八年级数学上全等三角形复习教学案

时间:2019-05-12 17:37:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级数学上全等三角形复习教学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级数学上全等三角形复习教学案》。

第一篇:八年级数学上全等三角形复习教学案

鼎大教育

11章复习

一、学习目标

1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.

2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。

3、极度热情、高度责任、自动自发、享受成功。

二、重点难点

教学重点:用三角形全等和角平分线的性质进行证明有关问题 教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程

三、合作

1、、本章知识结构梳理

定义(1)定义:三角形

全等三角形(2)性质:(一般三角形3)判定方法直角三角形(1)性质:角的平分线(2)判定:

2、、方法指引

证明两个三角形全等的基本思路:

找第三边(__________)(1)已知两边找夹角(____________)看是否是直角三角形(__________)找这边的另一邻角(_____)已知一边与邻角找这个(2)已知一边一角角的另一边(_____)找这边的对角(_____)找一角(_____)已知一边与对角已知是直角,找一边(_____)找夹边(______________)(3)已知两角 找夹边外任意一边(______________)三角形全等是证明线段相等、角相等最基本、最常用的方法。

四、精讲精练

鼎大教育

1、精讲

例题

1、如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC

例题

2、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD

当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等 例题

3、已知∠B=∠E=90°,CE=CB,AB∥CD.求证:△ADC是等腰三角形

例题

4、已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,DB=DC,求证:EB=FC

BAEFCME

A B

C D

鼎大教育

证明线段的和、差、倍、分问题时,常采用“割长”、“补短”等方法

例题

5、如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证AB=AC+BD

C

E

D

A B 提示:要证明两条线段的和与一条线段相等时常用的两种方法:(1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)(2)、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补))

你能用尺规进行下面几种作图吗?

1、已知三边作三角形

2、作一个角等于已知角

3、已知两边和它们的夹角作三角形

4、已知两角和它们的夹边作三角形

5、已知斜边和一直角边作直角三角形

6、作角的平分线

2、精练

1、如图:在△ABC中,∠C =90°,AD平分∠ BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE=。

2、如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?

C

ACDEB3

A

E 4 D 2

B

鼎大教育

3、如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)①AB=AC ②DE=DF ③BE=CF 已知:EG∥AF,________,__________ A 求证:_________

4、如图,在R△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.五、课堂小结12999.com

学习全等三角形应注意以下几个问题(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个 三角形不一定全等;

(4):时刻注意图形中的隐含条件,如 “公共角”、“公共边”、“对顶角”

六、作业

必做:课本26页复习题11第2、5、6、8、9题;选做:27页10-12题。

E B

G

D

C

F

第二篇:11.1全等三角形教学案

§11.1 全等三角形

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点

全等三角形的性质. 教学难点

找全等三角形的对应边、对应角. 教学过程

Ⅰ.提出问题,创设情境

1.观察下列图案,指出这些图案中中形状与大小相同的图形

2.学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板、完全一样.

3.获取概念

形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.)即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念: 对应顶点:、对应角:、对应边:。“全等”符号: 读作“全等于”

Ⅱ.导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

ADBADAECBC甲EF乙DB丙C

议一议:各图中的两个三角形全等吗?

不难得出: ≌△DEF,△ABC≌,△ABC≌ .(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,•但、都没有改变,所以平移、翻折、旋转前后的图形

,这也是我们通过运动的方法寻求全等的一种策略.

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质:

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.

COADB

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.

ABDEC

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.

