第一篇:积的变化规律
《积的变化规律》教学反思
牙舟小学
陆海鸥
《积的变化规律》是小学数学四年级第三单元的内容,我在上课前进行了认真备课,并向其他教师虚心请教,精心编写了教案,较好地完成本节课的教学任务。
在教学过程中,有许多值得自己反思的方面,现总结如下:
一、收获:在上课过程中更加认识到小组学习在当前教学中的作用,通过小组合作学习,让每个学生充分发表自己的见解、交流自己对知识的理解。在使用学习的过程中,既能认识到自己的不足,又能迅速学习同伴的长处,取长补短。
二、不足:尽管在收获中我针对学生的实际学习情况迅速进行了教案的调整,但因此而延长了情境探索的时间,而在后面的自主探索、解决问题中,没有及时调整所用的时间,因此到巩固应用时,时间略显仓促,对练习题的处理没留出足够的时间,使学生在通过练习题提高中,没有达到课前预设的目标,成为一个遗憾,只有在下一结课中弥补。
第二篇:积的变化规律
积的变化规律
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学重点:让学生通过自探找出规律
教学难点:总结应用规律
教具准备:课件
教学过程:
一、“数青蛙”儿歌导入
师;
你们愿意和老师一起唱“数青蛙”的儿歌吗?咱们一起来唱一唱吧!
一只青蛙(4)条腿
两只青蛙(8)条腿
四只青蛙(16)条腿
八只青蛙(32)条腿
师:同学们,你们发现这些算式很有(规律),那到底有着怎样的规律呢?这就是我们这节课所要探讨的课题:积的变化规律(揭示课题并板书)
师:你们觉得积的变化跟什么有关呢?(因数)
二、自主探究,探究新知
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2=
6×20=120
6×200=1200
(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。
(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?
2、研究一个因数不变,另一个因数变小,积的变化情况。
(1)师:如果这组算式从下往上观察,分别把上面的两个式子与底下的一个式子作比较,会不会有新的发现呢?
学生独立思考后把想法在小组内交流一下。
(2)全班汇报交流:你发现了什么?是怎样发现的?
3、通过观察、思考用一句话概括已经发现的规律。
学生总结不完整时,讨论这个问题.得出结论:(课件出示)两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。这就是积的变化规律。
(指导学生抓住关键词来记忆)
汇报时找差生回答,中等生补充,优等生评价
三、运用规律,解决问题
师:下面我们就要运用积的变化规律来进行一次数学擂台,准备好了吗?
第一关:火眼金睛
1、判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。
()
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。()
第二关:大展身手
2.用积的变化规律填空。
(1)两数相乘,一个因数不变,另一个因数(),积就乘5.(2)两数相乘,一个因数不变,另一个因数除以3,积就().(3)18x10=180,第一个因数除以2,第二个因数不变,这时积是()。
(4)两数相乘,积是300,一个因数不变,另一个因数乘3,这时积是()。
第三关:随机应变
第四关:拓展应用
第五关:解决问题
四.课堂小节
五.送一首小诗
生活中并不缺少美,缺少的是发现美的眼睛。
生活中并不缺少数学,缺少的是发现数学的眼睛。
让我们用数学的眼光来发现生活中的美,更要学会用数学的方法来创造生活中的美。
六.结束课堂
第三篇:《积的变化规律》
《积的变化规律》
学习目标:
1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
学习重点:引导学生自己发现并总结积的变化规律。
学习难点:引导学生自己发现并总结积的变化规律。
学法指导:
1、自学
P51例3及练习九,用红笔勾画出疑惑点;独立思考完成自主学习和合作探究任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习过程
一、自主学习
1、口算p54练习九第1题
小组内交流:你能说一说口算时是怎样想的?
比一比,谁算得快?(小黑板出示第1题)
学生比一比谁算的快并说一说口算的过程
2、综合练习
(1)完成第6题。
你说出口算的过程吗?
学生表述口算的过程(多名学生说一说)。
(2)观察这道题你发现了什么特点?
学生先填空后说一说自己的看法。
友情提示:一个因数扩大若干倍,另一个因数不变,积也扩大相同的倍数。
提高练习
1、要求完成第4、10题。(说一说解题的思路。)
①第4题要教会学生如何选择合适的计算方法。
②做10题时先让生读题,在理解的基础上引导学生
跳出常规思维进行创新.二、合作探究、归纳展示口算乘法的方法:
(小组合作完成,一组展示,其余补充、评价)
三、过关检测:
1、这些题你都会算吗?试一试。
5×3=
50×3=
500×3=
50×30=
500×30=
你发现了什么?请你比较一下,看有什么规律。观察前三个算式:
第二个因数不变,第一个因数扩大10倍、100倍,积就扩大几倍。(积扩大的倍数和因数扩大的倍数相同)
第二个因数不变,第一个因数缩小10倍、100倍,积就缩小几倍。(积缩小的倍数和因数缩小的倍数相同)
谁能将这两条规律合起来说?该怎么说?
