3.14×100 =314(平方厘米)

2、根据下面所给的条件,求圆的面积。r=5cm d =0.8dm

3、解答下列各题。

(1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

(2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

四、作业。课本P70第1、5题。圆的面积(2)教学目标:

1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、培养学生的逻辑思维能力。教学重点:培养综合运用知识的能力。教学难点:培养综合运用知识的能力。教学过程:

一、复习。

1、口算:

202 2π 3π 6π 10π 7π 5π

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?(2)求圆的面积需要知道什么条件?(3)知道圆的周长能够求它的面积吗?

三、新课。

1、教学练习十六第3题

小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少? 已知:c=125.6厘米 s=πr

2r:125.6÷(2×3.14)3.14×202 =125.6÷6.28 =3.14×400 =20(厘米)=1256(平方厘米)答: 这棵树干的横截面积1256平方厘米。

3、教学环形面积。

(1)例2 光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米 r=2厘米 求: s=? 3.14×62 3.14×22 =3.14×36 =3.14×4 =113.04(平方厘米)=12.56(平方厘米)

113.04-12.56=100.48(平方厘米)

第二种解法:3.14×(62-22)=100.48(平方厘米)(2)小结:环形的面积计算公式: S=πR2-πr2 或 S=π×(R2-r2)

(3)完成做一做: 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

三、巩固练习。

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.84÷3.14÷2)2×3.14 B、(18.84÷3.14)2×3.14 C、18.842×3.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

3、课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积 S=πr

2已知直径求面积 S=π()2 已知周长求面积 S=π()2(3)环形面积: S=π(R2-r2)

四、作业

课本P70第4、6、7题。教学追记:

本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。圆的周长和面积的练习课 教学目标:

1、通过教学使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:认真审题,分辨求周长或求面积。教学过程:

一、复习。

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

C=πd S=πr

23.14×7 3.14×32 =21.98(厘米)=3.14×9 =28.26(平方厘米)

2、分辨面积与周长有什么不同?(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。(2)计算公式

求圆的周长公式:C=πd 或 C=2πr 求圆的面积公式:S=πr2(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习。

1、判断下面各题是否正确,对的打“√”,错的打“?”。

(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)?。()(2)半径为2厘米的圆的周长和面积相等。()

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()(4)面积:3.14×62=3.14×12=37.68()

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

⑴半圆的周长是多少厘米?(2)半圆的面积: 3.14×22 3.14×2+2×2 r=2cm =3.14×4 =6.28+4 =12.56(平方厘米)=10.28(cm)

3、一个圆的周长是25.12米,它的面积是多少: 已知:C=25.12米 求:S=? r=25.12÷(2×3.14)S=πr2 =4(米)=3.14×42 =50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米? 已知:R=7厘米=0.7分米 r=0.5分米 求:S=? S环=π×(R2-r2)3.14×(0.72-0.52)=3.14×0.24 =0.7536(平方分米)

三、巩固发展.1、思考题p71(8)一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形: 31.4÷2=15.7(m)(长和宽的和)长 × 宽 = 面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.(2)围成圆形 直径:31.4÷3.14=10(m)半径:10÷2=5(m)面积:3.14× 52=78.5(m2)(3)比较:长方形面积:61.6 m2 正方形面积:61.6225 m2 圆面积:78.5 m2 围成圆的面积最大。

2、思考题 p71(9)、(10)

四、作业。

课本P71第6、7题。教学追记:

学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=πr2,求圆周长的公式是 C=πd 或 C=2πr。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。整理和复习教学目标:

⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。

⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

⒊培养学生认真审题的良好学习习惯。

教学重点:灵活运用周长或面积公式解决实际问题。教学过程:

一、周长与面积的区别。

1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

2、计算下题。求出它的周长与面积。(1)学生动手计算。

(2)周长与面积有什么不同? 概念不同,计算公式不同,单位不同。

3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

(错。周长的长短和面积的大小没有必然的联系。)

二、运用所学知识解决实际问题。

1、一个圆形花坛,直径是4米,周长是多少米? 3.14×4=12.56(米)

2、一个圆形花坛,周长是12.56米,直径是多少米?

12.56÷3.14=4(米)

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

3.14×22=12.56(平方米)

4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?

r=12.56÷(2×3.14)= 2(米)3.14×22=12.56(平方米)

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

⑴ 3.14×()2=28.26(平方米)

3.14×()2=12.56(平方米)

28.26-12.56=15.7(平方米)

⑵ - = 5(平方米)

3.14×5=15.7(平方米)

6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的位置就餐,这张餐桌大约能坐多少人?+

三、综合练习。

1、判断对错,(1)圆的半径都相等。()

(2)在同圆或等圆中圆周长约是半径的6.28倍。()(3)半圆的周长是圆周长的一半。()

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是 多少平方米?

五、布置作业

练习十七1—3,思考第4题。确定起跑线 教学目标:

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。教学重点:如何确定每一条跑道的起跑点。教学难点:确定每一条跑道的起跑点。教学过程:

一、提出研究问题。(出示运动场运动员图片)

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

2、各条跑道的起跑线应该向差多少米?

二、收集数据

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

三、分析数据

学生对于获取的数据进行整理,通过讨论明确一下信息:

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、得出结论

1、看书P76页最后一图:

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)

五、课外延伸

200m跑道如何确定起跑线? 第五单元 百分数

1、百分数的意义和写法 教学目标:

1、结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。

2、在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。

3、通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。教学重点:理解和掌握百分数的意义。教学难点:正确理解百分数和分数的区别。教学过程:

一、复习。

1.回答:(1)7米是10米的几分之几?

(2)51千克是100千克的几分之几?

2.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。(1)一张桌子的高度是 米。(2)一张桌子的高度是长度的。

(引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)

二、新授

1、教师举几个百分数的例子:这次半期考,全班同学的及格率为100%,优秀率超过了50%;体检的结果显示,我校的近视人数占全校总人数的64%……像100%、50%、64%这样的数叫做“百分数”。

2、同学们能举出几个百分数的例子吗?说说在生活中你们还在哪些地方见到百分数?

3、举例说说百分数表示什么,并归纳出百分数的意义。(表示一个数是另一个数的百分之几的数,叫做百分数,也可以叫做百分率或百分比。)

4、讨论百分数和分数的联系及区别:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

5、教学百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如: 百分之九十 写作:90%; 百分之六十四 写作:64%; 百分之一百零八点五 写作:108.5%。

(写百分号时,两个圆圈要写得小一些,以免和数字混淆)

6、教学百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

三、练习

1、完成P78“做一做”第二题:读出下面的分数。

2、完成P78“做一做”第一题:直接在书上的横线上写出对应的百分数。

3、P79练习十九第4题:读出或写出报栏中的百分数。

4、“做一做”第四题:学生根据自己的理解,说说分数和百分数在意义上有何不同。

四、布置作业

练习十九第1~3题。教学追记:

本堂课,我从三个层次入手。第一层:联系生活实际引出百分数;第二层:理解百分数的具体含义;第三层:教学百分数的读写。三个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。

2、百分数和分数、小数的互化 教学目标:

1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。

2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。

3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。教学重点:

掌握百分数和分数、小数互化的方法。教学难点:

正确、熟练地进行百分数和分数、小数的互化。教学过程:

一、复习。

1.百分数的意义是什么?

2.把下面的小数化成分数,并说一说是怎样化的? 0.45 1.2 0.367 3.把下面的分数化成小数,说一说是怎样化的?

4.写出下面各百分数。

百分之十六 百分之七十二点五 百分之一百八十 百分之五百

5.把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?

