数学 徐艳飞《平方根》教学设计

时间:2019-05-12 17:29:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学 徐艳飞《平方根》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学 徐艳飞《平方根》教学设计》。

第一篇:数学 徐艳飞《平方根》教学设计

6.1《平方根》教学设计 大雁一中

徐艳飞

设计意图: ㈠、指导思想:

依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。㈡、教学目标的确定:

根据《新课标》的要求(使学生理解平方根的概念,了解平方与开平方的关系;理解并学会平方根的概念和表示。),结合教材内容及学生实际,从知识、能力、情感和方法等方面确定了这节课的教学目标。㈢、关于教法和学法

采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。㈣、关于教学程序的设计

在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

①注重目标控制,面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

③注重师生间、同学间的互动协作,共同提高。

④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。设计过程:

一、教材分析:

1、教材的地位和作用

“平方根”是人教版数学七年级下册第六章 “实数”的第一节内容。由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。

2、教学目标:

⑴、使学生理解平方根的概念,了解平方与开平方的关系。⑵、学会平方根的表示法和求非负数的平方根。

3、教学重点、难点与关键: 重点:平方根的概念。难点:平方根的概念和表示。

关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

二、教学方法和手段:

根据教材内容结合初二学生的认知特点,采用边启发、边分析、层层设疑、讲练结合的教学方式。同时,利用媒体形象直观地展示引例、例题及练习。帮助学生理解概念,活跃课堂气氛,增大教学密度,提高教学效率。

三、学法指导:

学生通过动手、动口、动脑等活动;主动探索,发现问题;互动合作、解决问题;归纳概括、形成能力。增强数学应用意识、协作学习意识,养成及时归纳总结的良好学习习惯,使学生的主体地位得以体现。

四、教学程序:

教学环节 教学程序 设计意图

教师活动 学生活动 创设情境 引入新课

1、出示引例1:(投影片显示)⑴已知一个数要求这个数的平方,该如何求?

⑵已知一个数的平方,要求这个数,又该如何求?

⑶符合这样条件的数有几个?该如何表示?

(依据己有的知识经验估计学生会回答------正方形的面积是边长的平方。)思考,探索问题解决的途径。复习己学知识 复习乘方运算法则。

培养学生逆向思维能力。诱发学生寻找解题途径。交流对话

探索新知 引例2:(投影片显示)

已知一个正方形的面积等于4cm2,求它的边长。引导学生观察分析、思考。

强调指出应根据实际情况确定边长的值。总结:

已知某数的平方要求这个数,用式子来表示就应是:已知x2=a,求x的值。这和我们一开始提出的问题,求一个已知数的平方正好相反。要解决这样一个问题,就须在数学上引进一个新的概念――平方根。引导学生举例。

简要介绍数的产生与发展。思考、发现:

逆用乘方运算。深入探究,如设一边长为xcm,依题意有x2=4,∵22=4,(-2)2=4 ∴满足x2=4的x的值可以是2,也可以是-2,但正方形的边长不能是负数,∴x=2即这个正方形的边长是2cm。归纳总结得出平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根)。理解并会表示平方根 举例。

了解 培养学生用逆向思维的观点去分析问题,发现问题中蕴涵着的一些相互联系的量(面积与边长),再通过设未知数,从而将实际问题转化为方程与乘方运算问题,体验问题解决的思想方法。使学生养成及时归纳总结的良好学习习惯 巩固平方根概念 突出教学重点

向学生渗透“实践第一”的辨证唯物主义观点。课堂练习比较探究

归纳总结 教材练习,个别口答。

通过练习,引导学生比较探究,寻找规律,得出法则(用投影片显示)。

强调正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。

平方根的表示法。(强调,特别注意的是 ≠±,其中a是非负数。)开平方的定义。

求一个数的平方根就是开平方运算,要靠它的逆运算平方运算来进行。独立思考完成。共同校对,矫正。

得出法则:一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。共同校对,矫正,使语言精练准确。

理解,掌握。使学生及时巩固用平方根的概念来解决问题的方法,培养学生的类比能力;提高学生的解题能力和归纳总结能力。让学生明确平方与开平方是互为逆运算关系。例题分析 反馈调控

形成能力 出示例一:下列各数有没有平方根?若有,求出它的平方根;若没有,请说明理由。

⑴36 ⑵ 0.16 ⑶(-4)2 ⑷-32 ⑸ 0 ⑹ ⑺-|a|-4 ⑻ 2 引导学生分析比较:⑴、要判断一个数有没有平方根,就要看它是不是负数,若是负数就没有平方根,不是负数就有平方根。⑵求平方根时,要注意利用平方根的定义来求。板书解题过程:……

