第一篇:初中数学课堂教案反思(举列:平行四边形性质)
平行四边形性质的教学反思
在新的课程理念告诉我们:学生是教学的主体,教学是“以学生为本”的教学。但教师对课堂教学的整体驾驭,在很大程度上决定于老师自身的水平和先进的教育理念。因此在新课程改革中,仅仅对教师进行培训是不够的,要在根本上促进教师自我成长,关键在于教师自身在教学中的反思和评价。教师进行教学反思可以提高他们的教学技能,教师的经验方能上升到一定的高度,对以后的教学行为产生影响。传统的课堂教学评价是单方面的评价,是以他人评价教师为主,教师大多处于被动接受的地位。这样单方面的评定不能很好地引发教学思想的沟通和碰撞。只有通过自我价评,才能很好地促使教师不断的自我反思、自我教育,并对自己的教学行为进行改进,从而提高教师的教学水平。可以说自我评价和改进的过程,是教师自我理解、自我超越的过程,更是教师个体成长的过程。
教学目标
(一)知识技能
经历探索平行线的性质的过程,初步掌握平行线的性质
(二)过程与方法
通过观察、操作、推理、交流等活动,进一步发展学生的空间观念结合推理能力。
(三)情感、态度、价值观
在学习过程中皮衣学生的唯物主义观点,使学生逐步养成言之有理的习惯。教学重点
1、平行线性质的探索和对性质的理解
2、应用性质解决实际问题 教学难点
有条理地写出推理的过程。课前准备 :预习课本 教具准备 :直尺、三角板 教法
:引导、探究、学法
:研讨、探究
教
学
进
程 情景导入
(一)动手操作:
(1)利用一块三角板和一把画两条互相平行的直线a、b;(2)画直线c使它与直线a、b均相交;
(3)写出一组同位角、一组内错角、一组同旁内角,并用量角器量出它们的度数;(4)观察各组角度数的关系,你可以得到怎样的结论?
(二)交流、探究 观察发现,得出结论: 两直线平行,同位角相等。两直线平行、内错角相等。两直线平行、同旁内角互补。
请你根据“两直线平行,同位角相等。” 说明成立的理由。如图 因为a∥b,所以∠1=∠2 又因为∠1与∠3是对顶角 ∠1=∠3 所以∠2=∠3 类似地、请根据“两直线平行、同位角相等。”说明
“ 两直线平行、同旁内角互补”成立的理由,并与同学们交流。学生画图板演 小组讨论 合作学习
(三)应用、提高
如图AD∥BC,∠A=∠C,试说明AB∥DC 解:因为AD∥BC 所以∠C=∠CDE 又因为∠A=∠C 所以∠A=∠CDE 根据“同位角相等两直线平行” 可以知道AB∥DC 练一练:
如图a∥b∠1=
55、∠2=68,求∠
3、∠
4、∠5的度数
(四)总结升华
老师画了一个△ABC,他问同学们∠A+∠B+∠C等于多少度? 你能有几种方法得到结论、画图并简述你的理由。
(五)布置作业:P23、(3、4、5)教学反思
这节课我是这样处理的
1.系生活实际,创设问题情境。
2.组织合作交流,营造探究氛围。使学生成为教学活动的主动参与者,真正实现学有所得,学有所用,学有所思,有效地培养学生的探究能力和创新思维。
3.尊学生需要,关注学习过程。,更是放手让学生大胆去作、比较、争论、分析归纳,课堂上百家争鸣、百花齐放,使不同层次的学生都得到了应有的发展。
4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。教学过程的问题
1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。
2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范
第二篇:[初中数学]平行四边形的性质教案13 人教版
平行四边形的性质
一、教学目标:经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质。并能初步应用这些知识解决简单的数学问题及实际问题。探索并掌握平行四边形的对边相等,对角相等的性质
在进行探索的活动过程中发展学生的探究意识和合作交流的习惯 二:教学知识点:
1、平行四边形的概念
2、平行四边形的性质
三:教学重点:探索平行四边形的性质
四:教学难点:运用平移、旋转的图形变换思想探索平行四边形的性质 五:教学方法:探索归纳法 六:教材分析
这节内容通过拼图引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。七:过程设计
活动一(探究平行四边形的概念)
拿一张纸,将其对折,用直尺画一个三角形,剪下两张叠放的三角形纸片,将它们相等的一组边重合,拼出一个四边形。
1、与同伴交流,你拼出了怎样的四边形?
2、提问:用两个全等的三角形可以拼出多少种四边形?(多媒体课件展示用两个全等的三角形拼出四边形的六种情况)
3、3、提问:仔细观察,拼出的六种四边形中有几个是特殊的四边形?这几个特殊的四边形对边有怎样的位置关系?说说你的理由。
4、通过对四边形上边及左边的平移,启发同学思考平行四边形的对边的关系
5、介绍平行四边形的定义(包括两重作用)、记法、读法及其相关概念(对边、对角、对角线)。
6,、通过对俩个图形的判断,进一步加深平行四边形的概念
第二环节
探索归纳、合作交流
1、拿出一张平行四边形纸片,小组讨论交流:在平行四边形中有哪些相等的线段?哪些相等的角?你们是如何得到的?
