二次函数的图像的教学设计

时间:2019-05-12 17:48:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数的图像的教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数的图像的教学设计》。

第一篇:二次函数的图像的教学设计

二次函数的图像的教学设计

作者: 王方苹

日期:2008-01-08 21:14:07

教学目标 知识与技能目标 :

1.了解二次函数图象的概念

2.学会用描点法画y=ax2图象。

3.学会观察、归纳、概括函数图像的特征

4.掌握y=ax2图象的位置关系及有关性质

程序性目标:1.经历描点法画函数图像的过程

2.经历从特殊到一般的认识过程,学会合情推理

情感与价值观目标:

进一步培养数形结合方法研究函数的性质

教学重点 :函数 y=ax2型二次函数的描绘和图像特征的归纳

教学难点 :选择适当的自变量和相应的函数值来画函数图像,该过程较为复杂;还有提高题实际的应用难度较高 教学媒体准备 多媒体

教学设计过程

(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)

一、回顾知识

问题:1.正比例函数y=kx(k ≠ 0)其图象是什么

2.一次函数y=kx+b(k ≠ 0)其图象又是什么

3.反比例函数(k ≠ 0)其图象又是什么(学生思考后集体回答)

4.二次函数y=ax²+ bx+c(a ≠ 0)其图象又是什么呢? 5.函数图像画法

(列表

描点

连线)

二、新课教学

1.研究函数 的图像

(师生共同列表,描点,连线,得到函数的图像)2.课内练习

画函数⑴ 的图像

[学生自己画,要求:第一组⑴⑶,第二组⑵⑶,第三组⑴⑶;同桌相互配合,共同完成] 3.函数 的顶点坐标、对称轴有关概念(教师介绍顶点坐标、对称轴有关概念)4.课内练习

5.例1 已知二次函数

(a≠0)的图像经过点(-2,-3).(1)求a的值,并写出这个二次函数的解析式.(2)说出这个二次函数的顶点坐标、对称轴、开口方向和图像的位置.(师生共同完成)6.课内练习

练习一:若抛物线(a ≠ 0),过点(-1,3)。

(1)则a的值是;

(2)对称轴是

,开口

。(3)顶点坐标是,顶点是抛物线上的。

抛物线在x轴的 方(除顶点外)练习二:已知抛物线 经过点A(-2,-8)。

(1)求此抛物线的函数解析式;

(2)判断点B(-1,-4)是否在此抛物线上。

(3)求出此抛物线上纵坐标为-6的点的坐标。

练习三:某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.

(1)以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线

(a ≠ 0)的解析式;

(2)计算一段栅栏所需立柱的总长度.(精确到0.1米)

三.课堂小结

1.二次函数

(a≠0)的图像是一条抛物线.2.图象关于y轴对称,顶点是坐标原点.3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点.

第二篇:二次函数图像教学反思

《二次函数y=ax2的图像》教学反思

教师的任务不仅在于教数学,更主要的是创设情境,激励学生凭借自己的能力去获取数学知识,理解数学的道理,构建数学思想.因此,在教学中,我们应鼓励学生通过独立思考或合作学习研究,“发现”或“再创造”出数学知识。

一、教学背景分析:

1、教材分析:二次函数的知识是看中学数学学习的重要内容之一,它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,无论是在生活中还是在运用二次函数知识的方法上,都具有重要意义的教学内容。因此,搞好二次函数的图像和性质的教学,对学生能力的培养有重要的奠基意义。

2、教学内容分析:本节课二次函数的图像的第一课时,主要是研究最简单的二次函数的图像的画法,从而总结出它的性质。这既是对学生进行理性思维的培养,又是进行抽象思维的培养,具有较高的数学教育价值。因此学好本节内容对以后的学习也很重要。我确定本节课的重点是:根据图像观察、分析出二次函数的性质。

3、学生情况分析:本节课的教学对象是职高一年级级学生,在此之前他们对一次函数的图像和性质有一定的基础,但他们的观察能力,概括能力还比较弱,因此我确定本节课的难点是继续渗透数形结合的数学思想方法。

二、教学目标的确定:

我根据数学课程标准中关于“二次函数的图像”的教学要求,结合学生的实际情况,从以下三个方面确定了本节课的教学目标:

