第一篇:《积的变化规律》说课
《积的变化规律》的导学构想
仪陇县金城小学
胡莹
一、说教材
1、知识的联系与地位。
《积的变化规律》是小学新编人教版四年级上册第四单元的内容。它是在学生学习了三位数乘两数计算的基础上,引导学生探究积的一些变化规律。掌握这些规律,为学生进一步加深理解乘法运算以及为以后自主探究理解小数乘、除法的计算方法奠定基础。教材中的例3,以两组乘法算式为载体,引导学生重点探究,当一个因数不变,另一个因数发生变化时,积的变化规律。教材例题设计分为三个层次:研究问题(教材以两组既有联系又有区别的乘法算式,在观察、计算、对比的基础上发现问题。)归纳规律(结合探究交流,尝试用简洁的语言总结积的变化规律。)验证规律(举例验证积的变化规律的普适性。)基于“用教材教,而不是教教材”的理念,从数学的角度出发,对教材教学内容做了灵活的改动,从而更适合本班学生的特点,更能体现因材施教。
2、教学目标。
基于以上的认识,我从知识与能力、过程与方法、情感态度与价值观三个方面,确立以下教学目标:
(1)、知识目标:引导学生理解并掌握“两数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几”的变化规律,并能将其规律恰当地运用到计算和解决实际问题之中。(2)、能力目标:引导学生在自主探究积的变化规律过程中,培养学生初步的概括能力、表达能力以及思维能力。
(3)、情感目标:引导学生经历积的变化规律的发现过程,感受数学学习的乐趣,增强自信心。
3、教学重难点。
为了能很好地达成教学目标,因此,本次教学的重点应是探究和掌握积的变化规律。难点应是在探究和掌握积的变化规律的同时,能体验更多的学习策略和方法,发展数学思考。关键是学生能正确运用积的变化规律解决实际问题。
[设计理念]引导学生独立思考、主动探索、合作交流,理解和掌握基本的数学知识与技能,数学思想和方法,获得基本的数学活动经验,符合数学课程标准的基本理念,也是尝试教学法倡导的。
二、说教法、学法
教法:本节课,引导学生在特定的数学情境中,用观察、计算、比较去尝试发现积的变化规律。教学中,教师的引导与学生的自主探究相结合,充分发挥学生学习的主动性。教学中主要运用了尝试教学法,练习法,探究研讨法,自学辅导法等。
学法:“教法为学法导航,学法是教法缩影”。本节课,通过运用观察、比较、尝试、发现等一系列方法,引导学生自主探究、合作交流,归纳概括出积的变化规律,在理解、掌握规律的基础上,并能正确合理地运用规律,从而获得经历知识形成过程的体验。
三、说教学流程
结合本课的特点,我设计了六环节。
1、情境设疑。
(1)、口算抢答。[设计理念]:激发学生学习兴趣,为学习新知识铺路搭桥,扫清后续学习的知识障碍。
(2)、思维设疑。根据12345679×9=111111111,你能直接写出算式12345679×27=的积吗?[设计理念]:突出新知识的生长点,激发学生的求知欲望。同时引出课题,明确本节课的教学目标。
2、自主探疑。
(1)、提出问题。仔细观察下面两组算式,说一说你发现了什么? [设计理念]:为学生尝试自主探究积的变化规律提供问题载体。(2)、自主讨论
(一)。学生通过导学案,观察“6×2=12,6×20=120,6×200=1200”这组算式,思考这3个算式的因数和积,什么不变?什么变了?是怎样变的?然后小组讨论交流,探究出“两数相乘,一个因数不变,另一个因数乘10、100......,积也乘10、100......”的变化规律。再根据算式4×25=100,直接写出其他算式的得数,引导学生自主探究归纳出“两数相乘,一个因数不变,另一个因数乘几,积也乘几”这一积的变化规律。[设计理念]:学生通过观察、比较、思考、探索、交流等一系列活动,获得数学的基础知识,基本技能,基本思想,基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题、分析问题和解决问题的能力,体验知识的形成过程。(3)、自主讨论
(二)。在探究出第一组算式积的变化规律的基础上,引导学生通过多媒体演示,观察、分析、比较算式“80×4=320,40×4=160,20×4=80”因数和积的变化情况,自主交流讨论出“两数相乘,一个因数不变,另一个因数除以几,积也除以几”这一积的变化规律。
[设计理念]:在学生熟悉学法的基础上,引导学生自主探究积的变化规律,目的是引导学生学会学习,培养学生的知识迁移能力。
3、深化练习。
(1)、做一做。根据第一小题的积,写出其余题目的得数。(2)、判一判。(对的打“√”,错的打“×”。)(3)、想一想。根据要求填空。
[设计理念]在层次分明,形式多样的练习中,通过引导学生做一做、判一判、想一想,促使学生对积的变化规律的应用中,加深学生对规律的理解和掌握。