指出:在解具体问题时,要灵活运用法则;带分数开平方时,要先把带分数化成假分数 结合平方根的概念与法则,探索思路方法,口述解题思路。

掌握解题过程的书写格式。培养分析比较能力。领会解决问题的思路。

渗透比较思想,让学生体验数学来源于实践,又服务于实践的思想。梳理概括

形成结构 师生一起讨论得出(投影片显示):

1、一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平

方根。

2、正数a的平方根的表示方法为±。

3、带分数开平方时,要先把带分数化成假分数。师生一起讨论得出

突破教学难点。

培养学生的归纳总结能力。应用新知

体验成功 出示练习(投影片显示):

1、判断正误,并且改错:(用投影片显示题目)⑴100的平方根是10 ⑵非负数一定有平方根

⑶9 的平方根是±3

⑷2的平方根是±

2、教材练习2、3、4 巡视、小组辅导

选取小组代表回答,给予积极的评价,并强调注意点:正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。②正确表示平方根。

③根据实际情况来确定适用的方法。

小组讨论,互相质疑,校对,矫正。共同完成。书写练习4的解题过程。

培养学生的合作精神。

使学生及时巩固用平方根的定义和法则解决问题的方法,规范解题格式。同时使学生注意解题的关键。变式练习扩展新知 深入探究

问题迁移 出示练习(投影片显示)

1、什么数的平方根是它的本身?

2、求下列各式中x的值: ⑴ x2=25 ⑵ 2x2-32=0 ⑶ 4(x+2)2-81=0(这里估计学生会联想到引例2解决过类问题)巡视、小组辅导。投影有代表性的学生的解答过程,给予积极的评价。阅读题目 先独立思考后分小组讨论,发现,质疑,达成共识。书写解题过程。

使学生再深入探索平方根的定义与法则,培养学生的转化思想、发散思维和合作精神。规范书写解题过程。知识整理 形成系统 提问:

① 这节课学习了用什么知识解决哪类问题?②解决问题的一般步骤是什么?应注意哪些问题?

③并学到了哪些思考问题的方法?④介绍开方最早见于我国的

《九章算术》,比国外早一千多年。出示“想一想”:()2 = ?(-)2 =?(从知识、能力等方面)对所学内容加以概括,相互讨论,回答,补充,共同整理。加深学生对知识的理解,形成知识系统,为今后继续学习实数性质的应用打下基础。爱国主义教育。

加深学生对平方根概念及其表示法的理解。布置作业 巩固提高 ⑴完成作业本上的题目。

⑵兴趣题:已知某数的平方根是x+2和3x-14,求这个数。课后结合自身水平独立完成相应的习题: ⑴基础一般的学生完成作业本。

⑵基础稍好的学生完成作业本和兴趣题。让学生巩固所学内容并进行自我评价,但考虑学生基础的差异性,故进行分层次要求。

五、板书设计 10.1平方根 投影学生练习…… 例一:

解:(板演详细解题过程)……平方根概念:……开平方概念:…… 法则:……

第二篇:平方根教学设计

师:请同学们把准备好的两个正方形拿出来,我们一起来看看这个问题(出示幻灯片)

生:(学生分小组拿出事先准备好的正方形按要求操作)

师:(教师下去参与小组活动,由于学生事先预习了,有的同学按书上的虚线操作成功)

生:老师我拼出来了。

师:好,给大家演示一下。

生:(很高兴站起来演示,其他学生也一起比划着)。

师:那你拼出的大正方形的边长是多少?

生:大正方形的面积是2,边长就是根号2。

师:回答得非常好,你们明白了吗?

生:明白了。

师:我也给你们演示一下(课件演示)。那你们知道根号2有多大吗?

生:(按着计算器)1.14142143562

师:这是一个近似值,受计算器的位数限制只显示了12位,我们一起来看看下面的方法(教师一边写一边说、一边问)

师:(写完后)根号2是个无限不循环小数,有多大?

生:比1.4大,比1.5小。

师:请看例题(出示课件)

生:(学生独立完成作业3,教师巡视,个别指导)

师:要注意计算器上显示的是近似值,注意每道题目具体的精确度要求,(对答案)。

师:大家看课本第71页的探究。

生:(用计算器计算并记录结果)

师:你们发现了什么规律?