2.5 5 0.48 1.25 10.3

二、新授。1.教学例1。

(1)出示例1:把0.24、1.4、0.123化成百分数。

(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。0.24= =24% 1.4= = = =140% 0.123= = =12.3%(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)

(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。

(5)完成第80页“做一做”第(1)题。2.教学例2(1)出示例2:把27%、135%化成小数。

(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。(3)启发学生口述每题的转化过程,板书: 27%= =27÷100=0.27 135%= =135÷100=1.35(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。(6)完成第80页“做一做”的第(2)题。

3.引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。4.教学例3(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。

(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。(3)根据学生回答,板书: 20%= = 80%= =

(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)(5)完成P81“做一做”第1题。

5、教学例4(1)学生通过小组自学讨论,找出将分数化成百分数的方法。

(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)

(3)完成P82“做一做”第1、2题。

三、巩固练习

1、练习十九第1、2题。

2、练习十九第3题。

四、布置作业

练习十九第5、6、8题。教学追记:

百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。用百分数解决问题(2)教学目标:

1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

2、提高学生迁移类推和分析、解决问题的能力。教学重点:

掌握解决此类问题的方法。教学难点:

理解题中的数量关系。教学过程:

一、复习

1、把下面各数化成百分数。0.63 1.08 7 0.044

2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)(1)某种学生的出油率是36%。(2)实际用电量占计划用电量的80%。(3)李家今年荔枝产量是去年的120%。

二、新授

1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

(1)计划造林是实际造林的百分之几?(2)实际造林是计划造林的百分之几?(3)实际造林比计划造林增加百分之几?(4)计划早林比实际造林少百分之几?

2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

3、学生自主解决“实际早林比计划增加了百分之几”的问题。(1)分析数量关系,让学生自己尝试着用线段图表示出来。

(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。方法一:(14-12)÷12=2÷12≈0.167=16.7% 方法二:14÷12≈1.167=116.7% 116.7%-100%=16.7%(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。

(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢? 学生列出算式:(14-12)÷14(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

三、巩固练习

1、独立完成课本第90页“做一做”的题目。

2、练习二十二第1、2题。

四、布置作业

练习二十二第3、4题。教学追记:

求“相差率”的应用题,是在“求比一个数多(少)几分之几的基础上”发展的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件没有直接给出,需要根据题里的条件先算出来。教学中,我充分让学生理解这一点,理解了这个道理,对于学生的解题起到了不小的帮助作用。同时,我紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。用百分数解决问题(3)教学目标:

1、使学生掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。

2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。教学难点:

正确、灵活地解答这类百分数应用题的实际问题。教学过程:

一、复习

1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?

2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+)

二、新授

1、教学例3(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。

(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么? ① 今年图书增加的部分是原有的12%。② 今年图书的册数是原有的120%。

(4)学生讨论后分小组交流,并独立列式计算: 第一种:1400×12%=168(册)1400+168=1568(册)第二种:1400×(1+12%)

=1400×112% =168(册)

2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)

3、巩固练习:完成P93“做一做”第1题。

三、练习

1、补充练习(1)出示练习:

①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?

②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?(2)分析理解:

A、出油率是什么意思?这两道题有什么相同和不同?

B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?(3)学生独立列式解答。

2、学生做教科书练习二十二的第1、3、4题。教学追记:

本部分内容是“求比一个数多(少)百分之几”的应用题,这部分内容与“求比一个数多(少)几分之几”的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。折 扣 教学目标: 1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。教学重点:会解答有关折扣的实际问题。

教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。

一、导入新课。

圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

二、在生活情境中,讲授新知。1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:? ④橡皮,原价:1元,现价:?

(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)讨论,找规律。

A、学生动手操作、计算,并在计算或讨论中发现规律。

B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。(6)归纳,得定义。

A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢? B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”是就是十分之几,也就是百分之几十)(7)练习。

①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。

例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

(1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?(2)学生试做,讲评。

3、巩固练习:

(1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱? A、打九折怎么理解?是以谁为单位“1”? B、学生试做,讲评。(2)判断:

① 商品打折扣都是以原商品价格为单位“1”,即标准量。()② 一件上衣现在打八折出售,就是说比原价降低10%。()(3)完成课本中P97“做一做”练习题。

四、布置作业

练习二十三第1、2、3题。纳 税 教学目标:

1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。教学重点:税额的计算。教学难点:税率的理解。教学过程:

一、复习

1、口答算式。

(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少?

2、什么是比率?

二、新授

1、阅读P122页有关纳税的内容。说说:什么是纳税?

2、税率的认识。

(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。(2)试说以下税率表示什么。

A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

3、税款计算

(1)出示例5(课本99页)

一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)(3)要求“应缴纳营业税款多少”就是求什么?(4)让学生独立完成?

4、看课本98页内容。读一读,什么是纳税?什么是税率?

三、练习

1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

2、依据第5题,学生各自发表意见。利 息 教学目的:

1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。教学重点:掌握利息的计算方法。

教学难点:正确地计算利息,解决利息计算的实际问题。教学过程:

一、导入 随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

二、新课

1、介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2、阅读P99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽2001年月1月1日把100元钱存入银行,整存整取一年,到2002年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)本金:存入银行的钱叫做本金.小丽存入的100元就是本金。利息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。

利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读P99页表格,了解同一时期各银行的利率是一定的。

3、学会填写存款凭条。

把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。

4、利息的计算。

(1)出示利息的计算公式: 利息=本金×利率×时间(2)计算方法:

按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:100×2.70%×3=8.10(元)(3)三年后取款,小丽能得到8.10元利息吗?为什么? 学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?(4)学生计算后回答,教师板书: 利息税金:8.10×20%=1.62元 税后利息:8.10-1.62=6.48元

加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。5.练习。

1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。

2、完成练习二十三的第9题。教学追记:

折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。整 理 和 复习

(一)复习内容:

复习百分数的意义和写法,百分数和小数的互化,百分数和分数的互化以及求一个数是另一个数的百分之几的应用题。(整理和复习第1---3题)复习目的:

1、通过复习进一步理解百分数的意义,掌握百分数的写法。

2、掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。复习过程:

一、基本练习

1、完成下面表格。小数 0.16 分数

百分数 24.5% 0.9%

2、只列式,不计算。

(1)40占50的几分之几?(2)50是40的百分之几?(3)5比8少百分之几?(4)8比5多百分之几?

二、知识梳理

1、百分数和分数在意义上有什么不同?百分数写法有什么特点?

2、说一说百分数和小数互化的方法,百分数和分数互化的方法?

3、求一个数是另一个数的百分之几的应用题用什么方法解答? 如:甲数是200,乙数是150。

(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。

三、深化练习:

1、李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?

2、一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百分之几?

四、布置作业: P104第1、2、3题。整理和复习

(二)复习内容:

1、求一个数的百分之几是多少和已知一个数的百分之几是多少,求这个数的应用题。(练习三十四第1、3、4题)

2、折扣、纳税、利息 复习目的:

1、通过复习使学生进一步理解“求一个数的百分之几是多少”和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。

2、能正确熟练地解答有关税款、税后利息等实际应用问题。复习过程:

一、基本练习(只列式不计算)

(1)10万元的5%是多少?(2)一个数的80%是100,求这个数。(3)500减少20%后是多少?(4)1000元增加2%后是多少?(5)100比某数多10%,求某数?

二、知识梳理

1、某校男生人数比女生少10%。①谁是单位“1”。

②男生人数是女生人数的百分之几? ③已知女生有500人,求男生有多少人? ④已知男生有450人,求女生有多少人?

2、把③、④两题进行比较,然后小结。

3、课本104页第3题,105页第1题。

二、税款的计算方法,利息的计算公式。

1、复习税款的计算方法。

2、复习利息的计算公式:利息=本金×利率×时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)

3、什么利息不纳税?利息与税后利息有什么不一样?

三、巩固与深化练习

1、课本104页的第4题。

2、课本105页的第6题。

四、作业

课本105页练习二十四第2、3、5题 第六单元 《统计》 上课时间 年 月 日

教学设计 备注 活动

(一)情景导入,激发兴趣

1、(投影出示主题图)谈话:同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况呢?

2、数据收集和整理:请一名学生做主持人,统计全班最喜欢的各项运动项目的人数。活动

(二)对比分析,生成新知

观察条形统计图,你从中得到哪些有用信息? 从条形统计图中,还有哪些信息不容易表示出来?

引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系。

生成扇形统计图引导学生观察从扇形统计图中,你得到哪些数学信息?(学生根据直观观察,发表见解)

根据统计图上表示的情况,你对我班同学有哪些建议? 回顾知识生成,归纳扇形统计图的特点和作用。

做一做:(投影出示)自主看图,说一说,你从图中得到哪些有价值的数学信息?

