第一篇:积的变化规律
1教学目标 评论.(1)通过经历积的变化规律的发现过程,体会两个变量的相互关系,初步渗透函数思想。
(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。
(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。
2重点难点 评论.(1)重点:使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几),以及两个因数同乘或同除时,积的变化规律。
(2)难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考意识。
3学情分析 评论.该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。
4教学设计 评论.积 的 变 化 规 律
温岭市横峰小学
黄珍珍
一、面积猜想中感受一个因数扩大时积的变化规律
1.猜面积,渗透规律
师:喜欢玩游戏吗?我们来玩一个猜一猜的游戏。这是一个长方形(课件:长方形),谁能计算它的面积?(板书:20×10=200cm2)
师:仔细看咯!如果长不变(板书:20),宽延长(课件:延长宽至原来的2倍,但不告诉学生是2倍),谁能猜猜此时长方形的面积大概是多少?
生:400 cm2
师:为什么猜400?
生:因为宽是原来的2倍,所以面积就是原来的2倍,是400)
师:是否真如你猜的那样呢?我们来看一下。(课件:以原长方形的宽为标准,在大长方形中逐个移动宽(宽加粗),每份处虚线隔开)
师:果然,宽正好是原来的2倍,20cm(课件:20cm)(板书:),由此你想到了面积也是原来的2倍(板书:=),非常棒!猜得有理有据。
师:继续猜哦!长还是不变(板书:20)宽继续延长(延长宽至原来的4倍,但不告诉学生是4倍)这个长方形的面积又是多少呢?谁来猜?
生:800 cm2
师:说说理由
生:因为宽大概是原来的4倍,长没有变,所以面积就是200×4=800cm2
师:是800吗?一起来看一下(课件演示:以原长方形的宽为标准,在大长方形中逐个移动宽(宽加粗),每份处虚线隔开)
师:宽正好是原来的4倍,40cm(课件:40cm)(板书:),长不变,所以面积也是原来的4倍(板书:=),等于800,很会思考!
2.借语言,初述规律
师:咱们班同学真有眼力!猜得都特别准。现在,请仔细观察这组算式,再结合图形的变化,说一说你发现了什么?
生:长方形的长不变,宽乘2,面积也乘2。宽乘4,面积也乘4。生:长方形的长不变,宽乘几,面积就乘几。
师:长宽相乘,也可以把长宽分别叫作因数,结果叫作积。你能用因数、因数、积来说一说它的变化吗?
生:一个因数不变,另一个因数乘几,积也就乘几。
3.试举例,验证规律
师:听到了吗?谁来重复一遍。这组算式的确如此,是否所有乘法算式的因数和积都是这样变化的呢?下面请同学们继续想象一下,如果这个长方形的长仍然不变,宽还可以乘几呢?(3、5…)宽继续乘几,面积也乘几吗?请把你想象的乘法算式在研究单任务一这里写出来。明白了吗?开始。
【反馈】
师:请介绍一下你举的例子。
生:如:我举的例子是2×5=10,2不变,5乘3,10也乘了3……
师:看着这么多算式,谁能再来说一说因数和积的变化规律?
生:一个因数不变,另一个因数乘3,积也乘3……
师:只能乘3吗?谁能说得更好?
生:一个因数不变,另一个因数乘几,积也乘几。(板书课题再贴出规律:一个因数不变,另一个因数乘几,积也乘几)
师:概括得非常完整!有谁举的例子是不符合这个规律的?没有反对的例子,看来这条规律是正确的,一起来读一遍,注意,边读边思考:关于这条规律,你有什么想问的?起!
(生边读边在黑板空白表格处板书:不变
×a
×a)
二、猜想验证中感受一个因数缩小时积的变化规律
1.联想中引出对其它规律的猜想
师:读完了,谁有疑问?
生:如果一个因数不变,另一个因数除以几,积是不是也除以几?
师:(根据提问板书:不变
÷a
÷a ?)很会思考!我用a表示几,同学们知道吗?每一项重大发明最先都是源自于一些疑问,问得非常好!谁还有问题?
生:如果两个因数都乘几呢?