知识与技能:

(1)会用描点法画出二次函数y=ax2的图像。

(2)根据图像观察、分析出二次函数的性质。

(3)进一步理解二次函数和抛物线的有关知识。

过程与方法:通过画函数图像,总结性质,渗透由特殊到一般的辨证唯物主义观点。渗透数形结合的数学思想方法,培养观察能力和分析问题的能力。

情感态度:培养学生勇于探索创新及实事求是的科学精神。

三、教学方法与手段:

教学方法主要采用问题导学、小组讨论与反馈练习相结合的方法,通过教

师设置问题,引导学生独立思考,通过总结二次函数的性质组织学生小组讨论,为较差学生提供得到帮助的机会,通过反馈练习了解学生情况,及时分析和矫正,提高课堂教学效果。

教学手段采用分层教学与学案相结合的方法。通过分层提问,使不同的学生获得不同的收获,通过学案的设计帮助学生检测学习情况,反思学习过程,不断提高学习效果。

四、教学过程的反思:

优点:

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图像时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图像和性质的影响,在学生画完三个图像后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图像和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图像,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图像后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图像,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二

次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

五、得到的启示:

反思这节课,从课前准备到课堂实施再到课后作业效果和检测,我得到如下启示:

1、对教材的处理要灵活,要考虑到前后知识的联系。

2、学生是变化的,要能及时准确的了解学生情况。

3、要不断探索和完善自己的教学方法和手段,向其他老师学习。

4、不断提高学生学习兴趣,不断提高课堂实效。

5、加强个别辅导。指导学生

第三篇:二次函数的性质和图像教学设计

《二次函数的性质和图像》教学设计

一、设计理念:

本节课遵循“探索—研究——运用“亦即“观察——思维——迁移”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习,由旧知识类比得新知识,自主探究二次函数图象及其性质。学生动脑思和究,动手探。教师的“诱”要在点上,在精不用多。通过本节学习,学生更进一步的掌握二次函数性质及其图象特征。

二、学情分析:

学生在初中学习中,已有二次函数的基础,了解二次函数图象及其相关性质,接受起来较快。基于此,教师应在学生原有基础上拓宽知识面,引入新概念,帮助学生加深并提高对二次函数的认识。

三、教学目标

(一)、知识目标

1、使学生掌握研究二次函数的一般方法——配方法。进一步掌握二次函数y=ax2+bx+c(a)的图象的顶点坐标,对称轴方程,单调区间和最值的求法。

2、会用描点法画出二次函数图像,能通过图像认识二次函数的性质

3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。

4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。

5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。

(二)、情感目标

1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。

2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。

(三)、能力目标

1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。

2、培养学生运用运动变化的观点来分析、探讨问题的意识。教学重点:二次函数的性质

教学难点:研究二次函数图象和性质的重要方法——配方法。

对于任何一个二次函数,只要通过配方变形为:(x-h)2 + k的形式,就可以知道函数的图象特征和有关性质。通过本节课的学习,学生从理论上加深了对函数的理解,也可利用所学知识解决日常生活中常见的实际问题,提高自身分析问题,联系实际的能力,从而达到学习目的。

四、教学过程:

(一)、复习

1、二次函数定义、表达式。

2、求二次函数y= a(x-h)2+ k(a0)的对称轴和顶点坐标。(教师通过多媒体展示问题,通过对旧知识的回顾为新知识的学习做好认知铺垫,学生思考后回答)

(二)、导入新课

1、教师展示问题,要求在同一坐标系中做出下列函数图象:y=-3x2 ,y=-2x2 ,y=-x2 , y=3x2 ,y=2x2 ,y= x2.回答下列问题:

问题一 :函数y= ax2 的单调性、奇偶性、最值与图象开口方向、对称性、顶点?

问题二:函数图象随a 值变化,如何变化? 问题三:y= ax2 与 y=-ax2 图象有何关系?