根据题意自主计算,全班订正。活动

(三)知识应用,解决问题

练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出那些合理化建议。

练习二十五第2题:自主看图,说一说,你得到哪些信息?自主根据给出的条件计算出各项支出金额。

活动

(四)总结概括,拓展应用

1、请同学们总结扇形统计图产生的原因及特点和作用。

2、多媒体展示收集到的扇形统计图,拓展学生视野,培养创新精神。扇形统计图 教学目的:

认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。教学重点:

看懂并能简单地分析扇形统计图所反映的情况。教学难点:

看懂并能简单地分析扇形统计图所反映的情况。教学过程:

一、导入

1、同学们喜欢什么运动项目?我们利用以前学过的知识能不能很好地表示出这些情况?

2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,制成条形统计图。

二、新授

1、观察条形统计图,你从中得到了哪些有用的信息?

2、从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)

3、生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)

4、根据统计图上表示的情况,你对我班同学有哪些建议?

5、回顾知识生成,归纳扇形统计图的特点和作用。

6、“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)

三、应用练习

1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)

2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)

四、总结

学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。教学追记:

扇形统计图的教学,我主要联系了条形统计图和折线统计图的特点,让学生通过例题看到:在表示全班人数的圆中,用扇形可以清楚地表示出最喜欢的各种运动项目的人数占全班总人数的百分比。从而使学生真切地体会到扇形统计图的特点,并通过看图回答问题并提出问题,加深对扇形统计图特点的认识。《合理存款》教案 教学内容:

人教课标版教材第11册110-111页内容 教学目标:

1、知识目标--使学生能够综合应用所学知识解决生活中的实际问题,感受数学与现实生活的密切联系,培养学生的应用能力和实践能力。

2、能力目标--培养学生结合自身实际分析、解决问题的能力。巩固复习有关百分数、纳税、利率等知识,拓展学生解决问题的思路和策略。

3、情感目标—经历分析、计算、比较、符号化、概括等过程,体会数学在解决实际问题中的作用,增强学生学好数学的自信心。重点难点:

重点:认真地分析数量关系,正确地解决实际问题。难点:综合运用所学的知识解决日常生活中相关的问题。教学过程:

一、课前调查 交流汇报

1、课前,老师让大家调查、收集有关人民币储蓄、教育储蓄及国债的相关信息。谁愿意把你收集到的信息和大家交流一下?

2、老师也收集到一些这方面的信息,让我们一起来看一看。(1)现行利率表(2)教育储蓄(3)国债、国库券

二、结合实际 设计方案

同学们:你们都是父母的掌上明珠,为人父母者无不望子成龙。对于你们来说当前最主要的任务是什么呢?(学习)是呀,然而未来的教育花销可不是一个小数目,父母需要提前为你做准备。这节课就让我们运用储蓄的知识帮父母解决一个关系到我们每个人的实际问题。

1、首先请大家算一算,如果从小学毕业算起你大约还有多长时间才能上大学呢?如果从下周一12.10日开始有多长时间呢?

2、为了你们能顺利的走入大学校园,如果妈妈打算给你存10000元钱,供你上大学的话,你觉得从什么时间开始存?怎样存收益比较大呢?谁愿意说一说?(能说出你的理由吗?)(1)独立思考,猜一猜。(2)合作交流,议一议。(3)再次汇报。

3、通过同学们的发言,看得出来:解决这个问题我们要明确以下几点(1)什么时间开始存,存期多长时间?(2)每一次存款的本金都是多少?(3)每一次存款的利率是多少?(4)如果是教育储蓄的话,你还要注意每份录取通知书只能用一次,所以你一定要掐好时间。

4、下面就请同学们以小组为单位,认真的算一算,到底怎样存收益比较大。每组的四名同学要分别选择四种不同的方案进行计算,便于对比。存款

方案 存期 到期利息(元)利息税(元)到期收入(元)教育三年+教育三年 3377.24 0 13377.24 2 国债三年+教育三年 3557.67 0 13557.67

第二篇:六年级上册数学教案-5.4扇形 |人教新课标(2014秋)

课题:扇

教学内容:人民教育出版社义务教育教科书《数学》六年级上册《扇形》。

教学目标:

1、认识弧、圆心角以及他们之间的对应关系,认识扇形。

2、能准确判断圆心角和扇形。

3、理解善心的大小在同一个圆中与圆心角有关,了解扇形与所在圆的关系。

4、感受图形之美,体会生活中处处有数学。

教学重点:认识弧、圆心角、扇形,能准确判断。

教学难点:理解扇形当然大小在同一个圆中与圆心角有关,了解扇形与所在圆的关系。

教具准备:课件,圆规,尺子。

教学过程:

一、复习旧知

1、你能指出这个圆的圆心、半径和直径吗?

2、圆的周长计算公式:C

=πd

或C=2πr

圆的面积计算公式:S=πr²

3、课件出示生活中常见的扇形物体:扇贝、扇形藻、折扇。

师:它们的名称中都有一个“扇”字,它们的形状都是这这样的(课件抽象出图形)我们把它们称为“扇形”,今天我们就来研究扇形。

(板书课件:扇形)

二、探究新知

1、师提问:关于扇形,你想知道什么?

生答:定义,各部分名称,周长,面积,大小与什么有关,怎样画扇形........师选择性板书:定义,各部分名称,周长,面积,大小与什么有关

2、师指出:扇形的定义和它各部分的名称,数学书上有介绍,下面请同学们打开数学书第75页自学这部分内容。

生自学,同时师在黑板上画出一个虚线圆和扇形不作标注,另外再画两个圆,标好圆心和一条半径。

3、自学完了,你知道了什么?

(1)

生答:圆上A、B两点之间的部分叫做弧,读作“弧AB”。

师:你能在黑板山找到弧AB吗?请一名学生上黑板指出。

(2)

生答:一条弧和经过这条弧两端半径所围成的图形叫做扇形。

师:请你上来指指,他指得对吗?

师生共同小结:扇形是由一条弧和两条半径围成的,所以扇形的定义是:一条弧和经过这条弧两端的两条半径所围成的图形。

(3)

生答:顶点在圆心的角叫做圆心角。

师:真棒,你能在黑板上指出来吗?我们来看看这个扇形的圆心角的特点:一,顶点在圆心。二,它的两条边其实就是半径。三,它所对的圆上的部分是所在扇形的弧。

小结:课件演示扇形定义及各部分名称。

4、巩固新知

师:我们认识了扇形,弧和圆心角。你会判断吗?我们一起来看看。

课件出示判断:(书第76页,第二题)

下面的图形中哪些是圆心角?在括号里打“√”

指名生答后师指出第二幅图,问:为什么它不是圆心角?

生答:因为它的顶点不在圆心。

5、师设疑:我们知道,一个角的两条边张得越开,这个角就越大。那么,在同一个圆中,扇形的圆心角变大了,扇形会发生什么变化呢?请大家一起看屏幕。(课件演示)你发现什么了?指名生答。

生答:圆心角越大,扇形越大;圆心角越小,扇形越小。

师肯定:对,我们可以得出结论,在同一圆中,扇形的大小与这个扇形的圆心角的大小有关。(师板书)

6、(1)师:我们继续观察。(课件演示)当这个扇形的两条半径在同一直线上时,这个图形变成了半圆,(板书画圆)那这个半圆面还是扇形吗?为什么?指名回答。

生答:是。因为一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。师指出弧和半径。

师问:半圆面是扇形。那这个以半圆为弧的扇形的圆心角是多少度呢?你是怎样想的?

生答:180°,因为平角180°、圆周角的一半是180°。

师板书标出180°。

师问:它的弧长与所在圆的周长有什么关系,它的面积与所在圆的面积有什么关系呢?你是怎样想的?

生答:一半。因为这个扇形是半圆。

师问:我们继续观察。(课件演示)当这个180°的特殊扇形的2条半径继续旋转时,这个圆被分成了4个部分,他们都是扇形,当两条直径互相垂直时,图形被平均分了,(板书)那其中这个以四分之一圆为弧的扇形的圆心角是多少度呢?你是怎样想的?

生答:90°,因为直角90°、圆周角的四分之一是90°。

师板书标出90°。

师问:它的弧长与所在圆的周长有什么关系,它的面积与所在圆的面积有什么关系呢?你是怎样想的?

生答:四分之一。因为圆平均分成的四份。周长面积都被平均分成了四份。

师小结:对,像这样圆心角是180°,90°的扇形,我们要求它们的面积和周长就是看它占它所在圆的几分之几。

三、知识应用

1、师:同学们,今天我们认识了扇形,还有圆心角是180°和90°的扇形。我们来看看生活中的扇形。(课件出示扇形图片)

请生上来指出扇形。

师指出其中也有特殊扇形。

师提问:生活中使用扇形,有什么好处呢?

