第一篇:高数可分离变量的微分方程教案
§7 2 可分离变量的微分方程
观察与分析
1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C
一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)
2 求微分方程y2xy2 的通解
因为y是未知的 所以积分2xy2dx无法进行 方程两边直
接积分不能求出通解
1dy2xdx 两边积分 得
y211
x2C 或y2yxC1是原方程的通解 可以验证函数y2xC
为求通解可将方程变为
一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx
形式 则两边积分可得一个不含未知函数的导数的方程
G(y)F(x)C
由方程G(y)F(x)C所确定的隐函数就是原方程的通解
对称形式的一阶微分方程
一阶微分方程有时也写成如下对称形式
P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的
若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有
dyP(x,y)
dxQ(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有
dxQ(x,y)
dyP(x,y)
可分离变量的微分方程
如果一个一阶微分方程能写成
g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程
讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy
是 y1dy2xdx (2)3x25xy0
是 dy(3x25x)dx(3)(x2y2)dxxydy=0
不是
(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy
是 10ydy10xdx(6)yxy
不是 yx
可分离变量的微分方程的解法
第一步
分离变量 将方程写成g(y)dy f(x)dx的形式
第二步
两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C
第三步
求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解
例1 求微分方程dy2xy的通解
dx
解
此方程为可分离变量方程 分离变量后得
1dy2xdx
y两边积分得
ydy2xdx
21即
ln|y|x2C1
从而
yexC1eC1ex
2因为eC1仍是任意常数 把它记作C 便得所给方程的通解
yCex
例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律 2
解 铀的衰变速度就是M(t)对时间t的导数
dM
dtdMM
dtdM0 其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即
dt
由于铀的衰变速度与其含量成正比 故得微分方程由题意 初始条件为 M|t0M0
将方程分离变量得
两边积分 得dMdt
MdM()dt
M即
lnMtlnC 也即MCet
由初始条件 得M0Ce0C
所以铀含量M(t)随时间t变化的规律MM0et
例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系
解
设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运动定律Fma 得函数v(t)应满足的方程为
mdvmgkv
dt初始条件为
v|t00
方程分离变量 得
dvdt
mgkvmdvdt两边积分 得 mgkvm
ln(mgkv)1ktC
m1kC1ktmgemCe即
v(C)
kk将初始条件v|t00代入通解得Cmg
kktmg(1em)
于是降落伞下落速度与时间的函数关系为vk
例4 求微分方程
解 方程可化为 dy1xy2xy2的通解
dx
dy(1x)(1y2)
dx分离变量得
1dy(1x)dx
1y2两边积分得
1y2dy(1x)dx 即arctany2x2xC
1211于是原方程的通解为ytan(x2xC)
师生互动设计
P304:1(1)(2)(3)(5),2(3)作业:P304:1(4)(7)(8)(10),2(2),6
第二篇:微分方程教案
高等数学教案
第七章
微分方程
教学目的:
1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)5. 理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:
1、可分离的微分方程及一阶线性微分方程的解法
(n)
2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)
3、二阶常系数齐次线性微分方程;
4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;
教学难点:
1、齐次微分方程、伯努利方程和全微分方程;
2、线性微分方程解的性质及解的结构定理;
3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
高等数学教案
§7 1 微分方程的基本概念
函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程
例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程
解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)
dy2x
(1)
dx此外 未知函数yy(x)还应满足下列条件
x1时 y2 简记为y|x12
(2)把(1)式两端积分 得(称为微分方程的通解)
y2xdx 即yx2C
(3)其中C是任意常数
把条件“x1时 y2”代入(3)式 得
212C
由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)
yx21
例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?
解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式 d2s0.