师:嗯!有可能,如果两个因数都乘,积又会怎么变呢?为了区分,我们一个×a,一个×b(板书:×a
×b
?)还有吗?
生:两个因数都除以几,积会怎么变?
师:(板书:÷a
÷b
?)大家想知道吗?待会儿研究,还有吗?
生:如果两个因数一个乘一个除呢?
师:(板书:×a
÷b ?)你提出了一个很大胆的问题。
2.举例验证一个因数缩小时积的变化规律
师:大家真会思考,由一条规律联想到了这么多问题,的确,学习数学很需要这种联想的能力。那我们就先来研究当一个因数不变,另一个因数除以几,积会发生什么变化?请大家在研究单任务二这里举举例子写一写,举好后小组内互相说一说,再看看因数和积的变化有什么规律?明白了吗?开始。
【反馈】
师:请介绍一下你举的例子。
师:现在,谁能看着这些算式说一说因数和积的变化规律?听清楚了吗?谁再来说?(板书:÷a)
师:有不同意见吗?关于这条规律,大家有什么要补充或强调的吗?
生:0除外。
3.归纳一个因数变化时积的变化规律
师:数学讲究简洁,如果把刚才发现的规律和这条(指板书)合起来,应该怎么说?先同桌试着说一说。谁来说给大家听(根据回答板书:或除以几(0除外))
师:一起来读一遍。
三、举例验证中拓展两个因数变化时积的变化规律(同乘、同除)
师:再来看刚才大家提的这两个问题,当两个因数都乘几或者都除以几的时候,积又会怎么变?大家想研究吗?同桌合作,一个研究同乘,一个研究同除,在研究单任务三这里分别举出你要研究的例子,再和同桌说说你发现的规律。开始。(请一组同桌上来)
【反馈】
生:如:我研究的是同乘,第一个因数乘2,第二个因数乘3,积就乘6……
师:你有什么发现吗?
生:把因数乘的两个数乘起来就是积乘的数。
师:是吗?我们来看看,乘2,乘3,积就乘6,乘6其实就是乘2再乘3(在研究单上写×2×3)……,研究同乘的同学,你们的因数和积也是这样变化的吗?所以,当一个因数乘a,一个因数乘b时,积就要乘a再乘b(板书:×a×b)
师:你也来介绍一下。
生:如:我研究的是同除,第一个因数除以3,第二个因数除以2,积就除以6……
师:说说你的发现?
生:两个因数要除的数乘起来,就是积要除的数。
师:是这样吗?大家看,除以3,除以2,所以积共要除以6,除以6其实也可以看成除以3再除以2……研究同除的同学,你们找到的规律也是这样的吗?所以,当一个因数除以a,另一个因数除以b,积就要除以a再除以b(板书:÷a÷b)
【小结】
师:刚才我们通过猜想、验证,发现了因数和积的变化规律,学习就是这样,只要我们善于思考、敢于猜想、勤于验证,就能发现很多很多数学规律的美。现在,我们就用这些发现的规律来解决一些问题。
四、应用实践中深化因数与积的变化规律
1.算一算
根据已知算式快速计算得数。
19×8=152
7×11=77
36×75=2700
19×16=()
14×33=()
18×15=()
19×32=()
28×22=()
12×25=()师:先来看练习单第一题,你能根据已知算式计算得数吗?比比谁最快?
【反馈】
师:先来看第一组算式,说说你是怎么想怎么算的?(根据汇报点击课件)第二组谁来?第三组呢?应用规律能使计算变得简便。除了使计算变得简便,规律还能帮助我们灵活解决一些问题,一起来看。
2.选一选
①正方形的边长扩大到原来的2倍,它的周长()
A 扩大到原来的2倍
B 扩大到原来的4倍
C 扩大到原来的8倍
②正方形的边长扩大到原来的2倍,它的面积()
A 扩大到原来的2倍
B 扩大到原来的4倍
C 扩大到原来的8倍
(逐题课件出示,指名说)【反馈】
师:选什么?为什么?(根据回答点击课件辅助理解)
属于哪种变化情况?(指板书中表格)再来看,其实生活实际中也会用到积的变化规律。
3.想一想
有一块土地,在这块土地左侧是一条公路,右侧30m处有一条河道。现在要把这块土地的面积扩大到原来的6倍,你能想出几种方案?