AEOBCD

Ⅲ.课堂练习

(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、DABD对应边、对应角

BCAoOADBDBCDACACDB

ACD

CDA

(2)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求ADC的大小。

Ⅳ.课时小结

Ⅴ.作业

1.教材:第四页习题:第1题,第2题 2.《创新设计》

ADEBC

第三篇:2018八年级数学上期中试卷

一、选择题

1.下列说法正确的是()A.1的立方根是﹣1 B. =±2 C. 的平方根是3 D.0的平方根是0 2.下列运算正确的是()

A.a2•a3=a6 B.(a3)3=a9 C.(2a2)2=2a4 D.a8÷a2=a4 3.在实数,0,,0.1010010001…(两个1之间依次多一个0),中无理数有()A.2个 B.3个 C.4个 D.5个

4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项 B.只能改动第二项

C.只能改动第三项 D.可以改动三项中任意一项

5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1 6.下列命题不正确的是()

A.立方根等于它本身的实数是0和±1 B.所有无理数的绝对值都是正数

C.等腰三角形的两边长是6和9,则它的周长是21或24 D.腰长相等,且有一个角是45°的两个等腰三角形全等

7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()

A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确

8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正

方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()

A.7个 B.8个 C.9个 D.10个

二、填空题

9.1 的算术平方根是,﹣ =

. 10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:

. 11.若 与 互为相反数,则x+y的平方根是

12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是

. 13.计算:()2014×1.52013÷(﹣1)2014=

14.已知5+ 小数部分为m,11﹣ 为小数部分为n,则m+n=

15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为

16.32x=2,3y=5,则求34x﹣2y=

17.如图所示,AB=AC,AD=AE,∠BAC=∠DA E,∠1=25°,∠2=30°,则∠3=

18.如图所示,点B、C、E在同一直线上,△ABC与△CDE都是等边三角形,则下列所有正确的结论序号为

①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.

三、解答题

19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)20.计算或化简

(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)

21.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣ .

22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.

23.阅读下列文字与例题

将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.

例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2 +2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:(1)a2+2ab+ac+bc+b2=

(2)△ABC三边a、b、c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.

24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;

(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;

(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;

(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假

(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB∥CB1时,请直接写出A1D与CD的数量关系:

参考答案与试题解析

一、选择题

1.下列说法正确的是()A.1的立方根是﹣1 B. =±2 C. 的平方根是3 D.0的平方根是0 【解答】解:A、1的立方根是1,故选项错误; B、=2,故选项错误; C、=9,9的平方根是±3,故选项错误; D、0的平方根是0,故选项正确. 故选:D.

2.下列运算正确的是()

A.a2•a3=a6 B.(a3)3=a9 C.(2a2)2=2a4 D.a8÷a2=a4 【解答】解:A、应为a2•a3=a5,故本选项错误; B、(a3)3=a9,正确;

C、应为(2a2)2=4a4,故本选项错误; D、应为a8÷a2=a6,故本选项错误. 故选:B.

3.在实数,0,,0.1010010001…(两个1之间依次多一个0),中无理数有()A.2个 B.3个 C.4个 D.5个 【解答】解: =0.5,=2,无理数有:,0.1010010001…,共3个. 故选:B.

4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项 B.只能改动第二项

C.只能改动第三项 D.可以改动三项中任意一项

【解答】解:若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是只能改动第三项,故选:C.

5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1 【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意; B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意; C、x2﹣2x+1=(x﹣1)2,故C选项不合题意; D、x2+2x+1=(x+1)2,故D选项符合题意. 故选:D.

6.下列命题不正确的是()

A.立方根等于它本身的实数是0和±1 B.所有无理数的绝对值都是正数

C.等腰三角形的两边长是6和9,则它的周长是21或24 D.腰长相等,且有一个角是45°的两个等腰三角形全等

【解答】解:A、立方根等于它本身的实数是0和±1,所以A选项为真命题; B、所有无理数的绝对值都是正数,所以B选项为真命题;

C、等腰三角形的两边长是6和9,则它的周长是21或24,所以C选项为真命题;

D、腰长相等,且有一个角是45°的两个等腰三角形不一定全等,所以D选项为假命题. 故选:D.