(4)dt2此外 未知函数ss(t)还应满足下列条件
t0时 s0 vds20 简记为s|=0 s|=20
(5)
t0t0dt高等数学教案
把(4)式两端积分一次 得
vds0.4tC
(6)1dt再积分一次 得
s02t2 C1t C2
(7)这里C1 C2都是任意常数
把条件v|t020代入(6)得
20C1
把条件s|t00代入(7)得0C2
把C1 C2的值代入(6)及(7)式得
v04t 20
(8)
s02t220t
(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间
t2050(s)
0.4再把t50代入(9) 得到列车在制动阶段行驶的路程
s025022050500(m)
几个概念
微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程
常微分方程 未知函数是一元函数的微分方程 叫常微分方程
偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程
微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶
x3 yx2 y4xy3x2
y(4)4y10y12y5ysin2x
y(n)10
一般n阶微分方程
F(x y y
y(n))0
y(n)f(x y y
y(n1))
微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上
高等数学教案
F[x (x) (x) (n)(x)]0
那么函数y(x)就叫做微分方程F(x y y y(n))0在区间I上的解
通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解
初始条件 用于确定通解中任意常数的条件 称为初始条件 如
xx0 时 yy0 y y0
一般写成
yxx0y0 yxx0y0
特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解
初值问题 求微分方程满足初始条件的解的问题称为初值问题
如求微分方程yf(x
y)满足初始条件yxx0y0的解的问题 记为
yf(x,y)
yxx0y0
积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线
d2xk2x0
例3 验证 函数 xC1cos ktC2 sin kt是微分方程
的解
dt
2解 求所给函数的导数
dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)
1212dt2d2x将2及x的表达式代入所给方程 得 dt
k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0
d2xk2x0
这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解
dtd2xk2x0
例4 已知函数xC1cosktC2sinkt(k0)是微分方程2的通解 求满足初始条件
dt
x| t0 A x| t0 0 的特解
高等数学教案
解
由条件x| t0 A及xC1 cos ktC2 sin kt 得
C1A
再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得
C20
把C1、C2的值代入xC1cos ktC2sin kt中 得
xAcos kt
作业:P298:4
§7 2 可分离变量的微分方程
观察与分析
1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C
一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)
2 求微分方程y2xy2 的通解
因为y是未知的 所以积分2xy2dx无法进行 方程两边直
接积分不能求出通解
为求通解可将方程变为
1dy2xdx 两边积分 得
y21x2C1 或y2yxC可以验证函数y1是原方程的通解
x2C
一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx
形式 则两边积分可得一个不含未知函数的导数的方程
高等数学教案
G(y)F(x)C
由方程G(y)F(x)C所确定的隐函数就是原方程的通解
对称形式的一阶微分方程
一阶微分方程有时也写成如下对称形式
P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的
若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有
dyP(x,y)
dxQ(x,y)dxQ(x,y)
dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有
可分离变量的微分方程
如果一个一阶微分方程能写成
g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程
讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy
是 y1dy2xdx (2)3x25xy0
是 dy(3x25x)dx(3)(x2y2)dxxydy=0
不是
(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy
是 10ydy10xdx(6)yxy
不是 yx
可分离变量的微分方程的解法
第一步
分离变量 将方程写成g(y)dy f(x)dx的形式
第二步
两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C
第三步
求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解 高等数学教案
例1 求微分方程dy2xy的通解
dx
解
此方程为可分离变量方程 分离变量后得
1dy2xdx
y1dy2xdx
y两边积分得
即
ln|y|x2C1
从而
yex2C1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解
yCex
例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律
解 铀的衰变速度就是M(t)对时间t的导数2dM
dtdMM
dtdM0
dt
由于铀的衰变速度与其含量成正比 故得微分方程其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为 M|t0M0
将方程分离变量得
两边积分 得dMdt
MdM()dt
M即
lnMtlnC 也即MCet
由初始条件 得M0Ce0C
所以铀含量M(t)随时间t变化的规律MM0et
例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系
解
设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运
高等数学教案
动定律Fma 得函数v(t)应满足的方程为
mdvmgkv
dt初始条件为
v|t00
方程分离变量 得
dvdt
mgkvmdvdtmgkvm 两边积分 得
ln(mgkv)1ktC
m1kC1ktmgemCe即
v(C)
kkmg将初始条件v|t00代入通解得C
kktmg(1em)
于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解
例4 求微分方程dx
解 方程可化为
dy(1x)(1y2)
dx分离变量得
1dy(1x)dx
1y21dy(1x)dx 即1x2xC
arctany1y22两边积分得
于是原方程的通解为ytan(x2xC)
作业:P304:1(1)(2)(3)(7)(9)(10),2(2)(4),3 12高等数学教案
§7 3 齐次方程
齐次方程
如果一阶微分方程dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程
xx
下列方程哪些是齐次方程?
dyyy2x2dyyy
(1)xyyyx0是齐次方程()21
dxxdxxx22dy1y
2(2)1xy1y不是齐次方程
dx1x222dyx2y2dyxy
(3)(xy)dxxydy0是齐次方程 dxxydxyx22
(4)(2xy4)dx(xy1)dy0不是齐次方程
(5)(2xshdy2xy4
dxxy1yyy3ych)dx3xchdy0是齐次方程
xxxyy2xsh3ychdyxxdy2thyy
ydxdx3xx3xchx
齐次方程的解法
在齐次方程
ux分离变量 得
ydyy()中 令u 即yux 有 dxxxdu(u)
dxdudx (u)uxdudx(u)ux 两端积分 得
高等数学教案
求出积分后 再用y代替u 便得所给齐次方程的通解
xdydyxy
dxdx
例1 解方程y2x2
解
原方程可写成
y2()dyyx
2ydxxyx1x2因此原方程是齐次方程 令
yux 于是原方程变为
2duu
ux
dxu1yu 则 xdyuxdu
dxdx即
xduu
dxu1分离变量 得
(1)du1udx
x两边积分 得uln|u|Cln|x|
或写成ln|xu|uC
以y代上式中的u 便得所给方程的通解 x
ln|y|yC
x
例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程
解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM
因为
OAAPOPPMcotOPyx
y高等数学教案
而
OMx2y2
于是得微分方程yxx2y2 y整理得dxx(x)21 这是齐次方程
dyyydxx(x)21
dyyy
问题归结为解齐次方程
令即
yxvdvvv21 即xyv 得vy
ydydvv21
dy分离变量 得dvdy
v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21y22yv1
C2C以yvx代入上式 得y22C(xC)
2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为
y2z22C(xC) 2这就是所求的旋转曲面方程
例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程
解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度
v(vx, vy)(dx, dy) 故有dxvx
dyvydtdt高等数学教案
另一方面 vab(a, 0)b(x, y) v(abx, by)
x2y2x2y2x2y2x2y2因此dxvxa(x)21x 即dxa(x)21x
dybyydyvybyydxa(x)21x
dybyy
问题归结为解齐次方程
令
yxu 即xyu 得 yduau21
dyb分离变量 得duady
u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]
将u代入上式并整理 得xy2C以x|yh0代入上式 得Caa1 故鸭子游过的轨迹方程为
haay1by1bh()] 0yh
x[()2hhb将ux代入arshu(lnylnC)后的整理过程
yaarshxb(lnylnC)
yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bbbbyax[(Cy)(Cy)a]x1[(Cy)1a(Cy)1a]
2C2bbb作业:P309:1(1)(3)(5),2
高等数学教案
§7.4 线性微分方程
一、线性方程
线性方程
方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程
dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0 则方程称为齐次线性方程 否则方程称为非齐次线性方程
方程
下列方程各是什么类型方程?