如果把这三个算式中的3换到前面,结论又是怎样的?
这三个算式呈现出来的规律可以概括为:一个因数不变,另一个因数扩大(或缩小)多少倍,积会随着扩大或缩小相同的倍数。
2、运用规律。
我们在口算乘法中经常运用积的变化规律进行计算。如算200×60时
先算2×6=12,由于一个因数扩大了100倍,另一个因数扩大了10倍,所以积12就应该扩大1000倍,积就是12000。
请你说说口算120×40时该怎样运用规律。
★3、在乘法算式A×B=C中,如果因数A扩大(缩小)m倍,因数B扩大(缩小)n倍,积C会怎样变化?(A、B、m、n均不为0)
★4、在乘法算式A×B=C中,如果因数A扩大m倍,因数B缩小n倍,积C会怎样变化?(A、B、m、n均不为0)
第四篇:积的变化规律
《积的变化规律》教学设计
王
景
教学内容:人教版数学第七册58页例四。
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教、学具准备:多媒体课件
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。
1.研究问题。
(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。
请学生完成下列两组计算,想一想发现了什么,并把发现写出来。
6×2=()8×125=()
6×20=()24×125=()
6×200=()72×125=()
(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。
80×4=()25×160=()
40×4=()25×40=()
20×4=()25×10=()
2.概括规律
(1)分层概括发现的规律。
①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”
③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”
(2)整体概括规律。
问:“谁能用一句话将发现的两条规律概括为一条?”
引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3.验证规律。
(1)先用积的变化规律填空,再用笔算或计算器验算。
26×48=1248 17×12=204
26×24=()17×24=()
26×12=()17×36=()
(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
4.应用规律。
完成例4下面的“做一做”和练习九第1~4题。
二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
(1)独立思考,发现规律。
①请学生完成下列计算,并在组内述说自己发现的规律。
18×24= 105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。
(2)应用规律解决问题。
①在○中填上运算符号,在□中填上数。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
第五篇:积的变化规律规律
一教材分析
规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。二学情分析
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。三教学目标
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。四教学重难点
教学重点:积随因数的变化规律。
教学难点:引导学生自己发现规律、验证规律、应用规律。五教法
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。六学法
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。七教学具及相关资料 小黑板 八教学流程
谈话导入——猜想规律——验证规律——表述规律,小结探索方法——应用规律——拓展延伸——课堂小结。九教学设计过程 1谈话导入
课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。” 根据学生的回答,我板书三个算式及其结果: 6×2=12(元)6×20=120(元)6×200=1200(元)
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
2猜想规律
(1)我提出问题:观察这三个算式,你会发现什么规律呢? 我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。3验证规律
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。4表述规律,小结探索方法。
我首先让学生说规律,趁势解释说明“乘以几=扩大几倍,除以几=缩小几倍”,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的? 设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。5应用规律
孩子自己完成教材1-4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。6拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是()。(2)36×10=360(36÷2)×(36×2)=(36×3)×(36÷3)= 设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。7课堂总结,内化规律。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。十教学效果分析
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察——独立思考——小组交流——提出猜想——验证规律——运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
人教版小学四年级《积的变化规律》教学设计
教学目标:
1、通过观察、讨论等数学活动,经历探索、归纳凑千数、积变化规律的过程。
2、知道扩大几倍、缩小几倍的意义。理解积变化的规律,会运用积变化的规律进行简便计算。
3、在探索,归纳和变化规律的过程中,感受数学思考过程的条理性。教学重点:
1、探索、归纳凑千数的特征,并熟练进行口算练习。
2、掌握在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。教学难点:
1、归纳、总结凑千数的特征。
2、理解在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。教学过程:
一、凑千数的规律
1、口答:(出示幻灯片2)
(采用推火车的形式及时鼓励同学,)师谈话:同学们的表现真不错,现在老师再给大家出一组更有难度的口算题,大家有没有信心完成呀!迅速完成答题卡中的口算题)做完的同学就将你的小手举好。
2、学习凑千数。(出示幻灯片3)(汇报交流,指同学回答)
师提问:观察这组口算题,发现它有什么特点? 生:得数都是1000,师谈话:像这样相加和是1000的两个数它有什么特征呢?仔细观察这组算式。生:(学生反应不到位是,继续进行引导)
师谈话:像这样相加和是1000的两个数它的个位上的两个数字相加有什么样的特征呢?十位上的两个数字相加有什么特征?百位上的两个数字相加又有什么特征?看看哪位同学最聪明,最先发现其中的奥秘?