(教师借助多媒体手段,放映问题答案,展示函数图象随a 值变化的过程,即函数y= ax2(a)的图象和性质。)函数y= ax2(a)的图象和性质: 1.函数是偶函数,图象关于y轴对称.2.顶点坐标(0,0)

3.当a >0 时,开口向上,在上是减函数,在上是增函数,当时,有最小值0。4.当a <0 时,开口向下,在上是增函数,在上是减函数,当时,有最大值0。

5.当a >0 时,抛物线在x轴上方,开口随 a增大逐渐减小;当a<0 时,抛物线在x轴下方,开口随 a增大逐渐减大。

教师提问:若将函数的图象进行平移,则函数的哪些性质将不发生变化?哪些将发生变化?(学生讨论回答),研究一般的二次函数的性质和图象:

1、研讨二次函数的性质和图象。

2、研讨二次函数的性质和图象。教师设计问题,学生探究:

问题一:指出两个函数的开口方向,并说明哪个函数图象的开口较大? 问题二:分别将二次函数与配方,然后分别求出两个函数的最值以及与x轴交点。

问题三:列表画图,分别在直角坐标系中作出两个函数的图象:

1、推测两个函数图象的对称轴,并给出证明。

2、y= a(x-h)2+ k(a)的顶点坐标是________,对称轴是________。

3、分别指出两个函数的单调区间。

问题四:将二次函数y=ax2+bx+c(a)配方,并回答下列问题:

1、函数图象的顶点坐标和对称轴分别是_______、_______。

2、对于a>0和a<0分别指出函数图象的开口方向,和最值。

(学生完成以上问题的过程中教师要适时启发,并在最后加以总结。)

二次函数性质如下:

1、图象是一条抛物线,顶点坐标是,对称轴是直线

2、当a >0 时,抛物线开口向上,函数在处取最小值;在区间上是减函数,在区间上是增函数;

3、当a <0 时,抛物线开口向下,函数在处取最大值;在区间上是增函数,在区间上是减函数;概念深化:

(教师指出配方法是研究二次函数性质的通法,对于二次函数性质的有关结论不必死记硬背,关键在于如何运用配方法来研究二次函数性质,组织学生分组讨论。)“配方法”是研究二次函数的主要方法,熟练的掌握配方法是掌握二次函数的关键,对一个具体的二次函数,通过配方就能知道这个函数的主要性质。应用举例:

例:求函数的最小值和它的图像的对称轴,在哪个区间上是增函数?在哪个区间上是减函数?

(例题由学生版演,教师给予纠正。让学生充分体验研究二次函数的方法——配方法。通过学生版演,可以发现解题过程中出现的问题,及时给予纠正)解:因为:

所以 函数图象的对称轴是直线,它在区间上是减函数,在区间上是增函数。

(三)、随堂练习:

1、用配方法,求下列函数的最大值或最小值:

(1)1.根据二次函数的顶点坐标公式确定下列函数的对称轴和顶点坐标:

(1)y=2x2-12x+13(2)(2)y=-5x2+80x-319

2、求下列函数图象的对称轴和顶点坐标,并做出图象:

(1)y=2x2-2x-2.5(2)y=-2x2-4x+8(学生做完练习后,教师进行及时评价)

(四)、归纳小结:

方法:研究二次函数的主要方法——配方法。

知识:二次函数的图象与性质的有关结论。

(1)抛物线,当x=()时,y有最()值,是 .(2)当m=()时,抛物线 开口向下.

(3)已知函数 是二次函数,它的图象开口(),当x()时,y随x的增大而增大.

(4)抛物线的开口(),对称轴是(),顶点坐标是(),它可以看作是由抛物线 向()平移()个单位得到的.(5)函数,当x()时,函数值y随x的增大而减小.当x()时,函数取得最()值,最()值y=().

(6)抛物线 可由抛物线 向()平移()个单位,再向平移()个单位而得到.

(7)二次函数 的图象的顶点是(),当x()时,y随x的增大而减小.