生答:节省空间,美观,方便,安全.....师:我们继续来欣赏生活中跟扇形有关的图片吧?(课件展示)

师:像后面出示的几幅图片,它们都不是扇形,但它们都和扇形有关。

2、课件出示扇形图片。课件演示介绍扇环。

师:像这样的一个图形它可以看做一个大扇形去掉一个小扇形,或者可以看做一个圆环被截得的部分叫做扇环。你会求扇环的面积吗?课件出示第76页第4(1)题。

指名回答问题:

师:1、你知道了哪些信息?

2、要求的扇环的面积是图上的哪部分?

3、你准备怎样求扇环的面积,和同桌说一说。

反馈后,生独立在草稿本上试算。请2两名学生板演2种不同的计算方法。最后比较2种方法各有优点。

四、课堂总结

同学们。今天我们一起研究了扇形,你学到了什么呢?

指名生答。

师:看来大家的收获真不少,这节课上到这里。谢谢大家,下课!

五、布置作业

作业:第76页练习十六,第2题~第4题。

六、板书设计

圆心角

扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

圆心角:顶点在圆心的角叫做圆心角。

90°

180°

一半

四分之一

教学反思

《扇形》这部分内容是圆的相关知识的延伸与扩展,本节课尊重教材的设计,把握好了教学的重点与难点,让学生经历了由物到形再到概念的这样一个认识图形的过程,符合认知的规律,用“联系”的观点来教学,抓住扇形与圆形的联系,扇环与扇形、圆环的联系,扇环与扇形、圆环的联系,同时注重发展学生的空间观念。

第三篇:六年级上册数学教案-5.5圆 解决问题 |人教新课标(2014秋)

解决问题《组合图形的面积》教案设计

教学内容:教材第69~70例3

教学目标:

1.让学生结合具体情境认识组合图形的特征,掌握计算“外方内圆”和“外圆内方”图形面积的计算。

2.培养学生独立思考、小组合作探究的习惯。

重点难点:

探索并掌握“外方内圆”和“外圆内方”图形面积的计算方法。

教学准备:

多媒体课件

教学过程:

一、温故知新

上节课我们学习了圆的面积及圆环的面积计算,下面我出两个问题试一下大家掌握的如何?1.圆的面积计算公式是什么?(S=πr²)2.圆环的面积该如何计算?(S圆环=πR²-πr²)

今天这节课我们将利用已有的知识来探究圆与正方形有关图形的面积的计算。

板书课题:《组合图形的面积》

二、探究新知

中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。请大家欣赏下面这些图片。

图1

图2

图3

图4

图2和图3中的两个半圆半径都是1m,你能求出正方形和圆之间部分的面积吗?

(1)阅读与理解:找出已知条件和未知问题

提问:正方形和圆之间的部分的面积是指哪些呢?

生:两个圆的半径都是1m。

生:左图是求正方形比圆多的面积,右图是求圆比正方形多的面积。

生:左图是正方形的面积-圆的面积=正方形和圆之间部分的面积。

生:右图求正方形和圆之间部分的面积需要分割。

分析与解答:

1.外方内圆

提问:正方形的边长是多少呢?(正方形的边长就是圆的直径。)

正方形的面积-圆的面积=正方形和圆之间部分的面积。

2.外圆内方

提问:下图中正方形的边长是多少呢?

可以将上图中的正方形看成两个三角形,它的底和高分别是圆的直径和半径。根据三角形的面积=底×高÷2,便可以计算出正方形的面积。

回顾与反思:

如果两个圆的半径都是r,结果又是怎样的呢?

三、课堂练习

用心填一填。

(1)在一个边长为4厘米的正方形内画一个最大的圆,则这个圆的面积是()平方厘米。

(2)用一根长62.8米的铁丝围成一个最大的圆,这个圆的面积是()平方米?

四、课后小结

今天你有什么收获?我学会了观察组合图形的特征,掌握了解决“外方内圆”和“外圆内方”问题。

五、巩固作业

1、计算下边圆的面积:

4cm

4cm

2.一个运动场(如下图),中间是长方形,两头是半圆形。这个运动场的周长是多少?面积是多少?

六、布置作业

板书设计:

组合图形的面积

1.外方内圆

2.外圆内方

2×2=4(m²)

(2×1×)×2=2(m²)

3.14×1²=3.14(m²)

3.14-2=1.14(m²)

(2r)²-3.14×r²=0.86

3.14×r²-(2r×r×)×2=1.14

第四篇:人教新课标六年级上册数学教案 扇形统计图(一)

扇形统计图

(一)教学内容:扇形统计图

(一)教学要求:

1.使学生初步认识扇形统计图,知道扇形统计图的意义和用途。2.通过观察分析,使学生学会看扇形统计图,并掌握它的特点。3.激发学生求知欲,调动学生学习数学的积极性。

教学重点:扇形统计图的特点及绘制步骤。

教学难点:绘制扇形统计图时表示各部分数量的扇形的圆心角的度数。教学过程:

一、回顾旧知,复习铺垫

1.什么叫圆心角?

2.求一个数是另一个数的百分之几用什么方法计算? 3.求一个数的百分之几是多少用什么方法计算? 4.条形统计图的特点有哪些?折线统计图的特点是什么? 5.画一个半径为3厘米的圆形。

二、引导探索,学习新知

1.揭示课题。

今天我们学习扇形统计图。2.介绍扇形统计图的特点。

(1)出示P106图,观察主题图和条形统计图。

你从中得到了哪些有用的信息?

(2)还有哪些信息从条形统计图中不容易表示出来?

(3)生成扇形统计图,引导学生观察从扇形统计图中,你得到了哪些有用的数学信息?

(4)扇形统计图用整个圆表示什么?用圆内各个扇形的大小表示什么?(5)扇形统计图的特点是什么?

扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。3.教学扇形统计图的绘制步骤和方法。

(1)根据上图,分析各部分占总数的百分数与各扇形圆心角大小的关系。(2)制作扇形统计图。

(3)引导学生归纳绘制扇形统计图的一般步骤。

A.先求出喜欢各种运动项目的人数占总人数的百分之几。B.再算出表示各部分数量的扇形的圆心角的度数。C.按照纸的大小用圆规画一个合适的圆表示总数。D.根据圆心角的度数画出各个扇形。E.在各个扇形内写上相应的名称和百分数。

三、巩固深化,拓展思维

四、分课小结,提高认识

扇形统计图的特点是什么?

五、课堂练习,辅助消化

练习二十五第3题、

第五篇:人教六年级数学教案

黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

第一单元百分数(二)1.百分数的应用(二)

课题一:利息

教学内容:教科书第1—2页及“做一做”中的题目,练习一的第1、2题。

教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少

元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

-2黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

1.订正第3题时,教师可以提问:你知道国家建设债券是什么吗?学生发表意见后,教师可以简要地向学生说明:国家建设债券是国家为了发展国民经济建设,发行的一种证券。这种债券跟定期存款一样也是有时间期限和利率的。计算债券的利息 的方法和储蓄存款利息的算法是一样的。

再让学生说一说是怎样做的,教师板书算式: 1500×7.11%×3十1500 2.订正第4题时,可以提问:赵英去年11月1日存入银行800元钱,定期2年。到明年11月1日取出时,一共存了几年?到期了吗?使学生明白,从去年的11月1日到明年的11月1日正好是两年,所以解答这道题的算式应是:800×5.94%×2十800 3.订正第6题时,教师可以提问:

“题目的问题是‘增长百分之几?’,它实际要求的是什么?是以哪个量为单位‘1’的?”(实际求的是1997年比1996年增加的存款数是1996年存款数的百分之几,是以1996年的存款为单位“1”的。)所以解答这道题的算式应是:32÷(147—32)×100%

三、提前做完上面题目学有余力的学生,可以做练习一的第7*题

教师可以这样引导学生:先计算出两种储蓄办法各得到多少利息,再进行比较。用第一种储蓄办法,利息是500×5.94%×2=59.4(元);用第二种储蓄办法,第一年后可以得到本息合计500×5.67%×l十500=528.35(元),把528.35元再存入银行第二年的本息合计528.35×5.67%×l十528.35=558.31(元),减去500元,两年共得利息58.31元。所以采取第一种方法得到的利息多一些。

四、作业

练习一的第5题。

课题三:成数和折扣* 教学内容:教科书第4页例1和第5页例2,完成第5页“做一做”中的题目及练习二的习题。

教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。

教学过程

一、导入

教师;前面我们学习了百分数的一些应用,像 计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数

成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收 成情况的。

说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。

小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:

“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)

二、新课

1.教学例1。

出示例1,让学生读题。提问:

“去年比前年多收了二成五,表示什么意思?”(多收了二成五,表示多收了25%。)

-4黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

一、复习利息、成数等概念 1.做“整理和复习”第1题。

请一名学生读题。另请两名学生加以回答,教师补充完整。

提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。2.做“整理和复习”第2题。

请一名学生读题。

提问:“什么叫本金、利息、利率?利息的意义是什么?”