(1)(x2)
(2)3x25x5y0y3x25x 是非齐次线性方程
(3)yy cos xesin x 是非齐次线性方程
(4)dy10xy 不是线性方程 dx23dy3(y1)2dydxxx00或
(5)(y1) 不是线性方程
dxdydx(y1)2x
3齐次线性方程的解法
齐次线性方程
dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx
y两边积分 得
ln|y|P(x)dxC1
P(x)dx(CeC1)
或
yCe这就是齐次线性方程的通解(积分中不再加任意常数)
例
1求方程(x2)dyy的通解
dx
解
这是齐次线性方程 分离变量得
高等数学教案
dydx
yx2两边积分得
ln|y|ln|x2|lnC
方程的通解为
yC(x2)
非齐次线性方程的解法
将齐次线性方程通解中的常数换成x的未知函数u(x) 把
P(x)dx
yu(x)e
设想成非齐次线性方程的通解 代入非齐次线性方程求得
P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)
u(x)e化简得
u(x)Q(x)eP(x)dx
u(x)Q(x)eP(x)dxdxC
于是非齐次线性方程的通解为
P(x)dxP(x)dx
ye[Q(x)edxC] P(x)dxP(x)dxP(x)dx或
yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和
5dy2y(x1)2的通解
例2 求方程dxx1
解
这是一个非齐次线性方程
先求对应的齐次线性方程分离变量得
dy2y0的通解
dxx1dy2dx
yx1两边积分得
ln y2ln(x1)ln C
齐次线性方程的通解为
高等数学教案
yC(x1)2
用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得
52u(x1)2(x1)2
u(x1)2u(x1)x1 1u(x1)2
两边积分 得 u(x1)2C
3再把上式代入yu(x1)2中 即得所求方程的通解为 32
y(x1)[(x1)2C]
323
例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)
解
由电学知道 当电流变化时 L上有感应电动势L
EL即
di 由回路电压定律得出
dtdiiR0
dtdiRiE
dtLLdiRiEmsin t
dtLL
把EEmsin t代入上式 得
初始条件为
i|t00
diRiEmsin t为非齐次线性方程 其中
dtLLER t
P(t) Q(t)msinLL
方程由通解公式 得
i(t)eP(t)dtdtdtEP(t)dt[Q(t)edtC]eL(msin teLdtC)
LRRRttEmReL(sinteLdtC)
L高等数学教案
RtEm(Rsin t Lcos t)CeL
222RL其中C为任意常数
将初始条件i|t00代入通解 得C因此 所求函数i(t)为
t LEmREmLe(Rsin t Lcos t)
i(t)222222RLRL LEm
R22L
2二、伯努利方程
伯努利方程 方程
dyP(x)yQ(x)yn(n0 1)dx叫做伯努利方程
下列方程是什么类型方程?