生1:好像“被开方数越大,它的算术平方根也越大”。

师:(一边板书一边问)还有吗?

生2:小数点的位数间也有变化。

师:具体点。

生2:被开方数的小数点每向右移动两位,它的平方根的小数点就向右移动一位。

生3:我也发现了:被开方数的小数点每或向左移动两位,它的平方根的小数点就或向左移动一位。

师:还有补充吗?

生:没有了。

师:同学们观察得非常仔细,表达也很清晰。能直接写出根号30的值吗?

生:不能。

师:为什么?

生:位数的变化是两位两位的。

师:好。请看例题:(出示幻灯片)

生:(学生思考,动手解题)

师:(教师巡视,让先做完的在黑板上写,然后作评讲)

师:这里写的很好,50大于49,根号50大于7,大于21,结果小明说的不对,小丽不能裁出符合要求的纸片。所以我们不能想当然,数学就要用数字说话。

师:(师生一起小结,学生填在课堂练习上)今天我们收获了什么?

生:(学生填在课堂练习上,完成作业6)

师:下面进行课堂检测。

生:(完成课堂检测)

师:下课。

生:老师再见。

师:同学们再见。

第三篇:平方根教学设计

《3.1平方根》教学设计

李秋秋

【教学内容】

平方根的概念、性质及计算。【教学思路】

本节的知识是本单元的基础,是在前面学习了乘方运算的基础上安排的,是下节课学习实数的前提。教学中可通过让学生回忆乘方运算,对乘方运算过程进行逆向分析,让学生掌握平方根的概念,同时也能较容易的理解平方根的运算。培养学生的观察和逆向思维能力。

【教学目标】 知识与技能

1.了解平方根、算术平方根的概念,会用根号表示;

2.了解平方与开平方互为逆运算,会用平方的方法运算某些数的平方根,会用计算器求一个非负数的算术平方根。

过程与方法

1.历经平方根概念的形成过程,让学生理解并掌握平方根的运用;

2.探索平方根概念的形成过程中,在大量举例的基础上,引导学生归纳用字母a和x表达定义,使学生历经从具体到抽象,由特殊到一般的数学思想过程。

情感、态度与价值观

1.通过平方根概念的学习,体验数学的发展源于实际,由作用于实践的辩证关系;

2.通过对开方和乘方互为逆运算关系的学习,体现事物之间既对立又统一的辩证关系,激发学生探索事物的兴趣。

3.通过让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。

【教学重难点】

重点:理解平方根的概念和性质,掌握平方根与算术平方根的区别与联系,并能计算某些数的平方根。

难点:掌握求非负数的算术平方根的方法。【教学过程】

一、创设情景,引入新课

1.引导学生回忆乘方运算,多媒体展示问题一,让学生完成。(1)32;(2)152;(3)(1/3)2 2.多媒体展示问题二,让学生思考。

要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?(学生认真思考,讨论,总结出这个正方形的边长是5cm。)

二、探究平方根的概念

1.教师讲解:若一个数的平方等于a,那么这个数叫做a的平方根。

用数学式子表示为:若x2=a,则x叫做a的平方根,或称x叫做a的二次方根。

2.教师提问:52=25,所以5是25的平方根,那么是否有其他的数,其平方也是25?

学生思考后回答:-5。

教师总结:5和-5都是25的平方根。

3.多媒体展示问题三,让学生思考,并尝试完成。(1)求100的平方根;(2)求0.25的平方根;(3)求49/81的平方根。

鼓励学生积极回答,并给予肯定,师生共同给予正确答案。

解:(1)因为102=100,(-10)2=100,所以100的平方根是10和-10,也就是说100的平方根是±10。

(2)因为0.52=0.25,(-0.5)2=0.25,所以0.25的平方根是0.5和-0.25,也就是说0.25的平方根是±0.5。

(3)因为(7/9)2=49/81,(-7/9)2=49/81,所以49/81的平方根是7/9和-7/9,也就是说49/81的平方根是±7/9。

点评:通过实际例子让学生明白一个数的平方根有两个,它们互为相反数,同时初步了解求一个非负数平方根的方法。

4.多媒体展示问题四,让学生思考,并尝试完成。(1)144的平方根是什么?(2)0的平方根是什么?(3)4/25的平方根是什么?