“利息是怎样计算的?”

让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间; 3.做“整理和复习”第4题。

请一名学生读题:另请两名学生分别对两个问题加以回答。4.做练习三的第3、4题。

把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习

本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。

二、复习有关利息、成数的应用题 1.做“整理和复习”第3题:

请一名学生读题。

提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)“计算利息的公式是什么?”(引导学生看黑板上的公式。)。

让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。2.做练习三的第1题。

请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:

小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。

3.做练习三的第2题。

请一名学生读题。

教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。

抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。4.做“整理和复习”第5题。

请一名学生读题。

提问:“一成五是多少?”

“这道题里单位‘1’是谁?”

“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)分别请两名学生回答这两个问题。

请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂

-6黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

让学生讨论这道题的解题思路。等学生讨论完以后,教师抽取几名学生回答并进行总结:这道题可以有两种解答思路。一种思路是先按七折算出买这三本书花多少钱,再求出可以节省多少钱,在这种思路中,可以先算出这三本书总钱数的七折,再用总钱数减去它,也可以先算出每本书钱数的七折,再分别计算出每本书节省的钱数,然后求出节省的总钱数:另一种思路是直接计算这三本书节省30%的钱,在这种思路中,既可以先分别计算出每本书节省的钱数,再求出节省的总钱数,也可以用总钱数乘以30%求得结果。

请学生任选一种方法,做在课堂练习本上。教师巡视,及时纠正学生出现的错误,最后进行集体订正;

三、作业

练习三的第8题。学有余力的学生可以继续完成练习三的第11*题和思考题。

第二单元比例

1.比例的意义和基本性质 课题一:比例的意义和基本性质

教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。教学目的:使学生理解比例的意义和基本性质。教学过程:

一、教学比例的意义 1.复习。

(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗? 教师板书出下面几组比,让学生求出它们的比值。

12:16 :1 4·5:2.7 10:6 学生求出各比的比值后,再提 “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢? 这就是这节课我们要学习的内容。(板书课题:比例的意义)2.教学比例的意义。(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

板书:第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:

“你们发现了什么?”(这两个比的比值都是40。)

-8黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

两个外项的积是80×5=400 两个内项的积是2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

“这个比例的外项是哪两个数呢?内项呢?”

“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =

学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200 3.巩固练习。

教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。(1)应用比例的基本性质判断3:4和6:8能不能组成比例。

教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以 3:4和6:8可以组成比例。(边说边板书:3:4=6:8)(2)做第11页“做一做”的第1题。

三、小结

教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

四、作业

练习四的第2题。

课题二:解比例

教学内容:教科书第11页解比例的内容,练习四的第4—7题。

教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。教学过程:

一、导人新课

教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识.这节课我们要学习解比例。(板书课题)

二、新课

教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就

-10黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

两个数就应作为比例的外项.世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。

如果把3、40作为外项,有下面这些比例式:

3:8=15:40 40:15=8:3 3:15=8:40 40:8=15:3 如果把3、40作为内项,有下面这些比例式:

15:3=40:8 8:40=3:15 15:40=3:8 8:3=40:15 可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。

学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

课题三:比例尺

教学内容:教科书第14一16页的例4一例6,练习五的第l一3题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。教学过程:

一、复习

1,1厘米=()毫米 1分米=()厘米 1米=()分米 l千米=()米

2.20米=()厘米 50千米=()厘米 30厘米=()分米 60毫米=()厘米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能 吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数。再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

1.教学比例尺的意义。(1)教学例4。

出示例4:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离:实际距离

10厘米 10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍

-12黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

(2)巩固练习。

做第1;页上的I;做一做”。先让学生说出图中的比例尺是多少。表示什么意思,再用直尺量出图中河西村与汽车站间的距离.然后计算出实际距离:集体订正时,要 注意检查学生是否把实际距离化成了千米.(3)教学例 5 出示例6;一长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米? 指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画X厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?(板书:)比例尺是多少?(板书:=)然后让学生求x的值,并说出求解过程。教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示。”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、作业

练习五的第1—3题。

第3题,让学生先想想比例尺 表示的意思。(1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时。要让学生说说计算出的实际的宽和高的单位是什么。

课题四:线段比例尺

教学内容:教科书第16页上的线段比例尺,练习五的第4—9题。

教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。教具准备:教师准备一些线段比例尺的地图或平面图。教学过程:

—、导人新课

教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例 尺呢:这就是我们这节课要学习的内容。(板书课题)

二、新课

教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就 有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位“千米”。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距 离。

然后教师问:

l“如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际

-14黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

二、导人新课

教师:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系。(板书课题:正比例的意义)

三、新课

1.教学例1。

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表: 提问:

“谁来讲讲例1的意思?”(火车1小时行驶60千米,2小时行驶120千米„„)“表中有哪几种量?”

“当时间是1小时,路程是多少?当时间是2小时,路程又是多少?„„” “这说明时间这种量变化了,路程这种量怎么样了?”(也变化了。)教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量。(板书:两种相关联的量)“时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?”

教师指着表格:我们从左往右观察(边讲边在表格上画箭头),时间扩大2倍,对应的路程也扩大2倍3时间扩大3倍,对应的路程也扩大3倍„„从右往左观察(边讲边在表格上画反方向的箭头),时间缩小8倍,对应的路程也缩小8倍;时间缩小7倍,对应的路程也缩小7倍„„时间缩小2倍,对应的路程也缩小2倍。通过观察,我们发现路程是随着时间的变化而变化的。时间扩大路程也扩大,时间缩小路程也缩小。它们扩大、缩小的规律是怎么样的呢? 让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值。教师板书出来: =60. =60,=60„„ 让学生双察这些比和它们的比值,看有什么规律。教师板书:相对应的两个数的比值(也就是商)一定。然后教师指着 =60,=60 = 60„„问:“比值60,实际上是火车的什么:你能将这些式子所表示的意义写成一个关系式吗?板书: =速度(—定)教师小结:通过刚才的观察和分析.我们知道路程和时间是两种什么样的量?(两种相关联的量。)路程和时间这两种量的变化规律是什么呢?(路程和时间的比的比值(速度)总是一定的。)2.教学例2。

出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。让学生观察上表,并回答下面的问题:(1)表中有哪两种量?(2)米数扩大,总价怎样?米数缩小,总价怎样?(3)相对应的总价和米数的比各是多少?比值是多少?

当学生回答完第二个问题后,教师板书:

=3.1,=3.1,=3.1„„

然后进一步问:

“这个比值实际上是什么?你能用一个关系式表.示它们的关系吗?”板书: =单价(一定)教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价也随着扩大;米数缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和米数的比的比值总是一定的。

-16黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教学过程:

一、复习

1.让学生说说什么是成正比例的量: 2.用投影片出示下面的题:

(1)下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价:

⑨汽车行驶速度一定.行驶的路程和时间。②工作效率一定.’工作时间和工作总量。①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

二、导入新课 教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

三、新课

1.教学例4。

出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量?(2)所需的加工时间怎样随着每小时加工的个数变化?(3)每两个相对应的数的乘积各是多少? 学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

× 60 =600。30 × 20 =600。40 × 15 =600,“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数 “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。2.教学例5。

用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

(1)理解题意,填写装订本数。

“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)“这40本是怎么计算出来的?”(用600÷15)“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?„„请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

-18黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

点和不同点吗?试试看。组织讨论,教师归纳并板书:

四、巩固练习

1.做教科书第28页“做一做”中的题目。让学生自己填,并说一说为什么。2.做练习七的第1—2题。

教师巡视,个别辅导,最后订正。

五、小结

教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

课题四:正比例和反比例的混台练习

教学内容:练习七的第3—7题。

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长×宽=面积

= 长 =宽 提问:

“当面积一定时,长和宽成什么比例关系?” “当长一定时,面积和宽成什么比例关系?” “当宽一定时,面积和长成什么比例关系?”