(五)、作业: P22习题27.2 第2题(1)、(3)、(5)及第3题

第四篇:二次函数图像教案

二次函数的图像

略阳天津高级中学 杨 娜

课 型:新授课 课时安排: 1课时 教学目标:

1、理解二次函数中a,b,c,h,k对其图像的影响。

2、领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究,而提高识图和用图能力。

3、培养学生数形结合的思想意识。重点难点: 1.教学重点:二次函数图像平移变换规律及应用

2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数. 教学过程:

一、导入新课

在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步研究一般的二次函数的性质。二、讲授新课

提出问题1 二次函数yax(a0)的图像与二次函数yx的图像之间有什么关系? 1.我们先画出yx 的图像,并在此基础上画出y2x的图像。

学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。

3.概括:二次函数yax(a0)的图像可以由yx的图像个点的纵坐标变为原来的a倍得到。4.用几何画板演示a对开口大小得影响。5.抽象概括

二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标 变为原来的a倍得到。

a决定了图像的开口方向:a>o开口向上,a<0开口向下

222222a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 6.练习列二次函数图像开口,按从小到大的顺序排列为_ 11(1)f(x)=x2;(2)f(x)=x242

问题

212(3)f(x)=-x;(4)f(x)=-3x23函数ya(xh)2k(a0)的图像与函数yax2(a0)的图像之间有什么关系呢?

1.我们先一起回顾y2x2与y=2(x+1)²+3图像的关系。(教师用几何画板演示)

在初中我们已经知道,只要把y2x2的图像向左平移1个单位长度,再向上平移3个单位长度,就可以得到y=2(x+1)²+3的图像。它们形状相同,位置不同(如图2-22)。2.学生动手实践想想并回答课本上的问题2。3.概括:二次函数y=a(x+h)2+k(a0), ①a决定了二次函数图像的开口大小及方向;

而且“a正开口向上,a负开口向下”;|a|越大开口越小; ②h决定了二次函数图像的左右平移,而且“h正左移,h负右移”; ③k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。

问题3 yax(a0)和yaxbxc(a0)的图像之间有什么关系? 1.我们先来回顾y2x与y2x4x1的图像关系(教师在黑板演示,可以转化为顶点式)

至此我们知道把y2x的图像向左平移1个单位长度,再向下平移3个单位长度,就可以得到y2x4x1的图像(如图2-23)。

2.动画演示yaxbxc(a0)中a,b,c对图像的影响。3.概括:

⑴一般地,二次函数y=ax2+bx+c(a≠0),通过配方可以得到它的恒等形式y=a(x+h)2 +k,从而知道可以由y=ax2 的图像

通过平移得到y=ax2+bx+c(a≠0)的图像.⑵a决定了二次函数图像的开口大小及方向;

而且“a正开口向上,a负开口向下”;|a|越大开口越小;b影响了图像的位置不仅2222222上下平移而且左右平移;c决定了图像与坐标轴y轴的交点位置,c>0 交点在y轴上半轴,c<0交点在y轴下半轴。

三、巩固练习

1.完成课后练习题1,2,3 2.把下列二次函数一般式化为顶点式:

① yx28x9 ② y2x212x16 ③yax2bxc(a0)3.把yx2的图像经过怎样平移可得到yx28x9的图像?

4.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解式为?

5..二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为什么? 四.小结

1.回顾二次函数ya(xh)2k(a0)中,h,k对函数图像有何影响?

二次函数yaxbxc(a0)中,确定函数开口大小及方向的参数是什么?确定函数位置的参数是什么?

2.我们经历了yx到yax2(a0),yax2(a0)到ya(xh)2k(a0),通过这个过程,我们就能体会yax2(a0)到yax2bxc(a0)的图像变化过程,到研究一般函数的拓展过程。五.作业

完成课后习题1.2题。六.板书设计

二次函数再研究

问题1 演算过程 练习题 问题2 结论 问题3 附加题:

将二次函数y2x的图像平移顶点移到下列各点,写出对应的函数解析式。⑴(4,0);⑵(0,-2);⑶(-3,2)⑷(3,-1)222

第五篇:二次函数的图像与性质教学设计

第二章 二次函数

2.2 二次函数的图象与性质(1)

一、知识点

1.用描点法画函数 的图象

2.根据图象认识和理解二次函数 的性质

二、教学目标 知识与技能

1.能够利用描点法画函数 的图象,能根据图象认识和理解二次函数 的性质.

2.猜想并能作出  的图象,能比较它与 的图象的异同.

过程与方法:

1.经历探索二次函数 的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

2.由函数 的图象及性质,对比地学习的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维. 情感与态度:

1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.