让学生独立完成后回答,教师给予肯定,然后师生共同解答。

三、探究平方根的性质 1.讲师讲解:

(1)一个正数必定有两个平方根,且它们互为相反数。正数a的正的平方根叫做a的算术平方根,记作√a,读作“根号a”;另一个平方根是它的相反数,记作-√a。因此正数a的平方根可以记作±√a,a称为被开方数。

(2)0的平方根只有一个,就是√0,通常记作√0=0。2.教师提问:负数有平方根吗?

教师积极引导学生思考,学生积极交流讨论,总结:负数没有平方根。

四、应用迁移,巩固提高

多媒体展示问题五,让学生尝试思考并完成。将下列各数开放:

(1)0.49;(2)1.69。学生积极思考,与教师共同解答:

解:(1)因为0.72=0.49,所以,0.49的平方根为±0.7;

(2)因为1.32=1.69,所以1.69的平方根为±1.3。注:开平方的过程容易掌握,教师应注意引导学生掌握解题的方法,也就是找一个数的平方等于被开方数。教师可引导学生完成(1),再让学生独立完成(2),提高学生的解题能力。

五、总结,安排作业

1.引导学生回顾并小结本节主要知识内容,强调平方根的概念和性质;

2.让学生回顾开平方的过程与方法;

3.布置课后作业:课本习题12.1的第一题。

六、达标测评

1.求下列各式的平方根。

(1)81;(2)256;(3)0.49;(4)4/9。2.(1)121的算术平方根是 ;(2)0.25的算术平方根是 ;(3)1/625的算术平方根 ;(4)0的算术平方根是。

3.如果一个数的平方根是(a+3)与(2a-15),那么这个数是多少?

【课后反思】

以前学生虽然学过乘方运算,但由于时间间隔较长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现旧教学方式和学习方式的接轨,结合本特点,可采取“对比教学”的方法。本环节涉及的主要是一些零碎的东西,难度不算太大,所以可采取学生自学、教师辅导的方式。所选用的数字都比较简单,求解过程详细,其设计目的,并不着眼于计算,而在于巩固概念。

第四篇:平方根教学设计(范文模版)

6.1平方根(1)

课时 1课时 课型 探究 [教学目标]:

1.了解平方根与算术平方根的概念,会用根号表示非负数的平方根与正数的算术平方根,并了解算术平方根的非负性;

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根与算术平方根;

3.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。[教学难点]:

根据平方根与算术平方根的概念正确求出非负数的平方根与算术平方根。[教学重点]:

平方根与算术平方根的区别。[教学过程]:

一、情境导入:学校要举行美术作品比赛,小宁很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

这个正方形画布的边长是5dm 5的平方等于25 问题:平方等于25的数还有吗?(±5)2 = 25

二、揭示本节课的探究内容,共同明确学习目标:

1、理解数的平方根的概念,能运用根号表 示一个数的平方根;

2、能正确区分平方根与算术平方根的意义;

3、掌握用平方根运算求某些数的平方根的方法。

三、检查预习情况(学生汇报)互相评价

四、探究新知

1、平方根概念

例:求下列各数的平方根 注意(1)不能漏项

(2)求带分数的平方根,先把它化成假分数.练一练,抢答:判断正误,若错误请说明理由

(1)-4的平方根是-2(2)1 的平方根是 1(3)-1 是 1的平方根

2、探究平方根的性质

(1)一个正数有两个平方根,它们.(2)0的平方根是 0 .(3)负数没有平方根.

3、算数平方根概念 填一填: ①25的平方根为______,即______.②面积为25dm2的正方形画布的边长为____dm.像这种实际问题只需要求出正数的正的平方根即可。

上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.

一般地,如果一个正数x的平方等于a,即x=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.2也就是,在等式x=a(x≥0)中,规定x =a.2思考:这里的数a应该是怎样的数呢? 试一试:你能根据等式:12=144说出144的算术平方根是多少吗?并用等式表示出来.

想一想:下列式子表示什么意思?你能求出它们的值吗?

练一练:求下列各数的算术平方根:

49(1)100;(2)1;(3)64;(4)0.0001

4、区别平方根与算数平方根

五、小结 知识方面:

1.平方根:若x2=ɑ,则____是____的平方根.算术平方根:正数的___平方根和__的平方根统称为算术平方根.2.ɑ(ɑ≥0)的平方根表示为_____.算术平方根表示为_____.3.平方根的性质:„ 思维方面:

开平方运算与______运算是互为逆运算,可以互相检验.素养方面:

严谨,自信,实事求是

六、作业

必做题:作业本 第47页 第1、3 题

兴趣题:已知某数的平方根是x+2和 3x-14,求这个数.