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,比如,当我们写出 = 宽,我们就可以根据正比例的意义进行推断,当宽一定时,面积和长成正比例关系。以后你们遇到类似的题也可以仿照这样的办法进行分析推理。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数×运货次数=运货的总吨数(一定)每次运货吨数 与运货次数=运货次数(一定)成反比例关 系。运货的总吨=每次运货吨数(一定)数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)

-20黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

然后让学生自己解答。解答之后,让学生把x的值350代入原等式(即方程),看等式能不能成立。

(3)改变题目的条件和问题,让学生解答。教师:如果把这道题的第三个条件和问题改成“已知公路长350米,需要行驶多少小时?”该怎样解答?(把例1的第三个条件和问题划上线,再出示改变后的应用题。)让学生列式解答。订正时,回答:

“改编后的题和例1有什么联系和区别?”使学生明确:例1的条件和问题改变以后,题中成正比例的关系仍没变,解答的方法也没有改变,只是要设需要行驶的小时数为x,列出的等式是 =

2.教学例2。

出示例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米? 指名学生读题,说出已知条件和问题。再让学生用以前学过的方法解答。—解答后,说说分析解答的过程。教师板书:

70×5÷4 =350÷4 =87,5(千米)进一步提出:

“这道题你能用比例的知识解答吗?”

“想一想,题中有哪两个相关联的量?它们成什么比例关系?为什么?”使学生明确:因为这道题的路程是一定的,根据反比例的意义,速度和时间成反比例关系。

“汽车两次行驶的速度和时间的什么是相等的?”

“你能列出等式吗?设谁为X?”

学生回答后,教师板书:解:设每小时需要行驶X千米。

4X=70×5 让学生自己求出X,并进行检验。随后,教师提出:

“如果把这道题的第三个条件和问题改成‘已知每小时行驶87.5千米,要求需要多少小时到达?’该怎样解答?”

让学生解答改编后的应用题,集体订正。

教师:比较一下改编后的题目和例2,看一看它们有什么联系和区别? 通过对比,使学生明确,例2的条件和问题改变以后,题中成反比例的关系仍没有变。解答的方法也没有变。只是要设需要行驶的小时数为x,列出的等式是87.5×X=70×5。

三、巩固练习

1.做第32页“做一做”的题目。

让学生直接用比例知识解答。2.做练习八的第1—4题。

让学生独立做,教师注意帮助有困难的学生,最后集体订正。

四、小结

教师:今天我们学习的是如何用正比例和反比例的知识来解答以前学过的应用题。

-22黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教具准备:投影仪、投影片、小黑板。教学过程:

一、复习;;比”和“比例” 1.复习整理。

教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别? 随着学生的回答,教师板书如下表。

指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:

2.练习。

用小黑板出示下面的题让学生完成。

(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是()。

(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是(),女生人数和全班人数的比是()。

(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有()人。

二、复习解比例 1.完成第35页的第2题。

指名回答什么叫解比例,解比例要根据什么性质。

接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

然后让学生完成第2题的其余习题。

三、复习正比例、反比例

用投影片逐一出示下面问题,让学生回答。1.什么叫成正比例的量和正比例关系? 2.什么叫成反比例的量和反比例关系? 3,正比例和反比例有什么联系和区别? 学生回答,教师填写小黑板上的表。

然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。

-24黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

指名学生读题,并说出这道题的两个相关联的量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。3.总结。

教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。

二、课堂练习

完成练习九的第4—6题。

1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。

2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。3.第6题,让学生独立完成,集体订正时,说说解答思路。

第三单元圆柱、圆锥和球

1.圆柱

课题一:圆柱的认识

教学内容:教科书第38—39页的内容,完成第39页上的“做一做”和练习十的第 1题。

教学目的:使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。

教具准备:教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书第153页上的图沿边剪下来。

教学过程:

一、复习

1.已知圆的半径或直径,怎样计算圆的周长? 指名学生回答,使学生熟悉圆的周长公式:C=2 Π r或C= Π D。2.求下面各圆的周长(口算)。(1)半径是1米(2)直径是3厘米(3)半径是2分米(4)直径是5分米

教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。

二、导入新课

教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征? 由此引导学生复习长方体和正方体的一些特征。

教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?”

学生:不一样。

教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样?

三、新课

1.圆柱的认识。

让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。

-26黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

1.做第39页“做一做”的第2题。

可以将教科书上的图用投影仪放大或画在小黑板上,指名学生指给大家看,其他学生评月是否正确。

2.做第39页“做一做”的第3题。

让学生拿出课前准备好的模型纸样,先做成圆柱,然后让学生试着独立量出它的底面直径和高。教师行间巡视,对有困难的学生及时辅导。

量完后,可以让学生说出自己是怎样量的。3.做练习十的第1题。

指名学生回答,引导学生利用圆柱的特征来解释。

课题二:圆柱的表面积

教学内容:教科书第40—41页的例l一例3,完成第41页的“做一做”和练习十的第2—5题。

教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

教具准备:圆柱形的物体,圆柱侧面的展开图(仿照教科书第39页的图制作)。教学过程;

一、复习

1.指名学生说出圆柱的特征。2.口头回答下面问题:

(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算? 学生回答后板书:长方形的面积=长×宽

二、导入新课

教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

教师:这个展开后的长方形与圆柱有什么关系? 学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。

教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

三、新课

1,圆柱的侧面积。

板书课题:圆柱的侧面积。

教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。

教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢? 教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。

教师:那么,圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高

-28黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

6.教学例3。出示例3。

教师:这道题已知什么?求什么? 学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。

教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。

教师:要计算做这个水桶需要多少铁皮,应该分哪几步? 指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省赂的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。7.小结。

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

四、巩固练习

1.做第41页“做一做”的第1题。

教师:这道题已知什么?应该怎样求侧面积? 使学生明白可以直接用底面周长乘以高就可以得到侧面积。

让学生做在练习本上,做完后集体订正。2.做第41页;做一做”的第2题。

让学生独立做在练习本上,教师行间巡视,做完后集体订正。

五、作业

1.完成第42页练习十的第2一;题。

(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。

(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。

(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。

2.让学有余力的学生做练习十的第6‘、7‘题。

第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。

第7‘题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59十 339.12=402.71≈410(平方分米)

课题三:圆柱的体积计算公式的推导

教学内容:教科书第43页的圆柱体积公式的推导和例4,完成第44页“做一做”的第1题和练习十一的第1—2题。

-30黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长方体的体积=底面积×高”。

教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

板书:圆柱的体积=底面积×高

教师:如果用V表示圆拄的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH 2.教学例4。

出示例4。

(1)教师指名学生分别回答下面的问题:

①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。(2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的? ①V=SH=50×2.1=105 答:它的体积是105立方厘米。

②2.1米;210厘米 V=SH=50×210=10500 答:它的体积是10500立方厘米。

③50平方厘米=0,5平方米 V=SH=0.5×2,1=1.05 答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=SH=0.005×2.1=0.0105立方米

答:它的体积是0.0105立方米。

一先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。(3)做第44页“做一做”的第1题。

让学生独立做在练习本上,做完后集体订正。

四、小结(略)

五、作业

练习十一的第1—2题。

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题 后,知道底面直径的要先求出底面积,再求圆柱的体积。

÷ ×

2,复习圆柱的体积。

教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么? 指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH.