7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()

A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确 【解答】解:如图,在Rt△APR和Rt△APS中,∴Rt△APR≌Rt△APS(HL),∴AR=AS,①③正确; ∠BAP=∠PAS,∵AQ=PQ,∴∠PAQ=∠APQ,∴∠BAP=∠APQ,∴QP∥AB,②正确,故选:A.

8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正 方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()

A.7个 B.8个 C.9个 D.10个

【解答】解:当BC=BP时,△BCP为等腰三角形; 当P与B重合时,△APC为等腰三角形;

当P运动到AB边的中点时,PD=PC,此时△PCD为等腰三角形; 当P与A重合时,△PBD为等腰三角形; 当PA=AD时,△PAD为等腰三角形;

当AP=AC时,△APC是等腰三角形,这时有2个; 当BD=BP时,△BDP 是等腰三角形,这时有2个; 综上,直线AB上会发出警报的点P有9个. 故选:C.

二、填空题

9.1 的算术平方根是,﹣ = .

【解答】解:1 的算术平方根是,﹣ =﹣ = . 故答案为:,.

10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式: 如果两条直线垂直于同一条直线,那么这两条直线平行 .

【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.

11.若 与 互为相反数,则x+y的平方根是 ±1 . 【解答】解:∵ 与 互为相反数,∴3x﹣7+3y+4=0,3x+3y=3,x+y=1,即x+y的平方根是±1,故答案为:±1.

12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是 ﹣5﹣3xy+4x2 . 【解答】解:∵﹣5x2与一个整式的积是25x2+15x3y﹣20x4,∴(25x2+15x3y﹣20x4)÷(﹣5x2)=﹣5﹣3xy+4x2.

故答案为:﹣5﹣3xy+4x2.

13.计算:()2014×1.52013÷(﹣1)2014= . 【解答】解:()2014×1.52013÷(﹣1)2014 =(×)2013× ÷1 =1× ÷1 =,故答案为: .

14.已知5+ 小数部分为m,11﹣ 为小数部分为n,则m+n= 1 . 【解答】解:∵4<7<9,∴2< <3,∴7<5+ <8,8<11﹣ <9,∴m=5+ ﹣7= ﹣2,n=11﹣ ﹣8=3﹣,∴m+n= ﹣2+3﹣ =1. 故答案为:1.

15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为 16 .

【解答】解:∵EF∥B C,∴∠BOE=∠OBC,∠COF=∠OCB,∵在△ABC中,∠ABC和∠ACB的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EBO=∠BOE,∠FCO=∠COF,∴BE=OE,CF=OF,∴△AEF的周长为:AE+EF+AF=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵△AEF的周长为16,∴AB+BC=16,故答案为16.

16.32x=2,3y=5,则求34x﹣2y= . 【解答】解:原式= =,当32x=2,3y=5时,原式= = . 故答案为: .

17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55° .

【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.

18.如图所示,点B、C、E在同一直线上,△AB C与△CDE都是等边三角形,则下列所有正确的结论序号为 ①②③⑥

①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.

【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中

,故①成立;

∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中

,∴△BGC≌△AFC,∴BG=AF. 故②成立;

∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中

,∴△DCG≌△ECF,故③成立;

∵△BCD≌△ACE,∴∠CDB=∠CEA,∵△ABC和△CDE都是等边三角形,∴∠BCA=∠ECD=60°,∴∠ACD=60°,∴∠BCD=120°,∴∠DBC+∠BDC=60°,∴∠DBC+∠AEC=60°. ∵∠AOB=∠DBC+∠AEC,∴∠AOB=60°. 故⑥成立;

在△ADB和△CEA中,只有AB=AC,BD=AE,两边对应相等不能得到两三角形全等;故④不成立;

若DE=DG,则DC=DG,∵∠ACD=60°,∴△DCG为等边三角形,故⑤不成立. ∴正确的有①②③⑥. 故答案为①②③⑥.