生:个位上的两个数字相加得10,十位上的两个数字相加得9,百位上的两个数字相加得9 师:像这样相加和是1000的两个数,我们把它叫做凑千数。那么凑千数的特征我们再精炼一下应该总结为:
总结:末位两个数字相加得10,其余各位上的数字相加凑9
拓展:利用这个规律能再举几个例子吗?(迅速在答题卡上完成并汇报)师生互动:现在老师说一个数同学们说出它的凑千数:346 864
指同学说数字,其它同学说出它的凑千数。
师:现在老师就来考考大家:(出示幻灯片4,迅速完成答题卡上的练习)拓展延伸:
37+()=100
3428+()=10000 师:通过刚才的测试,大家对凑千数都有了很好的认识,老师相信只要你掌握了凑千数的规律,那么凑百数、凑万数的这一类题就能轻松拿下?希望大家把它牢牢地记到心里。
师:今天我们从口算中探索了数学中有趣的规律,有这样一组口算我们大家再来看一看。
二、积的变化规律。
1、扩大:(出示口算题):6 × 2= 12 ①× 20 = 120 ② 6 × 200 = 1200 ③(教师边说边将算式的结果补充完整)(出示学习要求:独立学习与合作学习)师:看看它有什么学习要求?(出示幻灯片5)
1、独立观察后思考:观察这组算式中的第一个因数你发现了什么?第2个因数你又发现了什么?积呢?
生:第一个因数都是6,第二个因数依次扩大10、100倍,积也扩大10、100倍。
2、合作学习:将①、②、③进行对比,观察因数和积分别有什么样的变化规律,小组内互相讨论。
师:为 了方便研究我们将算式从上往下以此命名命名为:1、2、3。分析时就以2式子与1式对比,引导学生观察第与第相比,你发现了什么?
总结:一个因数不变,另一个因数扩大到原来的的10倍,积也扩大到原来的10倍,并板书向下的箭头。学生边汇报教师边板书。引导学生再进行3与2式对比谁来说一说;引导学生再进行3与1式对比谁来说一说?;)师:能不能将刚才大家发现的规律用一句话总结出来呢?
教师总结:一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。(出示幻灯片6,学生齐读)
接下来,我们在观察一下这一组算式,刚才我们从上往下发现了一些规律,现在我们就从下往上观察,看看它有什么规律
3、缩小(出示幻灯片7)(同桌合作讨论,学习;出示讨论问题:
1、仔细观察算式,2式与3式相比,1式与2式1式与3式相比,因数和积有什么变化?
2、总结你发现的规律 学生汇报:
(教师强调:我们先从第一个因数入手观察,第二个因数有什么变化?积?来分析)教师边说边补充板书。)
师:这两个规律相似吗?谁能用一句话把刚才我们发现的两个规律概括成一句话呢?(出示幻灯片8)
师:你能再举例说明一下积的变化规律吗?
同学们你们的表现真棒!通过一组口算我们发现了因数、积有什么的变化规律,这就是今天我们学习的内容:积的变化规律(板书课题)那么通过我们的观察,提问:引起积变化的前提是:必须是一个因数不变,另一个因数扩大或缩小若干倍,它的积也扩大或缩小相应的倍数。(课件出示,学生齐读)下面我们就完成几道练习: 练习:
1、完成数学书P58页做一做(重点讲解第1、3小题)
2、完成数学书P59页第3题。(学生讲解,及时鼓励)
3、(课件出示数学书P59页第1题。(学生独立完成,及时鼓励出示幻灯片9)
4、(课件出示数学书P59页第2题。(重点讲解第二种利用积的变化规律讲解,重点讲解:增加到和增加了的区别,及时鼓励。出示幻灯片10、11)
增加到:包括原来的宽在内,它现在的宽总共是24米。应用积的变化规律也可 以解这道题:前提是长方形的长不变,宽由原来的的8米,增加到24米,也就是扩大了3倍,则面积也应扩大到原来的3倍。
增加了:不包括原来的宽在内,增加的宽度就为24米,则现在的长方形的宽应为24+8=32米。应用积的变化规律也可以解这道题:前提是长方形的长不变,宽由原来的的8米,增加到现在的32米,也就是扩大了4倍,则面积也应扩大到原来的4倍。
课堂小结:今天这节课你有什么收获?谁来说一说?你觉得本节课谁表现得最好?(表现好的向他挥挥手)
课堂作业:P63页第10题和P59页第4题。(出示幻灯片12)板书设计:(1)(2)(3)教学过程 教学环节
教师活动
预设学生行为
学校开表彰会,需要一些文具盒作奖品,如果每个文具盒6元,买2个需要6×2=12(元)6×20=120(元)多少元钱?买20个,200个呢? 6×200=1200(元)根据学生回答,板书三个算式及结 果。
仔细观察、比较这组算式,你能发现
1、有一个因数都是6。什么?