(课件出示题目文字,随着读题逐步出现图)
师:先仔细想一想,再把你的想法列成算式表示出来,写在练习单上。
【反馈】
生:20×72=1440
师:什么意思?
生:长不变,宽延长到原来的6倍,面积也就是原来的6倍。(根据回答板书算式)
师:有不同想法吗?
生:120×12=1440
师:解释一下
生:宽不变,把长延长到原来的6倍,面积也就是原来的6倍。
师:有人反对,说说反对的理由
生:长延长到6倍不行,被河挡住了,延长不了。
师:有道理,还有不同想法吗?,生:40×36=1440,我把长延长到2倍,宽延长到3倍,面积就是原来的6倍了(根据回答板书算式)
师:也不错,还有吗?为什么不把长延长到3倍,宽延长2倍呢?
生:长无法延长到3倍,这里只有30米。
师:是啊!看来还要考虑实际情况。那么大家能想象一下用这两种方法扩充的土地大概是什么样子的吗?在脑子里想一想。(略停,出示课件),是这样的吗?
五、总结回顾中产生新的思考
师:今天我们学了什么内容?大家提出的一个因数乘,一个因数除的情况,我们以后继续研究。这几条规律我们是怎么学会的?大家还有什么疑问吗?想知道吗?以后我们会继续学到,有兴趣的同学可以自己去研究研究。下课!
【板书】
第二篇:积的变化规律
积的变化规律
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学重点:让学生通过自探找出规律
教学难点:总结应用规律
教具准备:课件
教学过程:
一、“数青蛙”儿歌导入
师;
你们愿意和老师一起唱“数青蛙”的儿歌吗?咱们一起来唱一唱吧!
一只青蛙(4)条腿
两只青蛙(8)条腿
四只青蛙(16)条腿
八只青蛙(32)条腿
师:同学们,你们发现这些算式很有(规律),那到底有着怎样的规律呢?这就是我们这节课所要探讨的课题:积的变化规律(揭示课题并板书)
师:你们觉得积的变化跟什么有关呢?(因数)
二、自主探究,探究新知
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2=
6×20=120
6×200=1200
(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。
(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?
2、研究一个因数不变,另一个因数变小,积的变化情况。
(1)师:如果这组算式从下往上观察,分别把上面的两个式子与底下的一个式子作比较,会不会有新的发现呢?
学生独立思考后把想法在小组内交流一下。
(2)全班汇报交流:你发现了什么?是怎样发现的?
3、通过观察、思考用一句话概括已经发现的规律。
学生总结不完整时,讨论这个问题.得出结论:(课件出示)两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。这就是积的变化规律。
(指导学生抓住关键词来记忆)
汇报时找差生回答,中等生补充,优等生评价
三、运用规律,解决问题
师:下面我们就要运用积的变化规律来进行一次数学擂台,准备好了吗?
第一关:火眼金睛
1、判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。
()
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。()
第二关:大展身手
2.用积的变化规律填空。
(1)两数相乘,一个因数不变,另一个因数(),积就乘5.(2)两数相乘,一个因数不变,另一个因数除以3,积就().(3)18x10=180,第一个因数除以2,第二个因数不变,这时积是()。
(4)两数相乘,积是300,一个因数不变,另一个因数乘3,这时积是()。
第三关:随机应变
第四关:拓展应用
第五关:解决问题
四.课堂小节
五.送一首小诗
生活中并不缺少美,缺少的是发现美的眼睛。
生活中并不缺少数学,缺少的是发现数学的眼睛。
让我们用数学的眼光来发现生活中的美,更要学会用数学的方法来创造生活中的美。
六.结束课堂
第三篇:《积的变化规律》
《积的变化规律》
学习目标:
1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
学习重点:引导学生自己发现并总结积的变化规律。
学习难点:引导学生自己发现并总结积的变化规律。
学法指导:
1、自学
P51例3及练习九,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习过程
一、自主学习
1、口算p54练习九第1题
小组内交流:你能说一说口算时是怎样想的?