三、解答题

19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)

【解答】解:(1)原式=2x(y2﹣4)=2x(y+2)(y﹣2);(2)原式=4a2﹣12ab+9b2=(2a﹣3b)2.

20.计算或化简

(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2(2)(2+1)×(22+ 1)×(24+1)×(28+1)×(216+1)×(232+1)【解答】解:(1)(﹣ a2b)3÷(﹣ a2b)2× a3b2 =﹣ a6b3÷ a4b2× a3b2 =﹣ a2b× a3b2 =﹣2a5b3(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(2﹣1)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(22﹣1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(24﹣1)×(24+1)×(28+1)×(216+1)×(232+1)=(28﹣1)×(28+1)×(216+1)×(232+1)=(216﹣1)×(216+1)×(232+1)=(232﹣1)×(232+1)=264﹣1

21.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣ .

【解答】解:原式=a2b2﹣ab﹣2+a2+4b2﹣4ab﹣2ab﹣a2﹣4b2﹣2ab,=a2b2﹣9ab﹣2,当a=,b=﹣ 时,原式= × +9× × ﹣2= + ﹣2= ﹣2= .

22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.

【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF =a2+b2﹣ a2﹣(a+b)•b=a2+b2﹣ a2﹣ ab﹣ b2= a2+ b2﹣ ab =(a2+b2﹣ab)= [(a+b)2﹣3ab]= ×(172﹣3×60)= .

23.阅读下列文字与例题

将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.

例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:

(1)a2+2ab+ac+bc+b2=(a+b)(a+b+c);

(2)△ABC三边a、b、c满足a2﹣ab﹣ac+ bc=0,判断△ABC的形状. 【解答】解:(1)原式=(a+b)2+c(a+b)=(a+b)(a+b+c); 故答案为:(a+b)(a+b+c);(2)a2﹣ab﹣ac+bc=0,整理得:a(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a﹣c)=0,解得:a=b或a=c,则△ABC为等腰三角形.

24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;

(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.

证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,∴△BCE≌△CAM(AAS),∴BE=CM.

25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;

(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;

(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假 真命题(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB∥CB1时,请直接写出A1D与CD的数量关系: A1D=CD

【解答】解:(1)由题意知,BC=BC1,∠B=∠B1,∠ACB=∠A1CB1=90°,由旋转知,∠A1CB=∠A CB1,在△BCD和△B1CF中,∴△BCD≌△B1CF,∴BD=B1F;

(2)AB与A1B1垂直,理由:∵旋转角为30°,∴∠ACA1=30°,∴∠B1CF=90°﹣30°=60°,∵∠B1=60°,∴∠B1FC=180°﹣∠B1﹣∠ACB1=60°,∴∠AFE=60°,∵∠A=30°,∴∠AEF=180°﹣∠A﹣∠AFE=90°,∴AB⊥A1B1;

(3)由题意知,∠BAC=∠B1AC=30°,∠B=∠B1,∴△ABA1是等边三角形,∴BB1=AB,∵BB1=B C+B1C=2BC,∴BC= AB,∴直角三角形中30°角所对的边等于斜边的一半,故答案为:真命题; ∵AB∥CB1,∴∠ACB1=∠A=30°,∴∠ACD=90°﹣30°=60°,∴∠ADC=180°﹣∠A﹣∠ACD=90°,在Rt△ACD中,∠A=30°,∴CD= AC(直角三角形中30°角所对的边等于斜边的一半),∵AC=A1C,∴CD= A1C,∵A1D+CD=A1C,∴A1D=CD,故答案为:A1D=CD.