(4)、试一试。根据12345679×9=111111111,你能直接写出下面各题的积吗?[设计理念]注重首尾相顾,前后呼应,有因有果,浑然一体,体现课堂的完整性。
4、总结延伸
(1)、总结回顾。这节课,我们学习了什么知识?你有什么收获?(2)、拓展延伸。积还有其他的变化规律吗?课后思考以下3个问题:
① 两个相乘,当两个因数同时乘几,积会怎样变化? ② 两个相乘,当两个因数同时除以几,积又会怎样变化? ③ 两个相乘,当一个因数乘几,另一个因数除以几,积又会怎样变化?[设计理念]在回顾中总结全课,培养学生的反思意识和能力。通过课后对3个问题的思考,拓宽学生的知识面,拓展学生思维的广度,使积的变化规律的内涵得到进一步延伸。
5、生活拾贝。[设计理念]引导学生用数学的眼睛去发现生活中的美,更要学会用数学的方法来创造生活中的美。
6、板书设计。[设计理念]力求直观,条理清晰,便于学生理解记忆本节课的知识要点。
四、全课设计思路
纵观全课,我为学生营造了宽松和谐的学习氛围,以学生活动为主体,采用“六环节”教学模式,借助尝试教学法,先练后讲,以学定教。引导学生自主探究、合作交流,通过看、想、说等活动过程,总结归纳出积的变化规律。这种教学设计,丰富了学生的经验,加深了学生的思考,激发了学生的学习兴趣,让学生真正成为了课堂教学的主人,使课堂充满生机和活力。
第二篇:《积的变化规律》说讲评
《积的变化规律》说、讲、评课稿
2015.4
一、说教材 1.教学内容:
本节课是苏教版四年级下册第三单元33页的教学内容。2.教材分析:
本节课是在学生已经学习了三位数乘两位数的基础上,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数扩大(缩小)到原来的多少倍(几分之几),得到的积会有什么变化。通过引导学生观察、猜想和验证,使学生更加关注规律的发现过程,将学生的思维从繁杂的计算中解脱出来,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。3.教学目标
基于以上认识,我从知识和能力、过程与方法、情感态度与价值观三个维度设计了以下教学目标:
(1)通过经历积的变化规律的发现过程,体会两个变量的相互关系,初步渗透函数思想。
(2)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。
(3)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。4.教学重点和难点
(1)重点:使学生探索并掌握一个因数不变,另一个因数扩大(或缩小)到原来的多少倍(或几分之几),积也随着扩大(或缩小)到原来的多少倍(或几分之几)的变化规律。(2)难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考意识。
二、说教法和学法
(1)教法:让学生在具体的情境中用观察、验证来探索积的变化规律,教师引导与学生自主探究相结合,充分发挥学生学习的主动性。
(2)学法:通过观察交流,让学生经历提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索数学规律的经验。
三、说教学过程
结合本课特点,我设计了以下五个教学环节:
1、创设情景,导入新课
2、合作探究,发现规律
3、动手操作,验证规律 4.拓展练习,升华规律
5、实践运用,巩固规律
四、说板书设计
综观全课,我给学生营造了宽松的学习氛围,让学生在主动观察、讨论交流、猜想验证等数学活动中,通过看、想、说的过程,逐步探索出一个因数不变,另一个因数乘几,积也随着乘几的变化规律。这样的探索过程丰富了学生学习的体验,加深了学生的思考,突破了学生思维和经验的障碍,而且为学生创造了猜测与验证、辨析与交流的空间,激发了他们的学习兴趣,让学生真正成为了学习的主人,使课堂充满生命的活力。
《积的变化规律》教学设计
【教学过程】
1、创设情景,导入新课
师:今天,我们教室来了许多听课的老师,我们应该怎样表示欢迎啊? 生:鼓掌。
师:我们一分钟最多能鼓掌多少次呢? 通过学生猜测和实际尝试,得出学生一分钟鼓掌的次数,接着设问:2分钟、4分钟、8分钟、10分钟呢?引导学生列出算式并进行计算。
240 ╳2=480 240 ╳4=960 240 ╳8=1920 240 ╳10=2400
『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学问题的能力。
2、合作探究,发现规律
引导学生观察、比较上面的算式,看看自己有那些发现?
