12.2.4__三角形全等的判定教学案“HL”

时间:2019-05-12 17:18:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《12.2.4__三角形全等的判定教学案“HL”》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《12.2.4__三角形全等的判定教学案“HL”》。

第一篇:12.2.4__三角形全等的判定教学案“HL”

12.2.4 三角形全等的判定---“HL”

主备人: 9月23日

学习目标

知识与技能 1.、掌握直角三角形全等的条件,并能运用其解决一些实际问题

过程与方法

2、经历探索直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程; 情感态度价值观:

3、在学习过程中,通过交流合作,使学生体会成功的喜悦。教学重难点:运用直角三角形全等的条件解决一些实际问题。

一、自主探究

情境导入:舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?

方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵ 如果他只带了一个卷尺,能完成这个任务吗?

工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?下面我们来验证一下吧。探索练习:(动手操作):

已知线段a,c(a

1、按步骤作图: a c ① 作∠MCN=∠=90°,② 在射线 CM上截取线段CB=a,③以B 为圆心,C为半径画弧,交射线CN于点A,

④连结AB

2、与同桌重叠比较,是否重合?

3、从中你发现了什么?

斜边与一直角边对应相等的两个直角三角形全等.(HL)

二、尝试应用:

(例题)如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由

答: 理由:∵ AF⊥BC,DE⊥BC(已知)

∴ ∠AFB=∠DEC= °(垂直的定义)

在Rt△ 和Rt△ 中

_______________ ________________∴ ≌()

∴∠ = ∠()∴(内错角相等,两直线平行)

1、如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC(填“全等”或“不全等”)根据(用简写法)

2、判断两个直角三角形全等的方法不正确的有()

(A)两条直角边对应相等(B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等(D)两个锐角对应相等

3、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。

三、补偿提高:如图,CE⊥AB,DF⊥AB,垂足分别为E、F,(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据

(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据

四、课时小结

至今,我们一共学习了6种全等三角形的判定方法。思考一下它们的适用范围?

五、当堂达标

如图,AC=AD,∠C,∠D是直角,你能说明BC与BD相等吗?

A

六、作业

A组课本习题12.

1、2题,同步自我尝试; B组同步自我尝试和开放性作业; C组同步开放性作业和拓展性学习

七、课后反思

C B

D

第二篇:最新人教版三角形全等的判定(HL)教案

12.2 三角形全等的判定---HL 班级:807班

授课者:何小军

时间:2015.10.14 教学目标

1.知识与技能

理解并掌握直角三角形全等判定定理-----HL,并能用于解决简单实际问题。2.过程与方法

经历探索直角三角形全等判定定理形成的过程,掌握数学方法,提高合情推理的能力。3.情感、态度与价值观

培养综合分析的几何推理意识,激发学生求知欲,感悟几何思维的内涵。

教学重点

理解并掌握直角三角形全等判定定理-----HL 教学难点

熟练运用直角三角形全等判定定理-----HL解决一些实际问题。培养学生综合分析的几何推理能力

教学过程

一、复习导入

1、口答:我们学过的判定三角形全等的方法哪些?

2、认识:直角三角形------简写、直角边、斜边符号

3、思考:对于两个直角三角形,除了直角相等这个条件外,还要满足哪两个条件,这两个直角三角形就全等了?

4、导入:设疑----两个直角三角形,如果满足斜边(L)和一条直角边(H)分别相等,这两个直角三角形全等吗?

二、探究新知:

斜边(L)和一条直角边(H)分别相等,这两个直角三角形全等吗?