比一比,谁算得快?(小黑板出示第1题)
学生比一比谁算的快并说一说口算的过程
2、综合练习
(1)完成第6题。
你说出口算的过程吗?
学生表述口算的过程(多名学生说一说)。
(2)观察这道题你发现了什么特点?
学生先填空后说一说自己的看法。
友情提示:一个因数扩大若干倍,另一个因数不变,积也扩大相同的倍数。
提高练习
1、要求完成第4、10题。(说一说解题的思路。)
①第4题要教会学生如何选择合适的计算方法。
②做10题时先让生读题,在理解的基础上引导学生
跳出常规思维进行创新.二、合作探究、归纳展示口算乘法的方法:
(小组合作完成,一组展示,其余补充、评价)
三、过关检测:
1、这些题你都会算吗?试一试。
5×3=
50×3=
500×3=
50×30=
500×30=
你发现了什么?请你比较一下,看有什么规律。观察前三个算式:
第二个因数不变,第一个因数扩大10倍、100倍,积就扩大几倍。(积扩大的倍数和因数扩大的倍数相同)
第二个因数不变,第一个因数缩小10倍、100倍,积就缩小几倍。(积缩小的倍数和因数缩小的倍数相同)
谁能将这两条规律合起来说?该怎么说?
如果把这三个算式中的3换到前面,结论又是怎样的?
这三个算式呈现出来的规律可以概括为:一个因数不变,另一个因数扩大(或缩小)多少倍,积会随着扩大或缩小相同的倍数。
2、运用规律。
我们在口算乘法中经常运用积的变化规律进行计算。如算200×60时
先算2×6=12,由于一个因数扩大了100倍,另一个因数扩大了10倍,所以积12就应该扩大1000倍,积就是12000。
请你说说口算120×40时该怎样运用规律。
★3、在乘法算式A×B=C中,如果因数A扩大(缩小)m倍,因数B扩大(缩小)n倍,积C会怎样变化?(A、B、m、n均不为0)
★4、在乘法算式A×B=C中,如果因数A扩大m倍,因数B缩小n倍,积C会怎样变化?(A、B、m、n均不为0)
第四篇:积的变化规律
《积的变化规律》教学反思
牙舟小学
陆海鸥
《积的变化规律》是小学数学四年级第三单元的内容,我在上课前进行了认真备课,并向其他教师虚心请教,精心编写了教案,较好地完成本节课的教学任务。
在教学过程中,有许多值得自己反思的方面,现总结如下:
一、收获:在上课过程中更加认识到小组学习在当前教学中的作用,通过小组合作学习,让每个学生充分发表自己的见解、交流自己对知识的理解。在使用学习的过程中,既能认识到自己的不足,又能迅速学习同伴的长处,取长补短。
二、不足:尽管在收获中我针对学生的实际学习情况迅速进行了教案的调整,但因此而延长了情境探索的时间,而在后面的自主探索、解决问题中,没有及时调整所用的时间,因此到巩固应用时,时间略显仓促,对练习题的处理没留出足够的时间,使学生在通过练习题提高中,没有达到课前预设的目标,成为一个遗憾,只有在下一结课中弥补。
第五篇:积的变化规律
《积的变化规律》教学设计
王
景
教学内容:人教版数学第七册58页例四。
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教、学具准备:多媒体课件
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。
1.研究问题。
(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。
请学生完成下列两组计算,想一想发现了什么,并把发现写出来。
6×2=()8×125=()
6×20=()24×125=()
6×200=()72×125=()
(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。
80×4=()25×160=()
40×4=()25×40=()
20×4=()25×10=()
2.概括规律
(1)分层概括发现的规律。
①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”
③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”
(2)整体概括规律。
问:“谁能用一句话将发现的两条规律概括为一条?”
引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3.验证规律。
(1)先用积的变化规律填空,再用笔算或计算器验算。
26×48=1248 17×12=204
26×24=()17×24=()
26×12=()17×36=()
(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
4.应用规律。
完成例4下面的“做一做”和练习九第1~4题。
二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
(1)独立思考,发现规律。
①请学生完成下列计算,并在组内述说自己发现的规律。
18×24= 105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。
(2)应用规律解决问题。
①在○中填上运算符号,在□中填上数。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?