在小组合作的基础上,引导学生发现:一个因数没变,另一个因数越变越大,积也越变越大。
当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?让学生进行猜想,得出结论:
一个因数不变,另一个因数扩大到原来的多少倍,积也随着扩大到原来的多少倍。演示:
240 ╳2=480 240 ╳2=480 240 ╳2=480
240 ╳4=960 240 ╳8=1920 240 ╳10=2400 『设计理念』通过观察交流,让学生经历观察、比较、猜想等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步提高猜想的意识和能力。
3、动手操作,验证规律
出示算式:8 ╳42=336,让学生根据刚才的规律猜测下面各题的得数。80 ╳42= 800 ╳42= 8000╳42=╳420= 8 ╳4200= 8 ╳42000=(1)首先让学生根据发现猜测每一道题的得数,然后再用计算器计算出每题的结果并将得到的积与原来的积进行比较,初步验证猜想,老师进行小结:经过实际计算,发现这里每一题的计算结果都符合先前的猜想。并进一步提出:这个猜想是不是适合所有的乘法算式?
(2)引导学生举例,进一步验证猜想。同桌相互合作,写出任意一组算式:一个因数不变,另一个因数乘一个数。用计算器或者笔算算出结果,进行比较。全班交流,通过交流进一步确认猜想成立。
『设计理念』新课标当中指出:把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的探索性的数学活动中来。因此这一环节我让学生通过具体丰富的实例验证猜想,并充分利用计算器,引导学生掌握数学规律与知识的获得方法。
4.拓展练习,升华规律
算式670 ╳3500=2345000,你能不能猜测下面各题的得数。670 ╳350= 670╳35=
67╳3500= 67╳3500=
当一个因数不变,另一个因数缩小时,积的变化有什么规律呢?让学生进行猜想,得出结论:一个因数不变,另一个因数缩小到原来的几分之几,积也随着缩小到原来的几分之几。
最后让学生总结归纳发现的规律: 一个因数不变,另一个因数扩大(或缩小)到原来的多少倍(或几分之几),积也随着扩大(或缩小)到原来的多少倍(或几分之几)。
『设计理念』在层次分明,我在形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
5、实践运用,巩固规律
自主练习第二、三题。作为弹性内容,让学有余力的同学继续探究积的变化规律,学以致用,进一步获得探索规律的方法和经验,发展学生的推理能力。
6、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问? 【评课】
下面谈谈本节课较为突出的优点:
1.在设计积随因数的扩大而扩大的规律这部分时,通过一组口算,先让学生初步感受积会随着因数的变化而变化,再让学生讨论研究出积到底随因数怎样变化,汇报总结成一句简洁的话,最后让学生根据发现的规律,接下去再口算两道算式来验证一下刚刚发现的规律是否正确。
2.在探究积的变化规律时,注重学生的观察、分析、比较,让学生在充分经历中感悟,在充分感悟中提炼。整个过程,学生主动参与,借助乘法算式探究积的变化规律,在充分地观察中去感悟。
3.数学课堂上必须要让学生亲历知识的形成过程,要养成善于用所学知识解决实际问题的习惯,这样才能激发学生的学习兴趣,拓宽学生的思维,从而掌握牢固的数学知识。这节课中徐老师在这方面做的特别好,给学生提供了大量的时间和空间去探索、去发现、去创新、去总结积变化的规律。让学生充分自由的发挥,体验知识形成的过程。虽然没有完成自己预定的教学设计,但是落实了知识点,真正体现了以生为本的教学理念。
不足之处:课堂上,看因数和积的变化规律直接写出得数的练习题做的有点少,缺少必要的板书。在今后的教学中努力做到精心设计练习,合理把握时间,让学生学的更扎实。
第三篇:积的变化规律评课稿
《积的变化规律》的评课稿
兴隆中心小学陈小艳 今天听了王老师上的《积的变化规律》一课,觉得有以下特点:
1、教师的教学理念、教学思路与教学实施都是立足于学生的发展,站在为学生服务的角度。注重培养学生学习方式的引导。
2、鼓励学生通过独立思考。让学生经历想办法、找问题、找方法的学习过程,体现了培养学生思维的深刻性。
3、创设情景,激发学生的情感投入,极大的调动学生的思维活动和学生成为学习的主体。教学时,教师尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式用自己清晰的语言表达自己的想法和归纳规律。
4、让学生在学习活动过程中,感受获取成功的乐趣。在师生互动的过程中,师生是平等的,教师没有限制学生的思维方向。充分体现了学生个体知识资源共享。
5、在探索规律的学习活动中,教师更多地关注学生经历学习过程的体验,了解学生掌握了什么,学会了什么,获得了哪些进步,具备了哪些能力,同时关注学生的个性化和差异性,充分发挥内在情感态度的激发作用,从而有利于保护学生的自尊心和学好数学的信心,提高了学生学习数学的兴趣。
第四篇:积的变化规律
积的变化规律
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学重点:让学生通过自探找出规律
教学难点:总结应用规律
教具准备:课件
教学过程:
一、“数青蛙”儿歌导入
师;
你们愿意和老师一起唱“数青蛙”的儿歌吗?咱们一起来唱一唱吧!