二、新课

1.教学圆柱体积公式的另一种形式。

教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式

应该怎样表达? 引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。2.教学例5。出示例5。

(1)教师提出下面问题帮助学生理解题意: ①这道题已知什么?求什么? ②求水桶的容积是什么意思?根据什么公式?为什么? 要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。

⑧要求水桶的容积应该先求什么? 要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。

①水桶的底面积应该怎样求?(2)让学生叙述解答过程,教师板书。

求出水捅容积之后,教师提问:最后结果应该怎样取值? 使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。(3)做第44页。做一做”的第2题。

让学生独立做在练习本上,做完后集体订正。

三、课堂练习

-33黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

三角形的面积= ×底×高

梯形的面积:= ×(上底+下底)×高

圆的面积=∏×R×R 2.复习立体图形。

教师:我们已经学过的立体图形有哪些? 引导学生总结出已经学过的立体图形有:长方体、正方体和圆柱。

教师:它们的表面积和体积怎样求? 出示长方体、正方体和圆柱的模型,引导学生通过观察回忆它们表面积和体积的计算公式·,教师列成表格板书在黑板上:

教师:这三个立体图形的体积公式能否统一成一个呢? 使学生明确长方体、正方体和圆柱的体积公式可以统一写成:“底面积×高”。

教师:—如果长方体与圆柱的底面积和高分别相等,那么它们的体积相等吗?为什么?

二、课堂练习

l。做练习十一的第8、9题。

让学生独立做在练习本上,教师行间巡视,做完后集体订正。2。做练习十一的第10题。

这是一道联系实际的题目。读题后,教师提问:

“这道题要求前轮转动一周压路的面积。实际上是求什么?”

“那么这个圆柱的底面直径和高分别是多少呢?”

使学生弄清求前轮转动一周压路的面积,就是求前轮这个圆柱的侧面积。而这个圆柱的底面直径就是前轮的直径,这个圆柱的高就是前轮的轮宽。

分析后。让学生做在练习本上。做完后集体订正。3.做练习十一的第11题。

指名一学生读题后.教师提问:

“这道题已知什么?求什么?”

“装了 桶水是什么意思?”

要使学生明白:装了 桶水就是说水的体积是水桶体积的 即水的体积是24× 立方分米。根据圆柱体积的计算公式,可以直接计算,也可以用列方程来解。

设水面高为X分米。

24× =7.5×X X=18十7.5 X=2.4 4.做练习十一的第12题。

第(1)题,引导学生从圆柱的体积计算公式人手,由于“圆柱的体积=底面积×高”,所以当底面积相等财,高和体积成正比例。

第(2)题,启发学生根据第(1)题的结论列出比例式进行解答:即:

设另一个圆柱的体积为x立方分米:

= x= X=40 5.做练习十一的第13题。

读题后,教师提问:

“两个圆柱的底面半径相等说明了什么?”

-35黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。

随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。

然后指出:这样得到的图形就是圆锥体的几何图形。

教师指出:圆锥有一个顶点,它的底面是一个圆。

然后在图上标出顶点,底面及其圆心O。

同时还要指出:我们所学的圆锥是直圆锥的简称。

接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。

教师顺着母线的方向演示。问:这条线是圆锥的高吗? 指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。教师:圆锥的高到底有多少条呢? 引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。

然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。2.小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。3.测量圆锥的高。

教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。

教师边演示边叙述测量过程:(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出乎板和底面之间的距离。

测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。4.教学圆锥侧面的展开图。

教师:圆锥的侧面是哪一部分? 教师展示圆锥模型,指名学生说出侧面部分。

教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形? 学生回答出圆柱的侧面展开图是长方形后,教师设问:‘那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”

留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧 面展开后是一个什么图形。

然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。

四、课堂练习

1.做第49页“做一做”的题目。

让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。2.做练习十二的第1题。

让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。3.做练习十二的第2题。

-37黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师:那么,圆锥的体积可以怎样表示呢? 引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积= ×底面积×高

教师:用字母应该怎样表示? 然后板书字母公式:V= SH 2.教学例1。

出示例1。

教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3.做第50页“做一做”的第1题。

让学生独立做在练习本上,教师行间巡视。

做完后集体订正。4.教学例2。(1)出示例2。

教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。

教师:要求小麦的重量,必须先求出什么? 学生:必须先求出这堆小麦的体积。教师:要求这堆小麦的体积又该怎么办? 学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。? 学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。

教师:求得小麦的体积后.应该怎样求小麦的重量? 学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。

分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过酗量才能确定,735千克并不是一个固定的常

数:

(2)组织学生讨论,怎样测量小麦堆的底面直径和高? 讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。

5.做第50页“做一做”的第2题。

教师:这道题应该先求什么? 学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。做完后集体订正。

四、小结(略)

五、课堂练习

-39黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

“这道题要求的是什么?”

“要求这段钢材重多少千克,应该先求什么?怎样求?”

“能直接利用题目中的数值进行计算吗?为什么?”

“题目中的单位不统一,应该怎样统一?”

分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。4.做练习十二的第9题。

读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么? 要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。让学生独立做在练习本上,做完后集体订正。

三、选做题

让学有余力的学生做练习十二的第10*、11*、12*题。1.练习十二的第10*题。教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

引导学生利用“C=2∏r”可以得到r=。再利用“S∏R,就可以求得S=∏()’。再利用圆锥的体积公式就可以求出其体积。

2.练习十二的第11*题。

这是一道有关圆柱、圆锥体积的比例应用题。

可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

设圆柱的高为x厘米。

=

X=9.6

(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)3.练习十二的第12‘题。

这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

课题一:整理和复习课

教学内容:教科书第55页的内容,完成练习十三的第l一3题。

教学目的:使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。

教具准备:

①圆柱、圆锥的模型各一个;②画有形状、大小以及摆放位置不同的几个圆柱的投

-41黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

圆锥有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。)(从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)随着学生的发言,教师做简单的板书。

教师:怎样测量圆锥的高? 指名让学生说一说简单的测量方法,学生说完以后,教师加以概括,并举起一个圆锥模型,提醒学生不要把母线当做高。(教师不说母线的名称,只在圆锥模型上指出来。)(2)做第55页第1题的下半题和第2题的第(3)小题。

让学生格圆锥的特征自己用简单的词汇填写在表中。教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物。2.圆锥的体积。

(1)教师出示画有圆锥体的投影片。指名让学生回答教师的提问,引导学生说出正确的答案。

教师:怎样计算圆锥的体积?(用底面积×高,再除以3。)计算圆锥体积的字母公式是什么?(V= SH。)

这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一。)随着学生的发言,教师做简单的板书。(2)做第55页第3题的下半题。

让学生独立做题,教师行间巡视,做完以后集体订正。

此时,在黑板上已经形成了本单元所学圆柱、圆锥知识要点的板书。教师可根据 这些要点进行小结。(略)

三、课堂练习

1.做练习十三的第1题。读题后.让学生讨论两个问题:

通风管有没有上、下底?(没有。)这道题的第一步是求什么?(是求一个底面周长是34厘米、高是80厘米的圆柱的侧面积。)让学生独立做题,教师行间巡视,做完以后集体订正。2.做练习十三的第2题。

读题后。指名让学生回答:1升是多少立方分米? 然后让学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。做完以后集体订正:

四、作业

练习十三的第3题。

课题二:整理和复习的练习课

教学内容:练习十三的第4—6题。

教学目的:使学生掌握所学的立体图形之间的联系和区别。学会运用本单元所学的立体图形知识解决一些简单的实际问题,进一步发展学生的空间观念。

教具准备:

①画有长方体、正方体、圆柱、圆锥和球*的立体图形的投影片;

②长方体、正方体、圆柱、圆锥和球*的模型各一个。教学过程:

-43黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

这道题先要求什么:(先要求这个底面积是12.56平方米、高是1。2米的圆锥的体积:)再求什么?(再求已知这个长方体的体积,又知道它的宽是10米、高是2厘米,求这个长方体的长。)然后让学生独立做题,教师行间巡视,做完以后集体订正。

第四单元简单的统计(二)

1.统计表 课题一:统计表

教学内容:教科书第58—59页的例题、完成“做一做”的题目和练习十四的第1—2题。

教学目的:使学生初步学会填写含有百分数的复式统计表的方法和步骤,进一步认识编制统计表的意义。

教具准备:小黑板或投影片若干。

教学过程:

一、复习

教师:我们已经初步学会如何填写一个统计表。现在我们一起复习一下填写统计表的方法和步骤。

请几名学生说一说,同学之间互相补充,教师随之在黑板上做简单的板书。

二、新课

教师用小黑板或投影片出示例题的统计表。

教师:这里有一张统计表,这是1995年一1997年东山村每年的总收人与村办企业收入的统计表。同学们注意观察一下,这张统计表与以前我们学习过的统计表有什么不同? 学生:横着的项目增加了一栏。

学生:增加了含有百分数的数据。

教师:对I在这张统计表中,增加了一栏,这一栏里都是含有百分数的数据。所以,我们今天学习的统计表叫做含有百分数的统计表。

教师板书课题。

教师:现在我们先计算出有关的数据,把这张统计表填写完整:

先让学生自己计算百分数、合计数,把统计表填写完整。教师行间巡视,注意个别辅导。可提醒学生:计算百分数时,百分号前的数只需取一位小数。填写合计这一行的含百分数的数据时,教师可提问:

这个数据应该怎样计算呢? 是不是把3年的百分数加起来就得到了呢? 要使学生明确:合计这一行的百分数要算3年村办企业收入的合计数占3年总收入的合计数的百分比:等学生填完表.教师提问。

教师:从这张统计表中我们可以获得关于东山村的什么情况? 请几名学生发言,说一说自己获得的情况。然后教师总结。

教师:在这张统计表中,不仅可以看出在199;年至1997年中每一年的全村总收入是多少,其中村办企业收入是多少,而且还可以看出每年中村办企业收入占全村收入的百分之几。

然后教师再指名提问:

1996年全村总收入比1995年增加多少万元? 1997年全村总收入比1996年增加多少万元?