第五篇:高中数学教学设计(刘艳飞)

几何概型教学设计

张家口宣化第一中学

刘艳飞

一、教材分析

和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.

教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.

这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.

二、教学目标

1.通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用. 2.通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.

3.通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.

三、任务分析

在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.

四、教学设计

(一)问题情境

如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.

问题:在下列两种情况下分别求甲获胜的概率.

(二)建立模型

1.提出问题

首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性). 题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型. 注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.

(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积). 2.引导学生讨论归纳几何概型定义,教师明晰———抽象概括

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 在几何概型中,事件A的概率的计算公式如下:

3.再次提出问题,并组织学生讨论

(1)情境中两种情况下甲获胜的概率分别是多少?

(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.

(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.

通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.

(三)解释应用 [例 题]

1.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.

分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.

解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以

解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A). 教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.

2.如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.

解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即

假设正方形的边长为2,则

由于落在每个区域的豆子数是可以数出来的,所以

这样就得到了π的近似值.

另外,我们也可以用计算器或计算机模拟,步骤如下:

(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算中的豆子数).

可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高. 本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.

(N代表落在正方形

[练习]

1.如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域. 2.利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.

3.画一椭圆,让学生设计方案,求此椭圆的面积.

(四)拓展延伸

1.“概率为数„0‟的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?

2.你能说一说古典概型和几何概型的区别与联系吗? 3.你能说说频率和概率的关系吗? 我认为本节课有五个方面做的比较成功:

1.通过有趣的问题情境引入,容易激发学生的学习兴趣和求知欲; 2.通过与古典概型的对比,产生矛盾,迫使学生想去探求解决问题的方法; 3.分解难度,将抽象的概念“解剖”易于理解; 4.问题设置层层递进,由浅入深,符合学生的认知规律;

5.本节课中所体现的类比思想,转化思想将会对学生的思维发展有所帮助。

本节课的不足之处在于教师的准备工作做的太多,问题设置的过于紧密,使得学生发挥的空间不足。如何设计问题才能使学生的思维更活跃,不仅能认识问题,解决问题,还能创设问题?这也是我一直在思考的。

从本节课的教学过程来看,我觉得思路还是比较清晰的,教学过程也比较流畅。但在有些小细节方面还需要多钻研,比如板书的设计方面、语言可以更简练些、还可以让学生更多的发言,交流更广些,这是在以后的教学中需要注意的地方。

下载数学 徐艳飞《平方根》教学设计word格式文档
下载数学 徐艳飞《平方根》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平方根教学设计五(★)

    平方根(1) 教学目标:1、了解算术平方根的概念,会用根号表示一个数的算术平方根。2、会求一个正数的算术平方根。3、了解算术平方根的性质。 教学重点:算术平方根的概念、性质,会用......

    平方根教学设计四

    平方根 一、教学目的 1.使学生了解平方根和算术平方根的意义。 2.使学生会用根号表示一个数的平方根和算术平方根。 二、教学重点、难点 重点:平方根和算术平方根。 难点:算术平......

    平方根的教学设计

    篇一:平方根的教学设计平方根(第2课时)的教学设计一.学生学情分析 学生在七年级上册学习“棋盘上的故事”就认识了一种运算 “乘方”,并能熟练计算任何一个数的平方.知道正数......

    徐艳 《倔强的贝多芬》教学设计

    《倔强的贝多芬》教学设计 孙吴县第三小学徐艳 设计理念: 按照《语文课程标准》对中段教学的要求,根据教材的编排特点,确立以抓住关键词、重点段进行情感体验的教学理念,使学生......

    6.1平方根 教学设计 教案

    教学准备 1. 教学目标 1.1 知识与技能: 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。 1.2过程与方法 : 经历算术平方根概念的形成过程,了解......

    平方根-教学设计-教案5篇

    人教版七年级下册数学 §6.1.1平方根⑴-算术平方根教学设计 庆祖一中 王艳蕊 一、教学目标 1、知识与技能: 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平......

    算数平方根教学设计(合集五篇)

    平方根(第一课时) ——算数平方根教学设计 教学目标 1、 了解算术平方根的概念,懂得使用根号表示正数的算术平方根,感悟算术平方根的非负性. 2、经历探索算术平方根的过程,能用平......

    平方根教学设计一(5篇范文)

    平方根 一、教学目标 1.使学生了解数的平方根、算术平方根的概念. 2.使学生学会用根号表示一个数的平方根和算术平方根. 3.使学生了解开方与乘方是互逆的运算,会利用这个互逆运算......