1、画一画

任意画出一个Rt△ABC,∠C=90°。再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。

步骤

⑴ 作∠MC´N=90°;⑵ 在射线C´M上取段B´C´=BC;⑶ 以B´为圆心,AB为半径画弧,交射线C´N于点A´;⑷ 连接A´B´.2、我发现:()

3、交流归纳:直角三角形全等判定定理---HL()和()分别相等的两个()全等。简写成“(斜边、直角边)”或“(HL)”。

4、建模:

三、学以致用:

1、例题:如图:AC⊥BC,BD⊥AD,垂足分别为C、D,AC=BD.求证:BC=AD.2、变式练习

(1)如图,C是路段AB的中点,两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D、E与路段AB的距离相等吗?为什么?

(2)如图,AB=CD,AE ⊥BC,DF ⊥BC,CE=BF.求证:AE=DF.五、课堂总结

六、布置作业

课本第44页

第6、7、8三个题

第三篇:三角形全等的判定HL 教学反思

八年级上册数学12.2.4 全等三角形的判定(HL)

教 学 反 思

凉州户镇学校 马小芳

成功之处:

本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法。在教学过程中,我让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力。整节课从“问题情境出发,建立模型、寻求结论、解决问题”,让学生从这一过程中抽象出几何图形,建立模型,研究具体问题,起到了较好的作用,学生也体会到数学与现实的联系,以及学习处理此类问题的方法。作为八年级的学生,他们的抽象思维已有一定程度的发展,具有初步的推理能力,因此,教学中,我把例题进行挖掘,通过几次变式训练让学生感受,促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。不足之处 :

纵观整个教学,不足主要体现在在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;对学困生的关注还是比较少,导致部分学生的学习兴趣不易集中;在评价学生时,启发性不足,马心成同学的证明方法再往下引导一下就对了,但没有及时鼓励,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会,今后教学还需不断地改进和提高。

第四篇:11.2 三角形全等的判定教学案

11.2三角形全等的判定(1)

一、教学目标

1、三角形全等的“边边边”的条件.

2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

二、重点难点

教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件.

A'

三、合作探究 A1、复习:什么是全等三角形?全等三角形有些什么性质? 如图,△ABC≌△A′B′C′那么

C'B'BC相等的边是: 相等的角是:

2、合作探究(周围同学配合)三组对应边相等的两个三角形全等

已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? a.作图方法:

b.以小组为单位,把剪下的三角形重叠在一起,发现,•这说明这些三角形都是 的.

c.归纳:三边对应相等的两个三角形,简写为“ ”或“ ”. d、用数学语言表述:

A'A在△ABC和A'B'C'中, ABA'B'∵AC ∴△ABC≌ BCBCB'C'用上面的规律可以判断两个三角形 .判断,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.

四、精讲精练

1、精讲

1、如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.

求证:△ABD≌△ACD. A

证明的书写步骤:

①准备条件:证全等时要用的间接条件要先证好; BDC

②三角形全等书写三步骤:

A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。

2、尺规作图。

已知:∠AOB.求作:∠DEF,使∠DEF=∠AOB

2、精练

1、如图,AB=AE,AC=AD,BD=CE,求证: △ABC ≌ △ ADE。

2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC

五、课堂小结: SSS

六、作业:

1、第15页习题11.2 1-2 2、第16页第9题

第五篇:《三角形全等的判定》第四课时(HL)教案

12.2.4三角形全等的判定(4)

【教学目标】:

1、知识与技能:

直角三角形全等的条件:“斜边、直角边”.

2、过程与方法:

1).经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系. 2).掌握直角三角形全等的条件:“斜边、直角边”. 3).能运用全等三角形的条件,解决简单的推理证明问题.

3、情感态度与价值观:

通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神 【教学情景导入】: 提出问题,复习旧知

1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是

3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)

(4)若AB=DE,BC=EF,AC=DF 则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)/ 4

创设情境,导入新课

如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放课件)

(1)你能帮他想个办法吗?

(2)如果他只带了一个卷尺,能完成这个任务吗?(1)[生]能有两种方法.

第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.

第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.

可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等. [师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗? 导入新课

[生]这两个三角形都是直角三角形,也许是全等的.因为它还有直角这个特殊条件.