-45黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

教师用小黑板或投影片出示题目,让学生认真读题后,教师提问。

教师:根据我们刚才复习的统计表的填写方法,同学们能不能自己编制这个统计表? 先想一想这个统计表的表头需要分为几项?是哪几项?(分为四项:班级、人数、达标人数、达标人数占全年级人数的百分数。)横行、竖行各分几格?(横行分四格,竖行分五格。)教师让学生自己试着画表格,同时也在小黑板或投影片上画表格。然后让学生独立填好表头、写上统计表的名称和制表日期。

教师:比较一下自己画的表格与教师画的表格是不是一样。(如有不一样的,说一说自己的想法.并指导画的不对的同学改正过来。)教师让学生独立将数据填在自己画的表格中,接着让学生自己计算百分数、合计 数,把统计表填写完整。教师行间巡视,注意个别辅导。

先集体订正表中所填写的数据,然后教师根据所编制的统计表(如下)提问。

中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》

情况统计表 ××年×月制

教师:从这张表中我们可以获得什么情况? 让几个学生说一说自己获得的情况,然后教师总结。

教师:从这张表中我们可以获得关于中华小学四一六年级学生达到《国家体育锻炼标准(儿童组)》的情况:我们不仅可以知道这个学校四至六年级各年级学生的总人数、达标学生的人数,还可以知道达标学生人数占本年级学生总人数的百分数,这样我们就可以比较哪个年级达标学生的人数占本年级学生总人数的比率大。从表中我们看到:四年级达标学生的人数占本年级学生总人数的比率最小,只有70%,六年级达标学生的人数占本年级学生总人数的比率最大,达到94%。

三、做练习十四的第5题。

教师用小黑板或投影片出示题目,请一位学生读题后让学生试着独立编制统计表。教师行间巡视,个别辅导。做完以后集体订正,请几位学生说一说,从这张统计表中可以获得什么情况。

四、做练习十四的第4题。

让学生翻开书自己读题,独立做题,教师行间巡视,个别辅导。做完以后集体订正。

五、教师提示练习十四的第6*题。

教师请学生翻开教科书,先自己读题思考。然后,教师通过提问引导学生讨论:

教师:

“各班植树棵数占总数的百分数”中的“总数”是指什么数?(三个班植树的合计数)“各班植树棵数占总数的百分数”是什么意思?(是各班植树棵数占三个班植树总数的百分之几”)“那么填写这张统计表时,先要算什么,填什么?”(先要算出三个班植树的合计数,然后用各班植树的棵数分别除以三个班植树的合计数,求出各班植树棵数占总数的百分数。)“在计算百分数这一栏的数据时,与“人数”有没有关系?”(没有。)怎样计算“平均每人植树棵数”这一栏的数据?(用各班植树的棵数分别除以各班的人数,用合计植树的棵数除以合计的人数。)

六、作业

让学有余力的学生完成练习十四的第6*题。

-47黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

与水平射线垂直的射线旁要注明表示数量的数据,因此必须留有足够的空白。如果把两条射线画在图纸的中间部位,直条会因不够高度画不下,成排不下五个直

条。(与水平射线垂直的射线的高度可达图纸的音处,留音的空白书写统计图名称。)最后确定水平射线上和与水平射线垂直的射线上各表示什么。(指出通常与水平射线垂直的射线上表示数量;在这里,水平射线表示年份。)(2)在水平射线上适当分配条形的位置,确定直条的宽度和间隔; 提问:原来统计表中有几个年份?那么图中要画几个直条? 请一位学生量一量投影器上图纸中画出的水平射线的长度。教师说明:画出的水平射线长6厘米,根据5个直条与6个空隙计算,要把画出的水平射线平均分成11份,因此这里用0.6厘米宽的直条表示一个年份:间隔也是0.6厘米。教师完成下图。

1993年 1994年 1995年 1996年 1997年

(3)在与水平射线垂直的射线上根据数的大小的具体情况,确定单位长度表示多少数量。教师说明:年降水量最高的数据是1005毫米,画出的与水平射线垂直的射线的高度略高于最大的数量。因此,可以把画出的6厘米的垂直射线平均分成6份(每份大约0.8厘米),每一份表示200毫米。在与水平射线垂直的射线箭头的旁边注明单位。教师完成下图:

1000 800 600 400 200 0 1993年

1994年 1995年 1996年 1997年

(4)按照数据的大小画出长短不同的直条。

引导学生按照例1统计表中的数据,1993年降水量920毫米,要在与水平射线垂直的射线上找到相应的位置,800与1000的中间是900,再靠上些为920毫米处,用铅笔过此点在图纸上画一条与水平射线平行的线段(画到1993年上方处即可)。然后三角板对齐1993年直条位置,画出与水平射线垂直的两条平行线,画到与前面画的水平线相交为止:再在直条中涂上阴影。表示其它各年份降水量的直条均按此方法进行,其中最后两、三个直条.可以让学生指图说出它们的位置,或指名让学生画出。(5)在图纸上方写上统计图的标题,注明制图日期。3.引导学生看图分析。提问:

(1)哪一年的降水量最多?是多少毫米?(1995年的降水量最多,是1005毫米。)(2)哪一年的降水量最少?是多少毫米?(1996年的降水量最少,是670毫米。)

-49黄花镇黄花小学六年级下册数学教案

执教者: 陈荣利

2012年上学期

0 数学小组 语文小组 美术小组 音乐小组 体充小组

教师出示幸福小学五年级参加课外活动人数的统计表和统计图后,让学生先观察,根据表和图列出数据的情况可以提出哪些问题?学生纷纷提出问题后,教师可以归纳出以下五个问题:

(1)哪个课外小组的人数最多?是多少人?(2)哪个课外小组的人数最少?是多少人?(3)体育小组的人数是数学小组人数的多少倍?(4)平均每个课外小组有多少人?(5)平均每个班参加课外小组的有多少人? 然后,教师指名回答以上五个问题。

二、新课

1.教学例2。

教师出示例2的统计表,并提问:例2的统计表与例1的统计表有什么不同的地方?(例l的统计表只有降水量一种数据.例2是复式统计表,是分性别、车间统计的人数。)教师又问:要画例2的条形统计图时,哪些地方与例l相同?哪些地方与例1不同?(跟例l的相同处是降水量和男工、女工的人数都是用直条来表示,不同处是,每年的降水量只要用一个直条来表示。而每个车间的男、女工人数要各用一个直条来 表示。)教师问:它们之间怎样来区分?(表示男工和女工人数的直条可以分别用不同的颜色或线条来表示。)教师说明制图的方法:

(1)画出水平射线和垂直射线,垂直射线上表示人数,水平射线上表示车间。在两条射线上分别画上适当的刻度(见下图)。

120 100 80 60 40 20 0

第一车间 第二车间 第三车间

(2)在水平射线上画直条,如在第一车间部分,左边画出表示男工80人的直条(画有斜线)。右边画出表示女工30人的直条。其它两个车间的直条画法相同(见下页图)。(出示条形统计图时可以先把第三车间部分遮住,学生画完后再揭开。)教师让学生仿照第一、第二车间直条的画法,在书上画出第三车间的两个直条。

--50

下载人教版新课标六年级上册数学教案word格式文档
下载人教版新课标六年级上册数学教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