三、重点与难点 重点:作出函数 的图象,并根据图象认识和理解二次函数 的性质.难点:由 的图象及性质对比地学习的图象及性质,并能比较出它们的异同点.、四、温故知新(放幻灯片2)1.正比例函数,一次函数与反比例函数图象特征,请同学们谈谈它们的图象有哪些特征? 2.画函数图象的主要步骤是什么? 3.你会用描点法画二次函数 的图象吗? 活动目的:回忆、思考学习过的内容,激发学生的求知欲,为学习新知识奠定基础.五、探究新知

1.作函数 的图象(放幻灯片3、4)(1)列表:观察 的表达式,选择适当的x值,填写下表:(2)描点:在直角坐标系中描点:

(3)用光滑的曲线连接各点,便得到函数 的图象.活动目的:运用启发式教学,让学生参与的到学习过程中,加深对知识的理解,体现数学活动充满着创造与探索.2.对于二次函数 的图象(放幻灯片5、6)

(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?

(3)当0x时,随着值的增大,的值如何变化?当0x时呢?

(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.活动目的:让学生在实践中检验自己得到的结论 的图象的性质(放幻灯片7)

(1)图像形状是,开口方向是 .(2)它的图象有最 点(填高或低),最 点坐标是()(3)它是 对称图形,对称轴是 .

在对称轴左侧,y随x的增大而 ; 在对称轴的右侧,y随x的增大而 .

(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的,同时也是图象的最低点,坐标为(0,0).

(5)因为图象有最低点,所以函数有最 值(填大或小),即当 时,最小y.活动目的:学生总结性质,培养学生归纳、整理知识的意识.4.做一做(放幻灯片8~10)

二次函数 图象是什么形状?先想一想,然后作出它的图象.它与二次函数 的图象有什么关系?与同伴进行交流.活动目的:学生分工合作,共同解决问题,激发学习热情.函数与的 图象的比较.(放幻灯片11)

我们观察函数2xy与2xy的图象,并对图象的性质作系统的研究,现在我们再来比较一下它们的图象的异同点.(1)开口方向不同,2xy开口向上,2xy开口向下.(2)函数值随自变量增大的变化趋势不同,在2xy图象上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x着的增大而减小,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而增大.在2xy的图象上正好相反.(3)在2xy中y有最小值,即0x时,y最小值=0;在2xy中,y有最大值.即当0x时,y最大值=0.(4)2xy有最低点,2xy有最高点.相同点:(1)图象都是抛物线.(2)图象都与x轴交于点(0,0).(3)图象都关于y轴对称.联系:它们的图象关于x轴对称.活动目的:让学生发现处理问题的方法.6.思考拓展.二次函数的图象的开口方向跟什么有关? 对于2axy这类二次函数来说,a与其张口大小、张口方向都有关系.活动目的:通过探索问题获得解决旧知识的方法.六、课堂练习

七、课堂小结(放幻灯片12)1.二次函数2xy的图象及性质.2.二次 函数2xy与2xy的图象的异同点.八、课后作业

下载二次函数的图像的教学设计word格式文档
下载二次函数的图像的教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数的图像和性质3教学设计

    22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计 知识与技能:会用描点法画出二次函数y=a (x-h)2+k的图象; 过程与方法:结合图象确定抛物线y=a (x-h)2+k的开口方向、对称轴与顶点坐标及......

    二次函数教学设计

    《二次函数》教学设计 一、教材分析: 《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于......

    《二次函数》教学设计

    实际问题与二次函数教案 仙游私立一中 林元炳 教学目标: 1、知识与技能:经历数学建模的基本过程。 2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。 3、情感、态......

    二次函数教学设计

    一、教学目标 1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体会如何用数学的方法描述变量之间的数量关系。 2.能够表示简单变量之间的二次函数关系。 3.经历......

    二次函数教学设计

    教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷......

    二次函数的图像和性质教学反思

    二次函数的图像和性质教学反思 本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的图......

    二次函数的图像和性质教学反思

    二次函数的图像和性质教学反思 这节课的教学主要使学生在原有基础上,通过类比一次函数掌握二次函数图象和性质,突出的是探索交流合作的方式。 在知识学习过程中给学生留有充分......

    《二次函数的图像与性质》教学反思

    《二次函数的图像与性质》教学反思 《二次函数的图像与性质》教学反思 本节课的学习内容是在前面学过一次函数、反比例函数的图像和性质的基础上运用已有的学习经验探索新知......