(1)
(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy
1(3)y yyxy1 是伯努利方程 yxx
(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx
伯努利方程的解法 以yn除方程的两边 得
yn令z y1n 得线性方程
dz(1n)P(x)z(1n)Q(x)
dxdyya(lnx)y2的通解
例4 求方程dxx
解 以y2除方程的两端 得
y2dy11yalnx
dxxd(y1)11yalnx
即
dxx高等数学教案
令zy1 则上述方程成为
dz1zalnx
dxxa2这是一个线性方程 它的通解为
zx[C(lnx)2]
以y1代z 得所求方程的通解为
yx[C(lnx)2]1
经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程
例
5解方程a2dy1
dxxy
解
若把所给方程变形为
dxxy
dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程
令xyu 则原方程化为
du11 即duu1
dxudxuududx
u1分离变量 得
两端积分得
uln|u1|xln|C|
以uxy代入上式 得
yln|xy1|ln|C| 或xCeyy1
作业:P315:1(1)(3)(5)(7)(9),2(1)(3)(5),7(1)(2)
§7 5可降阶的高阶微分方程
高等数学教案
一、y(n)f(x)型的微分方程
解法 积分n 次
y(n1)f(x)dxC1
y(n2)[f(x)dxC1]dxC2
例1 求微分方程ye2xcos x 的通解
解 对所给方程接连积分三次 得
ye2xsinxC1
ye2xcosxC1xC2
ye2xsinxC1x2C2xC3
这就是所给方程的通解
或
ye2xsinx2C1
ye2xcosx2C1xC2
ye2xsinxC1x2C2xC3
这就是所给方程的通解
例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律
解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为
m12141812121418d2xF(t)
2dt由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而
F(t)F0(1)
于是质点运动的微分方程又写为 tTd2xF0(1t)
Tdt2m高等数学教案
其初始条件为x|t00 dx|0
dtt0
把微分方程两边积分 得
dxF0(tt2)C
1
dtm2T再积分一次 得
F012t x(t)C1tC2
m26T由初始条件x|t00 得C1C20
于是所求质点的运动规律为 dx|0
dtt0F012t3
x(t) 0tT
m26T
二、y f(x y)型的微分方程
解法 设yp则方程化为
pf(x p)
设pf(x p)的通解为p(xC1) 则
dy(x,C1)
dx原方程的通解为
y(x,C1)dxC2
例3 求微分方程
(1x2)y2xy 满足初始条件
y|x01 y|x03 的特解
解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有
dp2xdx
p1x2两边积分 得
ln|p|ln(1x2)C
即
pyC1(1x2)(C1eC)
由条件y|x03 得C13
所以
y3(1x2)
高等数学教案
两边再积分 得 yx33xC2
又由条件y|x01 得C21
于是所求的特解为
yx33x1
例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?
三、yf(y y)型的微分方程
解法 设yp有
y原方程化为 dpdpdydpp
dxdydxdydpf(y,p)
dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy
p
dy(y,C1)xC2
dp
dy
例5 求微分yyy20的通解
解 设yp 则yp代入方程 得
ypdp2p0
dy
在y0、p0时 约去p并分离变量 得
dpdy
py两边积分得
ln|p|ln|y|lnc
即
pCy或yCy(Cc)
再分离变量并两边积分 便得原方程的通解为
ln|y|Cxlnc1
或
yC1eCx(C1c1)
作业:P323:1(1)(3)(5)(7)(9),2(1)(3)(5)
高等数学教案
§7 6 高阶线性微分方程 一、二阶线性微分方程举例
例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点
给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)
设弹簧的弹性系数为c 则恢复力fcx
又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则
Rdx
dt
由牛顿第二定律得
2dxdx
m2cx
dtdt
移项 并记2nc k2
mmd2x2ndxk2x0则上式化为
dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程
如果振动物体还受到铅直扰力
FHsin pt 的作用 则有
d2x2ndxk2xhsinpt
dtdt2H其中h 这就是强迫振动的微分方程
m
例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常
高等数学教案
数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数
设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL 由电学知道
iqdqdi uc ELL
CdtdtdiqRi0
dtC根据回路电压定律 得
ELd2ucducRCucEmsint
即
LCdtdt2或写成
d2ucducEm22usint
0c2dtLCdtR 1 这就是串联电路的振荡方程 其中02LLC
如果电容器经充电后撤去外电源(E0) 则上述成为
d2ucduc220uc0
2dtdt
二阶线性微分方程 二阶线性微分方程的一般形式为
yP(x)yQ(x)yf(x)
若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的
二、线性微分方程的解的结构
先讨论二阶齐次线性方程
d2ydyQ(x)y0
yP(x)yQ(x)y0 即2P(x)dxdx
定理
1如果函数y1(x)与y2(x)是方程
yP(x)yQ(x)y0的两个解 那么
yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数
齐次线性方程的这个性质表明它的解符合叠加原理
证明 [C1y1C2y2]C1 y1C2 y2
高等数学教案
[C1y1C2y2]C1 y1C2 y2
因为y1与y2是方程yP(x)yQ(x)y0 所以有