(鼓励学生大胆猜想、思考,勇于尝试。如可以用刻度尺、量角器分别测出各边的长、各角的度数,再看看相对的边和角是否相等;可以用折叠的办法;可以通过平移两条对边,看它们是否重合,可以剪下对角,看是否重合等等。不论是直观测量还是其它的什么办法,教师应给予充分的肯定。如果有学生提出用平移与旋转的变化方式得到结果,教师应给予赞赏。)
2、用图形的平移、旋转探索平行四边形的性质:
将幻灯片中的平行四边形的对角线连起来,四边形有俩个全等的三角形组成,将其中的一个三角形旋转,使与另一个三角形重合,如图所示
小组交流:通过旋转,我们看到两个平行四边形重合的同时,AB与
重合,∠A与
重合,∠B与
重合,所以:AB=
,∠A=
,∠B=
,结论:平行四边形的对边
,对角。
小结探索结果:通过以上探索活动,我们发现平行四边形除了两组对边平行,活动目的:
这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形对边、对角的特征,感受平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等等。
五、应用巩固、深化提高
1、填一填:(课本第99页“随堂练习”第1题)如图,四边形ABCD是平行四边形,(1)∠ADC=
°,∠BCD=
°。(2)边AB=,BC=。
2、问题1。如图,在平行四边形 ABCD中,若∠A+∠C=200º,则∠A=? ∠B=?,∠C=?∠D=?
问题2。想一想:谁的测量有误?(1)可可,乐乐,聪聪,哈哈正在测量
平行四边形 ABCD,可可说:AB=CD=5,BC=AD=8 乐乐:∠A=∠C=40º,∠B= ∠D=130º 聪聪:AB∥CD,BC∥AD 哈哈:∠A+∠C=80º,BC=AD
第五环节
概括总结
1.活动内容
[1]师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?(2)本节学习到了什么?(知识上、方法上)
第三篇:平行四边形性质教案
平行四边形性质教案
文留镇一中 杨芳 课题:平行四边形的性质
新授课:第1课时 学习目标
知识技能:解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。
过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐。
学习重点:理解并掌握平行四边形的概念及其性质。
学习难点:运用平移、旋转的图形变换思想探究平行四边形的性质。课前准备:(教具、活动准备等)每生准备好两张全等的三角形纸板、刻度尺、量角器 教学过程:
活动一:创设情境导入新课问题(1)
同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?学生根据自己的生活经验,可能回答:平行四边形、矩形、四边形„„教师点拨:太阳光属于平行光,窗口在地面上的影子通常是平行四边形。
问题(2)爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢?通过本节课的学习,大家就能明白其中的道理。今天,我们来共同研究平行四边形及其性质。从学生的生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲。学生经历了将实际问题抽象为数学问题的建模过程。通过分析学生习以为常的平行光线在室内的投影片,让学生感受到平行四边形与生活实际紧密联系;同时,把思维兴奋点集中到要研究的平行四边形上来,为下面学习新知识创造了良好开端。
活动二:实践探究交流新知
(一)拼图游戏。
问题1:你能利用手中两张全等的三角形纸板拼出四边形吗?学生动手操作,教师留意观察,请同学将拼出的六种形状不同的四边形展示在黑板上。
问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由。结合拼出的这个特殊四边形,给出平行四边形定义。
问题3:黑板上展示的图形中,哪些是平行四边形呢?学生对黑板上拼出的四边形进行识别。教师强调定义的两方面作用:一是可以判定一个四边形是不是平行四边形;二是平行四边形具有两组对边分别平行的性质。问题4:根据定义画一个平行四边形。学生画图,亲身感悟平行四边形。教师画图示范。结合图形介绍平行四边形对边、对角、对角线等元素及平行四边形的记法、读法。
(二)开放探究平行四边形的性质
1、教师提问观察这个四边形,除了“两组对边分别平行”外,它的边、角之间有什么关系。
2、学生利用学具小组合作探究教师以使用者的身份深入到各小组中,了解学生的探究过程并适当予以指导。
3、汇报:学生展示实验过程,相互补充探究出的结论。教师引导学生将探究出的结论按边、角进行归类梳理,使知识的呈现具有条理性。
4、利用以前所学的知识,通过说理,验证这两个结论。教师小结:连接平行四边形的对角线,是我们常做的辅助线,它构造出两个全等的三角形,从而将四边形问题转化为熟悉的三角形问题。充分体现了由未知转化为已知,由繁化简的数学思想。
5、总结:平行四边形的性质平行四边形对边相等;平行四边形对角相等。教师小结:我们用不同的方法,从不同的角度,通过实验、说理得到了平行四边形的性质。它为我们得到线段相等、角相等提供了新的方法和依据。学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化。通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性。
渗透类比思想。在比较中学习,能够加深学生对平行四边形概念本质的理解。通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为下面介绍平行四边形的对边、对角以及从这些基本元素入手探究图形性质打下坚实基础。
小组合作探究结果的展示,从多个方面完善了学生对平行四边形性质的认识,大大提高了学习效率;更为重要的是在这一过程中,让学生体悟到学习方式的转变。不但完成了学习任务,而且还学会了与人交流沟通的本领。真正体现了新课程理念中“以人为本,促进学生终身发展” 的教学理念。注重直观操作和简单推理的有机结合。把几何论证作为探究活动的自然延续和必然发展。使学生的实践精神,创新意识和自觉说理意识得到提高。在开放式探究平行四边形性质的活动后,再引导学生总结归纳,由此达到数学教学的新境界——提升思维品质,形成数学素养。
活动三:开放训练体现应用
1、解决课前提出的实际问题某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长。你知道小刚是如何计算的吗?这样计算的根据是什么?