第四篇:八年级数学上学期教学计划

八年级数学上学期教学计划

李向东

一、指导思想

教育的发展必须进行课程改革,课程改革的关键是教学理念的更新,而教学理念的核心是实现教与学的互动。教学应该是一种双向活动,新课标的实质是要求在教学过程中,更多的让学生动起来。教学行为的研究是一个紧迫而现实的重要课题。新课标正在全国范围内普及,今年是我们实行新课标教学的第三年了,我们要不断总结教学实践中的经验,同时也要克服不足,探索出一条成功的路子来。

二、教学措施

为了适应课程改革和新教材的需要,除了常规的教学过程外,还必须结合学生的实际采取如下措施:

1、转变教师观念

新课标理念的核心是以人为本,整个教学活动也应以育人为核心,教学要面向全体学生,又要因材施教,要让学生在数学方面有特长,得到培养和发展,又不歧视“学困生”,既要着眼于当前教学任务的完成,又要看到适应学生今后长远的发展。教师不仅是新课程标准的实施者,也是其研究者、建设者。

2、提高课堂教学艺术水平

现代数学课堂,课型丰富多彩,讲授课型、活动课型、自学辅导课型、习题课型、研究性学习课型等等,对不同的知识内容、不同层次的学生设计不同的课型。

运用生动、幽默、精练、准确的课堂语言,掌握行云流水、收放自如的课堂教学节奏,实施引导思维、鼓励置疑的课堂设问艺术上好每堂数学课。

3、充分利用现代化的教学工具

多媒体的出现,为教学改革提供了有力条件。在新课标实施的过程中,我们要充分利用好多媒体教学,幻灯机、录象机、录音机、电脑等,只要能利用的,我们都要用上,一切为了调动学生的学习积极性,真正实现教与学的互动。

4、开展丰富多彩的课外活动

根据教材的需要,适当的组织学生开展一些有益的实践活动。利用空余时间对学习有困难的学生进行辅导。

三、教学安排

本学期我们的教学任务是共五大章。课时安排如下:

第11章平移与旋转共10课时 第12章平行四边形共10课时 第13章 一元一次不等式共10课时 第14章 整式的乘法共11课时 第15章 频率与机会共7课时 具体安排如:

第11章平移与旋转

第1节平移3课时

第2节 旋转3课时

第3节 中心对称2课时

小结2课时

第12章平行四边形

第1节平行四边形4课时

第2节 几种特殊的平行四边形3课时 第3节 梯形1课时

小结2课时

第13章 一元一次不等式 第1节 认识不等式1课时

第2节 解一元一次不等式4课时 第3节 一元一次不等式组2课时

小结2课时

第14章 整式的乘法

第1节 幂的运算3课时

第2节 整式乘法3课时 第3节 乘法公式2课时

第4节 因式分解1课时 小结2课时

第15章 频率与机会

第1节 在实验中寻找规律1课时 第2节 用频率估计机会的大小2课时 第3节 模拟实验2课时

小结2课时

期中复习20课时

期末复习20课时

第五篇:八年级数学上教学工作总结

八年级数学上教学工作总结

蒙荣祖

本学期,本人担任八年级(3)班一个班数学学科的教学工作。一学期来,本人以学校及各处组工作计划为指导,以加强师德师风建设,提高师德水平为重点,以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:

一、加强学习,努力提高自身素质

一方面,认真学习教师职业道德规范,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力。通过学习,转变了以前的工作观、学生观,使我对新课改理念有了一个全面的、深入的理解,为本人转变教学观念、改进教学方法打好了基础。

二、以身作则,严格遵守工作纪律

一方面,在工作中,本人能够严格要求自己,模范遵守学校的各项规章制度,做到不迟到、不早退,不旷会。另一方面,本人能够严格遵守教师职业道德规范,关心爱护学生,不体罚,变相体罚学生,建立了良好的师生关系,在学生中树立了良好的形象。