y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20
从而
[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]
C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000
这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解
函数的线性相关与线性无关
设y1(x) y2(x) yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2 kn 使得当xI 时有恒等式
k1y1(x)k2y2(x)
knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关
判别两个函数线性相关性的方法
对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关
例如 1 cos2x sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无关的
定理2 如果如果函数y1(x)与y2(x)是方程
yP(x)yQ(x)y0 的两个线性无关的解 那么
yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解
例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解
解 因为
y1y1cos xcos x0
y2y2sin xsin x0
所以y1cos x与y2sin x都是方程的解
因为对于任意两个常数k1、k2 要使
k1cos xk2sin x0
只有k1k20 所以cos x与sin x在(, )内是线性无关的
因此y1cos x与y2sin x是方程yy0的线性无关解
高等数学教案
方程的通解为yC1cos xC2sin x
例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解
解 因为
(x1)y1xy1y10xx0
(x1)y2xy2y2(x1)exxexex0
所以y1x与y2ex都是方程的解
因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的
因此y1x 与y2ex是方程(x1)yxyy0的线性无关解
方程的通解为yC1xC2e x
推论 如果y1(x) y2(x) yn(x)是方程
y(n)a1(x)y(n1) an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为
yC1y1(x)C2y2(x) Cnyn(x)
其中C1 C2 Cn为任意常数
二阶非齐次线性方程解的结构
我们把方程
yP(x)yQ(x)y0 叫做与非齐次方程
yP(x)yQ(x)yf(x)对应的齐次方程
定理3 设y*(x)是二阶非齐次线性方程
yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么
yY(x)y*(x)是二阶非齐次线性微分方程的通解
证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]
[Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]
0 f(x) f(x)
例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此
yC1cos xC2sin xx22
高等数学教案
是方程yyx2的通解
定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如
yP(x)yQ(x)yf1(x) f2(x)
而y1*(x)与y2*(x)分别是方程
yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解
证明提示
[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]
[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]
f1(x)f2(x)
作业:P331:1(1)(3)(5)(7),4(1)(3)(5)
§7 7 二阶常系数齐次线性微分方程
二阶常系数齐次线性微分方程 方程 ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数
如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解
我们看看
能否适当选取r 使yerx
满足二阶常系数齐次线性微分方程 为此将yerx代入方程
ypyqy0 得
(r 2prq)erx 0
由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解
特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式
pp24q
r 1,22高等数学教案
求出
特征方程的根与通解的关系
(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解
这是因为
函数y1e因此方程的通解为
yC1er1xC2er2x
(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分方程的两个线性无关的解
这是因为 y1er1x是方程的解 又
r1xr1x2r1x
(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x
2er1x(2r1p)xe(r1pr1q)0 r1x、y2er2xy1er1x(r1r2)x是方程的解 又不是常数
ey2er2xy2xer1xx不是常数
所以y2xe也是方程的解 且y1er1xr1x
因此方程的通解为
yC1er1xC2xer1x
(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解
函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得
y1e(i)xex(cosxisinx)
y2e(i)xex(cosxisinx)
1y1y22excosx excosx(y1y2)
2高等数学教案
1y1y22iexsinx exsinx(y1y2)
2i故excosx、y2exsinx也是方程解
可以验证 y1excosx、y2exsinx是方程的线性无关解
因此方程的通解为
yex(C1cosxC2sinx)
求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为
第一步
写出微分方程的特征方程