一只青蛙(4)条腿
两只青蛙(8)条腿
四只青蛙(16)条腿
八只青蛙(32)条腿
师:同学们,你们发现这些算式很有(规律),那到底有着怎样的规律呢?这就是我们这节课所要探讨的课题:积的变化规律(揭示课题并板书)
师:你们觉得积的变化跟什么有关呢?(因数)
二、自主探究,探究新知
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2=
6×20=120
6×200=1200
(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。
(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?
2、研究一个因数不变,另一个因数变小,积的变化情况。
(1)师:如果这组算式从下往上观察,分别把上面的两个式子与底下的一个式子作比较,会不会有新的发现呢?
学生独立思考后把想法在小组内交流一下。
(2)全班汇报交流:你发现了什么?是怎样发现的?
3、通过观察、思考用一句话概括已经发现的规律。
学生总结不完整时,讨论这个问题.得出结论:(课件出示)两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。这就是积的变化规律。
(指导学生抓住关键词来记忆)
汇报时找差生回答,中等生补充,优等生评价
三、运用规律,解决问题
师:下面我们就要运用积的变化规律来进行一次数学擂台,准备好了吗?
第一关:火眼金睛
1、判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。
()
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。()
第二关:大展身手
2.用积的变化规律填空。
(1)两数相乘,一个因数不变,另一个因数(),积就乘5.(2)两数相乘,一个因数不变,另一个因数除以3,积就().(3)18x10=180,第一个因数除以2,第二个因数不变,这时积是()。
(4)两数相乘,积是300,一个因数不变,另一个因数乘3,这时积是()。
第三关:随机应变
第四关:拓展应用
第五关:解决问题
四.课堂小节
五.送一首小诗
生活中并不缺少美,缺少的是发现美的眼睛。
生活中并不缺少数学,缺少的是发现数学的眼睛。
让我们用数学的眼光来发现生活中的美,更要学会用数学的方法来创造生活中的美。
六.结束课堂
第五篇:《积的变化规律》
《积的变化规律》
学习目标:
1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
学习重点:引导学生自己发现并总结积的变化规律。
学习难点:引导学生自己发现并总结积的变化规律。
学法指导:
1、自学
P51例3及练习九,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习过程
一、自主学习
1、口算p54练习九第1题
小组内交流:你能说一说口算时是怎样想的?
比一比,谁算得快?(小黑板出示第1题)
学生比一比谁算的快并说一说口算的过程
2、综合练习
(1)完成第6题。
你说出口算的过程吗?
学生表述口算的过程(多名学生说一说)。
(2)观察这道题你发现了什么特点?
学生先填空后说一说自己的看法。
友情提示:一个因数扩大若干倍,另一个因数不变,积也扩大相同的倍数。
提高练习
1、要求完成第4、10题。(说一说解题的思路。)
①第4题要教会学生如何选择合适的计算方法。
②做10题时先让生读题,在理解的基础上引导学生
跳出常规思维进行创新.二、合作探究、归纳展示口算乘法的方法:
(小组合作完成,一组展示,其余补充、评价)
三、过关检测:
1、这些题你都会算吗?试一试。
5×3=
50×3=
500×3=
50×30=
500×30=
你发现了什么?请你比较一下,看有什么规律。观察前三个算式:
第二个因数不变,第一个因数扩大10倍、100倍,积就扩大几倍。(积扩大的倍数和因数扩大的倍数相同)
第二个因数不变,第一个因数缩小10倍、100倍,积就缩小几倍。(积缩小的倍数和因数缩小的倍数相同)
谁能将这两条规律合起来说?该怎么说?
如果把这三个算式中的3换到前面,结论又是怎样的?
这三个算式呈现出来的规律可以概括为:一个因数不变,另一个因数扩大(或缩小)多少倍,积会随着扩大或缩小相同的倍数。
2、运用规律。
我们在口算乘法中经常运用积的变化规律进行计算。如算200×60时
先算2×6=12,由于一个因数扩大了100倍,另一个因数扩大了10倍,所以积12就应该扩大1000倍,积就是12000。
请你说说口算120×40时该怎样运用规律。
★3、在乘法算式A×B=C中,如果因数A扩大(缩小)m倍,因数B扩大(缩小)n倍,积C会怎样变化?(A、B、m、n均不为0)
★4、在乘法算式A×B=C中,如果因数A扩大m倍,因数B缩小n倍,积C会怎样变化?(A、B、m、n均不为0)