三、强化常规,提高课堂教学效率

本学期,本人能够强化教学常规各环节:在课前深入钻研、细心挖掘教材,把握教材的基本思想、基本概念、教材结构、重点与难点;了解学生的知识基础,力求在备课的过程中即备教材又备学生,准确把握教学重点、难点,不放过每一个知识点,备好每一篇教案;在课堂上,能够运用多种教学方法,利用多种教学手段,充分调动学生的多种感官,激发学生的学习兴趣,向课堂40分要质量,努力提高课堂教学效率;在课后,认真及时批改作业,及时做好后进学生的思想工作及课后辅导工作;在自习课上,积极落实分层施教的原则,狠抓后进生的转化和优生的培养;同时,进行阶段性检测,及时了解学情,以便对症下药,调整教学策略。认真参加教研活动,积极参与听课、评课,虚心向同行学习,博采众长,提高教学水平。

四、加强研讨,努力提高教研水平

本学年,本人参加来宾市级教研课题“初中数学有效课堂教学研究”的子课题,积极撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目

标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。

五、正视自我,明确今后努力方向

本次期末考试,我所带班成绩相对其它平行班而言,有一定的差距,本人认真进行了反思,原因主要有以下几个方面:

1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高;

2、对知识点的检查落实不到位;

3、对差生的说服教育缺乏力度,虽然也抓了差生,但没有时时抓在手上。

4、教学中投入不够,没能深入研究教材及学生。

下学期改进的措施:

1、进一步加强对新课改的认识,在推广先进教学方法、利用多媒体调动学生学习积极性的同时,努力提高课堂教学的效率。

2、狠抓检查,落实对知识点的掌握。将差生时时放在心上,抓在手上;

3、加强学生的阅读训练,开阔学生的视野,拓宽学生思路,提高学生解决问题的能力;

4、采取措施,加强训练,落实知识点。

5、加强对学生的管理教育,努力教学提高成绩。

6、群体育人方面的工作还需要进一步加强。特加是要加强与班主任之间的联系,共同解决所任班级班风学风方面存在的问。

2014年1月

下载八年级数学上全等三角形复习教学案word格式文档
下载八年级数学上全等三角形复习教学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学上学期复习计划

    八年级数学上学期复习计划 本学期授课将结束,开始进行复习。为提高学生学习成绩,特制定复习计划如下: 一、复习内容: 第十一章:全等三角形 第十二章:轴对称 第十三章:实数 第十四章......

    八年级数学上学期教学工作总结

    八年级上数学教学工作总结这学期根据工作需要本人被学校派往片口义校支教,可以说紧张忙碌而收获多多。片口义校初中部教师结构的原因,学校安排我上初二年级的数学教学工作,在以......

    八年级数学上学期教学工作总结

    八年级数学上学期教学工作总结 凌云中学周怀斌 本人本学期担任八年级(1)班数学教学工作。一学期的工作已经结束,为了总结经验,寻找不足。现将一学期的工作总结如下: 一、业务学习......

    八年级数学上学期教学反思

    八年级数学上学期教学反思 青海昆仑中学 甄红亚 我于上学期12月起担任八年级(2)班数学课教学。一学期的工作已经结束,为了总结经验,寻找不足。现将这一个多月的教学反思如下:......

    八年级数学上学期期中考试后反思

    八年级数学上学期期中考试后反思 期中考试结束了,这个学期也过去了一半,为了能够查找教学中的不足,更好地做好下一步的教学工作,现就期中考试试题特点、学生答题情况、教学中存......

    华师大八年级数学上教学工作计划

    华师大八年级数学上教学工作计 迎接镇初级中学 一、班级情况分析: 班人数为40,上学期优秀人数为10,优秀率为 25,及格人数为 20,及格率为,50大多数学生基础不好,不主动学习,缺乏上进......

    八年级数学上学期教学工作总结

    八年级数学上学期教学工作总结 孟英利 昌乐外国语学校 本人本学期担任八年级(九)班数学课教学工作。又是一年的岁末年初。回首这忙碌而充实的一个学期,收获的喜悦和疑惑的......

    人教版八年级数学上学期教学计划

    八年级上学期数学教学计划 一、指导思想: 以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、......