r2prq0 第二步
求出特征方程的两个根r1、r2
第三步
根据特征方程的两个根的不同情况 写出微分方程的通解
例1 求微分方程y2y3y0的通解
解 所给微分方程的特征方程为
r22r30 即(r1)(r3)0
其根r11 r23是两个不相等的实根 因此所求通解为
yC1exC2e3x
例2 求方程y2yy0满足初始条件y|x0
4、y| x02的特解
解 所给方程的特征方程为
r22r10 即(r1)20
其根r1r21是两个相等的实根 因此所给微分方程的通解为
y(C1C2x)ex
将条件y|x04代入通解 得C14 从而
y(4C2x)ex
将上式对x求导 得
y(C24C2x)ex
再把条件y|x02代入上式 得C22 于是所求特解为
x(42x)ex
例 3 求微分方程y2y5y 0的通解
解 所给方程的特征方程为
r22r50
高等数学教案
特征方程的根为r112i r212i 是一对共轭复根
因此所求通解为
yex(C1cos2xC2sin2x)
n 阶常系数齐次线性微分方程 方程
y(n)p1y(n1)p2 y(n2) pn1ypny0
称为n 阶常系数齐次线性微分方程 其中 p1
p2 pn1 pn都是常数
二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去
引入微分算子D 及微分算子的n次多项式
L(D)=Dn p1Dn1p2 Dn2 pn1Dpn 则n阶常系数齐次线性微分方程可记作
(Dn p1Dn1p2 Dn2 pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy Dnyy(n)
分析 令yerx 则
L(D)yL(D)erx(rn p1rn1p2 rn2 pn1rpn)erxL(r)erx
因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解
n 阶常系数齐次线性微分方程的特征方程
L(r)rn p1rn1p2 rn2 pn1rpn0 称为微分方程L(D)y0的特征方程
特征方程的根与通解中项的对应
单实根r 对应于一项 Cerx
一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)
k重实根r对应于k项 erx(C1C2x Ck xk1)
一对k 重复根r1 2 i 对应于2k项
ex[(C1C2x Ck xk1)cosx(D1D2x Dk xk1)sinx]
例4 求方程y(4)2y5y0 的通解
解
这里的特征方程为
r42r35r20 即r2(r22r5)0
它的根是r1r20和r3 412i
因此所给微分方程的通解为
高等数学教案
yC1C2xex(C3cos2xC4sin2x)
例5 求方程y(4) 4y0的通解 其中0
解
这里的特征方程为
r4 40
它的根为r1,22(1i) r3,42(1i)
因此所给微分方程的通解为
ye2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x)
作业:P340:1(1)(3)(2)(4)(5)(6)(8),2(2)(4)(6)
§7 8 二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微分方程 方程
ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数
二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和
yY(x) y*(x)
当f(x)为两种特殊形式时 方程的特解的求法
一、f(x)Pm(x)ex 型
当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式
高等数学教案
Qm(x)b0xmb1xm1 bm1xbm
通过比较等式两边同次项系数 可确定b0 b1 bm 并得所求特解
y*Qm(x)ex
(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
成立 Q(x)应设为m1 次多项式
Q(x)xQm(x)
Qm(x)b0xm b1xm1
bm1xbm
通过比较等式两边同次项系数 可确定b0 b1
bm 并得所求特解
y*xQm(x)ex
(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式
Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)
成立 Q(x)应设为m2次多项式
Q(x)x2Qm(x)
Qm(x)b0xmb1xm1 bm1xbm
通过比较等式两边同次项系数 可确定b0 b1 bm 并得所求特解
y*x2Qm(x)ex
综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如
y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2
例1 求微分方程y2y3y3x1的一个特解
解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)
与所给方程对应的齐次方程为
y2y3y0
它的特征方程为
r22r30
由于这里0不是特征方程的根 所以应设特解为
y*b0xb1
高等数学教案
把它代入所给方程 得
3b0x2b03b13x1
比较两端x同次幂的系数 得
3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为
y*x
例2 求微分方程y5y6yxe2x的通解
解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)
与所给方程对应的齐次方程为
y5y6y0
它的特征方程为
r25r 60
特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为
YC1e2xC2e3x
由于2是特征方程的单根 所以应设方程的特解为
y*x(b0xb1)e2x
把它代入所给方程 得
2b0x2b0b1x
比较两端x同次幂的系数 得
13132b01 2b01 2b0b10 2bb001由此求得b0 b11 于是求得所给方程的一个特解为
y*x(x1)e2x
从而所给方程的通解为
yC1e2xC2e3x(x22x)e2x 121212高等数学教案
提示
y*x(b0xb1)e2x(b0x2b1x)e2x
[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x
[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x
y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x
方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式