2、例1:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少?
3、例2:在平行四边形ABCD中,的平分线交CD于点E,的平分线交AB于点F,试判断AF与CE是否相等,并说明理由。
4、试一试(1)如图,在平行四边形ABCD中,若,求 和 的度数。(2)如图,平行四边形ABCD的周长为20cm,AE、AF是BC、CD边上的高,且 cm,cm,试求平行四边形ABCD的面积。
回扣课始导言,体现了教学的连贯性,也体现出数学知识的实用性。学以致用的体验,使学生感受到数学学习是有趣的、丰富的、有价值的。学生审题是解题的关键,通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,培养学生的应用意识。
通过例题和反馈练习实现了知识向能力的转化,让学生主动用所学知识和方法寻求解决问题的策略。
活动四:反思小结持续发展以师生共同小结的方式进行:(1)回顾知识(2)总结方法(3)提炼思想本节课,我们通过实验得到了平行四边形的性质、又从理论上进行了验证。在学习的过程中,我们体会到处理问题时,不同的方法可以得到相同的结论,这是方法的不唯一性;同一条件下可以得到不同的结论,这就是结论的不唯一性。关于平行四边形的知识还有很多今后我们将继续探索和研究。对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。这是一次知识与情感的交流,浓缩知识要点,突出内容本质,渗透思想、方法。培养学生自我反馈、自主发展的意识。
第四篇:八年级数学平行四边形的性质1教案
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
4.1平行四边形的性质(1)
教学目标
1、掌握平行四边形有关概念和性质。
2、探索并掌握平行四边形的对边相等,对角相等的性质。
3、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。
4、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。教学重点
探索平行四边形的性质。教学难点
平行四边形性质的理解。教学过程:
一、自学提示
1:自学内容;教材83——84页
2;达成目的;(1)知道平行四边形的 概念,会用数学符号表示平行四边形
(2)掌握平行四边形的性质并会证明其性质
自学完成:
定义,表示方法以及平行四边形的性质和证明性质
教师板书性质:
1平行四边形的对边平行且相等
2平行四边形的对角相等
3平行四边形的邻角互补
4平行四边形的内角和是360°
1、操作活动:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,得到一个图形。(用几何画板平台展示整个过程)
2、观察、讨论:
(1)两张纸片拼成了怎样的图形?它是四边形吗?
(2)这个图形中有哪些相等的角?有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的特征,并与同伴交流。
3、平行四边形的定义
4、介绍平行四边形的书写方式及对角线的定义。
5、请学生举出自己身边存在的平行四边形的例子。
6、学生动手画一个平行四边形,并表示出来。
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
三、知识源于悟:
1、做一做(让学生实际动手操作)(出示幻灯片)
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD重合吗?(教师用几何画板平台展示整个旋转变化过程)
2、讨论:(小组交流)
(1)通过以上活动,你能得到哪些结论?
(2)平行四边形ABCD对边、对角分别有什么关系?能用别的方法验证你的结论吗?
3、结论:平行四边形的对边相等
平行四边形的对角相等
四、能力的源泉:
1、如果已知平行四边形一个内角的度数,能确定其它三个内角的度数吗?说说你的理由。(用几何画板演示)
2、变换角的度数,试一试。
3、你得到了什么结论?
五、随堂练习
六、试一试:用平行四边形设计美丽的图案。
七、新课小结:
通过本节课的学习,你有什么收获?(同桌互讲,小组交流,师生共同小结)
八、作业设计:
必做题:P85习题4.1第1、2题。
提高题:(解决问题)农民李某想发展副业致富,经考察地形后,在耕地旁边的荒地上开
0垦一平行四边形形状的鱼塘。能测得∠BAD=120,量得AB=50米,AD=80米。请你帮助李某一下鱼塘的对边AD、BC之间的距离及这个鱼塘的面积。
AD
CB
九、课后反思
本节课,通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
第五篇:《平行四边形的性质》教学反思
《平行四边形的性质》教学反思
《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。但需要改进的地方确是更多的。在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。性质的探索所花的时间也较长,从三个过程才得出几个性质。其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出OAOCOBOD。对角线互相平分的几何语言表示还可以是AC2OA2OC,BD2OB2OD。另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。由于性质探索部分花了较多时间,导致练习的时间不够多。应该让学生在练习的时候有更多的时间讨论,说得更多。可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。
总体来说,或许是教师和学生的心理都较紧张,课堂气氛不够活跃,引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学中要多加注意和需要不断改进的。