[师]有道理.但科学是严密的,今天我们就来探究“两个直角三角形全等的条件”. 做一做:

已知线段AB=5cm,BC=4cm和一个直角,利用尺规做一个直角三角形,使∠C=•90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?

(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体课件演示,激发学习兴趣). / 4

作法:

第一步:作∠MCN=90°.

第二步:在射线CM上截取CB=4cm. 第三步:以B为圆心,5cm为半径画弧交射线CN于点A. 第四步:连结AB.

就可以得到所想要的Rt△ABC.(如下图所示)

将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.

可以验证,对一般的直角三角形也有这样的规律. 探究结果总结:

斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).

[师]你能用几种方法说明两个直角三角形全等呢?

[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、•ASA•、•AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.

[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行. 【教学过程设计】:

[例1]如图,AC⊥BC,BD⊥AD,AC=BD.

求证:BC=AD.

分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,•就可以证明BC=AD了. 证明:∵AC⊥BC,BD⊥AD ∴∠D=∠C=90°

在Rt△ABC和Rt△BAD中

ABAB ACBD3 / 4

∴Rt△ABC≌Rt△BAD(HL)∴BC=AD.

[例2]有两个长度相等的滑梯,左边滑梯的高AC•与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?

[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,•已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看. 证明:在Rt△ABC和Rt△DEF中

BCEF ACDF所以Rt△ABC≌Rt△DEF(HL)∴∠ABC=∠DEF 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90°

即两滑梯的倾斜角∠ABC与∠DFE互余.

【教学反思】

通过本节学习,我们有如下收获:

1.直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法,•而且还有直角三角形特殊的判定方法──“HL”.

2.两个直角三角形中,由于有直角相等的条件,•所以判定两个直角三角形全等,只须找两个条件(两个条件中至少有一个条件是一对对应边相等)即可. 至此,我们有六种判定三角形全等的方法:

1).全等三角形的定义2).边边边(SSS)3).边角边(SAS)

4).角边角(ASA)5).角角边(AAS)6).HL(仅用在直角三角形中)/ 4

下载12.2.4__三角形全等的判定教学案“HL”word格式文档
下载12.2.4__三角形全等的判定教学案“HL”.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形判定3导学案

    全等三角形判定3(SSS) 学习目标: 1 能说出三角形全等的判定“边边边”的内容,能用数学语言表示这个判定定理.2 能用“边边边”判定两个三角形全等,并会利用该定理进行简单的推理......

    11.1全等三角形教学案

    §11.1 全等三角形 教学目标 1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的......

    《全等三角形判定》说课稿

    《全等三角形判定》说课稿 一、教材分析: 教材的地位和作用 这节课是一节新授课。 本节是初中几何第一册第三章“三角形”第二部分的重要内容。三角形是最常见的几何图形之一......

    全等三角形判定课件

    全等三角形是几何学中的重要概念,下面就是小编为您收集整理的全等三角形判定课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!全等三角形判定课件教学......

    全等三角形判定 课堂实录

    12.2三角形全等的判定题外话:先给大家谈一个教师节前一天发生在我身上的一件真实的事情。从中学到教管会,对于我这样一个路痴老师来说,竟然在镇上转到半个多小时。高德地图竟然......

    《全等三角形的判定3》导学案

    http://blog.sina.com.cn/shuxue725《全等三角形的判定3》导学案一、学习目标:1、掌握“已知两角及夹边画三角形”的方法。2、掌握角边角公理及推论角角边定理,能较熟练地运......

    全等三角形判定教学反思

    全等三角形判定教学反思本节课主要想让学生明白三个问题:一是了解研究任何一个几何对象的路径;二是经历探究SSS基本事实的全过程;三是SSS基本事实的巩固应用。对于第一个问题,......

    全等三角形的判定课件

    【教学目标】1.探索三角形全等“边角边”的条件.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【教学重、难点】1.应用“边角边”证明两个三角......