应用欧拉公式可得
ex[Pl(x)cosxPn(x)sinx]
ex[P(x)eli xei xP(x)ei xei x] n22i
[Pe(i)x[Pe(i)x
l(x)iPn(x)]l(x)iPn(x)]
P(x)e(i)xP(x)e(i)x
其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}
设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x
则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解
其中k按i不是特征方程的根或是特征方程的根依次取0或1
于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为
y*xkQm(x)e(i)xxkQm(x)e(i)x
xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)
xk ex[R(1)m(x)cosxR(2)m(x)sinx]
综上所述 我们有如下结论
如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程 12121212高等数学教案
ypyqyf(x)的特解可设为
y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]
其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1
例3 求微分方程yyxcos2x的一个特解
解 所给方程是二阶常系数非齐次线性微分方程
且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)
与所给方程对应的齐次方程为
yy0
它的特征方程为
r210
由于这里i2i 不是特征方程的根 所以应设特解为
y*(axb)cos2x(cxd)sin2x
把它代入所给方程 得
(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x
比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x
提示
y*(axb)cos2x(cxd)sin2x
y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x
(2cxa2d)cos2x(2ax2bc)sin2x
y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x
(4ax4b4c)cos2x(4cx4a4d)sin2x
y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x 134
91349高等数学教案
3a13b4c014由 得a b0 c0 d 3c0394a3d0作业:P347:1(1)(2)(5)(9)2(2)(3)(4)
第三篇:高数1.3教案
§1.3 数列的极限
函数研究两个变量的对应关系,而极限则是研究自变量变化时,因变量的变化趋势。
一.极限思想―割圆术:用圆内接正多边形面积逼近圆面积
圆内接正六边形面积记为A1
十二 A2
二十四 A3
62n1 AnnN
A1,A2,,An,构成一列有次序的数――数列.n→大,AnA(圆面积)。不论n如何大,只要n取定, AnA.设想n,即内接正多边形边数无限增加,在这个过程中,内接正多边形的面积无限接近于圆,同时An→确定的数值(即圆的面积)数学上就称为的极限(n)。
极限方法是高数中一个基本方法。
二.数列的极限定义――xnfn,D为正整数。
1.第一种定义:当项数n无限增大时,如果xn无限接近于一个确定的常数a,则称当n无限增大时xn的极限是a.2.“N”def 当0,不论它多么小,总N0,对于nN的一切xn,恒有xna成立,则limxna.如果数列没有极限,就称是发散的。
n *1.是任意给定(任意性)
*2.N与有关,随给定而选定,一般地越小,N越大,N大到何种程度,取决于使xna成立时xn的项数n的取值,定义中仅要求N有关,并不一定要找出最小的自然数N.*3几何意义:nN时,所有的xn都落在a,a内,即数列只有有限个(最多只有N个)在区间之外。*4利用定义不能直接求极限。
三.极限的证明
1例1 证明lim(1)1
n1n1111,n1 证:0,要使11n1n1111取N[1],则当nN时,有1, 1n1n1 ∴lim(1)1
n1n limxna的证明步骤:
n 1)给定0
2)要使xna,解出NN()3)取N,即N.4)当nN时,有xna
5)下结论。n!例2 证明 limn0
nnn!证:0,要使n0<,nn!nn111只要n0=
nnnnnn!11取 N[],则当nN=[]时,有n0
nn!∴limn0 nn 例3 证明.limnn1n0 n1n
证:0,要使只要111,n2
4n1n2n1取N[2]
则当nN时有n1n, 4∴limnn1n0.2n1 例4 设q1,证明等比数列1,q,q,,qn1,的极限是0。
证:01∵xn0qln取自然对数,解得∴n1,lnqlnn1],则当nN时有xn0q 取N[1lnq limqnn10。
四.收敛数列的性质
1.极限的唯一性
定理1 数列不能收敛于两个不同的极限。2.有界性
(1)有界概念:数列xn,若M0,对一切xn有xnM,称xn有界。
(2)收敛数列的有界性
定理2 如果数列xn收敛,那么数列xn一定有界。
若xn无界xn发散。xn有界,则不一定收敛。
如xn1n1,即1,1,1,1,,1n1,
∴数列有界是收敛的必要条件,非充分条件。3.收敛数列与子数列的关系
子数列:在数列xn中任意抽取无限多项并保持这些项在原数列中的次序,得到的一个数列为原数列xn的子数列。xn
k定理3 若xn收敛于a,则它的任一子数列也收敛,且极限也是a。
一个发散的数列也可能有收敛的子数列。
小结:本节介绍了数列极限的定义,理解利用定义证明数列的极限,知道收敛数列的有关性质。
第四篇:高数1.1教案
第一章:函数与极限
教学目的 1。正确理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式; 2. 正确理解函数的奇偶性、单调性、周期性和有界性;
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念; 4. 掌握基本初等函数的性质及其图形。教学重点 分段函数,复合函数,初等函数。教学难点 有界性,初等函数的判断。教学内容: 前言
名称:高等数学
教学过程一学年
主要内容:一元、多元函数微分学和积分学、矢量代数、空间解析几何、无穷级数和微分方程。教学目的:掌握高等数学的基本知识,基本理论,基本计算方法,提高数学素养。培养学生的抽象思维和逻辑推理能力,辩证的思想方法,培养学生的空间想象能力,培养学生分析问题和解决问题的能力。为学生进一步学习数学打下一定的基础,还要为学习专业的后继课程准备必要的数学基础。