2、一个因数相同,另一个因数积的变化有没有规律呢?是什么规不同,积也不同。
律呢?这节课我们来研究这个问题。
3、另一个因数变了,积也变了。板书课题:积的变化规律。
4、我看到一个因数不变,另一个因数越变越大,积也越变越大。
一、创设情
1、我引导孩子从上向下观察:因数小组交流,集体汇报。经过小组景,提出问到因数,积到积有什么规律。内交流,学生提出猜想:一个因题。我引导孩子再次从下向上观察。数不变,另一个因数乘以几,积二.自主探
2、大家都看出规律来了,那么这些就乘以几。
究,发现规规律是不是适合所有的算式呢?下孩子很快提出新的规律:一个因律。面请孩子自己来验证一下。数不变,另一个因数除以几,积
三、解决问出示:8×50=400 就除以几。
题,拓展延
16×50= 全班学生分为两组,一组应用规伸。
32×50= 律直接写出结果,另一组用笔算
四、总结课
8×25=
或计算器验证,结果相同。堂,内化规
3、首先让学生说规律,趁势解释说两组交换角色再次验证,结果依律。明“乘以几=扩大几倍,除以几=缩小几倍”,然后引导学生如何把两条规然相同。
律归纳成一条,得出积的变化规律。两个因数相乘,一个因数不变,1、学生自己完成教材练习九1-4题。另一个因数扩大(或缩小)几倍,指明孩子自己说说如何得出结果的。积就扩大(或缩小)几倍。
2、相机引导进入拓展环节。有的学生可能会觉得用计算的方(1)一个数乘以18积是270,如果这个法解决这些问题也挺简单的。数乘以54,积是()。(810)
(2)36×10=360 积先随第一个因数扩大2倍,再随(36×2)×(10÷2)= 第二个因数缩小2倍,还是360。(36÷2)×(10×5)= 积先随第一个因数缩小2倍变为说说你是怎么想到结果的。180,再随第二个因数扩大5倍,这节课你学到了什么? 最终结果为900。
学的高兴吗?
板书设计(需要一直留在黑板上主板书)
积的变化规律
6×2=12(元)
36×10=360
6×20=120(元)
(36×2)×(10÷2)=360
6×200=1200(元)
(36÷2)×(10×5)=900
设计意图
给算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
孩子通过独立观察,小组交流,真
正体验自主探索和发现数学规律的过程。
通过学生分组协作,体验验证数学规律的过程。孩子通过对探索过程的反思,逐步形成自己的思维策略。
通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学
生的思维空间,使不同的学生得到不同的发展。培养学生自我总结、自我反思的学习能力。
两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。
教学过程:
一、创设情境,提出问题
太平三小的师生响应党的号召:“一方有难,八方支援”党的号召,向北川灾区学校献出爱心捐款,灾区学校的学生准备用得到的捐款购买图书。如果每本图书用5元,他们买2本图书要用多少元?买4本呢?买8本呢?买16本呢?
学生独立列出算式,汇报,师依次板书:
5×2=10(元)————(1)
5×4=20(元)————(2)
5×8=40(元)————(3)
5×16=80(元)————(4)
师问:学们观察这四个算式,发现了什么?
生1:本图书的价钱没变;
生2:买的本数在变化;
生3:每本图书的价钱虽然没变,但是买图书的本数变化了,买图书共用的钱也变化了。
二、自主探究、发现规律
1、引导学生观察比较、感知规律
(1)师引导:以第一个算式作为基础,另外三个算式与第一个算式有什么不同?
生:其中一个因数“5”没变,另一个因数“2”依次乘“2”、“4“、“8”,积也依次乘“2”、“4“、“8”
小组讨论探究、交流:谁能用一句话来表述你们的发现?
师引导组织语言归纳表述:两个因数相乘,其中一个因数不变,另一个因数乘以几,积也跟着乘以几。(课件出示)
(2)师:以第四个算式作为基础,观察比较另外三个算式与第四个算式有什么不同?
生深化探究、合作交流。
指派小组代表汇报。
师生共同小结(师再次引导学生组织语言表述):两个因数相乘,其中一个因数不变,另一个因数除以几,积也跟着除以几。(师特别强调:这里的几能不能是“0”)(课件出示)
2、抽象概括、总结规律
我们能不能把上面探索到的两个规律合二为一呢?
(1)、分小组讨论交流
(2)、指名代表汇报,师板书:两个因数相乘,其中一个因数不变,另一个因数乘以(或者除以)几,积也跟着乘以(或者除以)几。(“0”除外)
3、学生分组验证规律,师到各组巡视,汇报验证结果
4、全班齐读这一规律
三、运用规律、解决问题(3个不同层次的练习):课件出示
四、全课总结、拓展延伸
1、这节课你有什么收获?教师板书课题)
2、教材及练习册练习、反馈
3、拓展选做(1个)