第一节:映射与函数
一、集合
1、集合概念
具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素 表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素
1)A{a1,a2,a3,}
2)A{xx的性质P}
元素与集合的关系:aA
aA
一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。常见的数集:N,Z,Q,R,N+
元素与集合的关系:
A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作AB。
如果集合A与集合B互为子集,则称A与B相等,记作AB 若作AB且AB则称A是B的真子集。空集: A2、集合的运算
并集AB :AB{x|xA或xB} 交集AB :AB{x|xA且xB}
差集
AB:AB{x|xA且xB}
C全集I、E
补集A:
集合的并、交、余运算满足下列法则: 交换律、ABBA
ABBA 结合律、(AB)CA(BC)
(AB)CA(BC)
分配律
(AB)C(AC)(BC)
(AB)C(AC)(BC)对偶律
(AB)cAcBc
(AB)cAcBc 笛卡儿积A×B{(x,y)|xA且yB}
3、区间和邻域
开区间
(a,b)
闭区间
a,b 半开半闭区间
a,ba,b
有限、无限区间
邻域:U(a)
U(a,){xaxa}
a 邻域的中心
邻域的半径
去心邻域
U(a,)
左、右邻域
二、映射
1.映射概念
定义
设X,Y是两个非空集合,如果存在一个法则f,使得对X中的每一个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作
f:XY
其中y 称为元素x的像,并记作f(x),即
yf(x)
注意:1)集合X;集合Y;对应法则f
2)每个X有唯一的像;每个Y的原像不唯一
3)单射、满射、双射
2、映射、复合映射
三、函数
1、函数的概念:
定义:设数集DR,则称映射f:DR为定义在D上的函数
记为
yf(x),xD
自变量、因变量、定义域、值域、函数值
用f、g、
函数相等:定义域、对应法则相等
自然定义函数;单值函数;多值函数、单值分枝.例:1)y=2
2)y=x
13)符号函数 yx00 1x0
4)取整函数 yx
(阶梯曲线)5)分段函数 yx02x1x0x1x1
2、函数的几种特性
1)函数的有界性(上界、下界;有界、无界)有界的充要条件:既有上界又有下界。注:不同函数、不同定义域,有界性变化。
2)函数的单调性(单增、单减)在x1、x2点比较函数值
f(x1)与f(x2)的大小(注:与区间有关)
3)函数的奇偶性(定义域对称、f(x)与f(x)关系决定)
图形特点(关于原点、Y轴对称)
4)函数的周期性(定义域中成立:f(xl)f(x))
3、反函数与复合函数
反函数:函数f:Df(D)是单射,则有逆映射f函数与反函数的图像关yx于对称
1(y)x,称此映射f1为f函数的反函数
复合函数:函数ug(y)定义域为D1,函数yf(x)在D上有定义、且f(D)D1。则ug(f(x))gf(x)为复合函数。(注意:构成条件)
4、函数的运算
和、差、积、商(注:只有定义域相同的函数才能运算)
5、初等函数:
1)幂函数:yx
2)指数函数:ya
3)对数函数 yloga(x)
4)三角函数
ysin(x),y
5)反三角函数
axcos(x),ytan(x),ycot(x)
yarcsin(x),yarccox)s(yarctan(x)yarccot(x)
以上五种函数为基本初等函数
6)双曲函数
exexexex
shx
chx
22shxexexthxxchxeex
注:双曲函数的单调性、奇偶性。
双曲函数公式
sh(xy)shxchychxshysh(xy)shxchychxshych(xy)chxchyshxshy ch(xy)chxchyshxshyyarshx反双曲函数:
yarchx yarthx
第五篇:scratch教案——变量
研究课教案
教学目标:
知识与技能:了解变量的定义;学会使用广播;学会设置变量。过程与方法:学会多个角色之间的配合使用;学会程序的调试; 情感态度与价值观:认真细致的态度,严谨的程序思想。教学重点:变量的设置和使用 教学难点:初步了解变量的含义和使用 教学过程:
导入:请一位同学到前面来,玩一个游戏“猫捉老鼠”。这个游戏好玩吗?其实,这个软件的编程并不难,只要了解程序的组成,我们也可以做出来。
哪位同学能为我们解读一下角色“猫”和角色“老鼠”的程序?(学生解读程序)
利用你们玩电脑游戏的经验,说说这个软件有哪些问题或不足?(预期答案:没有计数)
教师:既然是一款益智游戏,就应当有得分的显示。下面,我们来为游戏增加记分的功能。
新知:今天,我们要接触一个新的知识:“变量”。变量的定义:是指没有固定的值,可以改变的数,它可以保存供后续脚本使用的信息。
我们先在变量模块组中,设置一个变量“score”(得分、记分)。虽然在Scratch中对变量的名字没有过多的要求,但是,还是建议名字有具体的意义,便于识别。
对于游戏的记分功能,大家能否给我一些建议?(预期答案:游戏开始,计数为0;抓到1次,计数+1)请你们找到能够实现这两个功能的模块,并结合重复模块,完善程序,实现记分功能。
学生:以小组为单位,探究实现记分功能的方法。教师巡视指导。
(如果学生能够完成)请一位同学,介绍一下他的做法和思路。
(如果学生没有完成)我们大家来分析一下,只需要两个步骤:当点击绿旗开始后,将变量变为0;加入重复+1程序。我们看看效果。
请没有完成的同学,完成自己的游戏程序,并看看效果。小结:在程序中我们引入了一个变量,它代表着一个不断变化的数,并能根据我们的需要计算和存储。(语言描述变量记分的过程)
下面,我们来看“掷骰子”游戏。比一比,看谁的点数多。你们想做一个这样的游戏程序吗?这个程序非常简单,只要大家利用今天学习的变量,就可以制作出来。
大家观察游戏过程,想一想,哪个地方或对象应该用变量?(预期答案:骰子)
下面,我们来分析这个游戏的程序:
因为骰子的不确定性,会随机出现一个1—6之间的数,因此,要设置一个变量,来代替这个数。
游戏中有两个角色,学生和骰子。学生的动作是:让rand1变个数,然后发出掷骰子的命令。骰子的动作是:接到命令后,不断滚动,然后停止,显示对应的点数。
学生的程序包括:点绿旗开始,为rand1随机赋予数(1—6之间的数),发出命令;
骰子的程序包括:接到命令后,变成对应的点数(造型)。
现在以小组为单位,讨论,如何实现学生的程序和骰子的程序。(教师巡视指导,学生探究思考。)
(在学生解决主要程序后)教师问:骰子滚动的效果如何实现?(教师给出提示,学生思考重复的次数)
问:让学生喊出结果如何实现?用到什么模块?(学生解决)
教师小结,梳理学生和一个骰子的程序结构。
拓展:添加一个骰子,要求:点击绿旗,两个骰子不断变化,并随机出现点数,博士读出总点数。(学生动手完成,教师巡视指导)
总结:今天完成了两个程序的设计,同学们,你们都能在Scratch中实现哪些效果?谁能说一下你对变量的了解呢?