第一篇:圆柱和圆锥复习课教案
圆柱和圆锥复习课教案
实验小学 唐永胜
复习内容:第12册圆柱和圆锥表面积和体积的有关知识。复习目的:(1)、通过复习使学生对本学期所学的圆柱和圆锥的认识、表面积和体积等知识有一个系统的掌握。(2)、通过复习掌握圆柱和圆锥的特征及体积计算上的联系与区别。(3)、通过复习培养学生的综合概括能力和解决数学问题的能力。(4)、培养和训练学生的空间想象能力和发散思维。复习重点:圆柱和圆锥表面积和体积的计算 复习难点:圆柱和圆锥体积计算上的联系与区别
教具准备:多媒体课件(方案二:小黑板、圆柱体实物小刀)学具准备:小组学习卡
复习方法:自主探究 与 合作交流
复习过程:
一、情景引入、回顾交流
1、师生问好。
2、师生交流谈话,引入正题。
师:我发现同学们都在地仔细看大屏幕,我想知道你从屏幕中看到什么?(知道老师名字、单位;画面是采伐工人工作情形;还有在思考问题的淘气)
我们这节课就与淘气一起从一根木头开始我们的数学学习。(课件:呈现一根圆木)
3、回顾与圆柱有关的知识。
师:同学们咱们仔细回忆一下与圆柱有关的知识,谁能站起来说一说?
生:圆柱的两个底面是圆形,侧面是曲面,展开后是个长方形。
板书 :
圆 柱 的 圆 锥 的
特 征
......特 征
......二、观察讨论,提出问题
1、屏幕呈现圆柱体木头底面直径20厘米,高30厘米。师:现在你又得到什么新的信息呢?告诉了我们什么条件? 生:它高30厘米,底面直径20厘米。
2、计算圆柱的体积与表面积。
师:现在老师想问你们两个问题,考考大家,你知道我会问哪两个问题吗?(你能计算这个圆柱体的体积和表面积?)师板书:体 积
表面积
(1)、学生计算圆柱体的体积和表面积。要求只列式不计算。规定时间完成,(师数数)
(2)、反馈交流学生练习。
(指名上黑板或生诉师板书)
体
积:3.14 X(20/2)2 X 30
表面积:3.14 X(20/2)2 X2+3.14X20X30
3、进一步探究圆柱和圆锥的相关问题。
师:咱们仔细观察这个木桩儿,结合圆柱和圆锥的知识,以及我们的生活实际,展开你们想象的小翅膀,看看你们还能提出什么样的问题来。看看谁提的问题最有创意。(1)、同桌讨论交流。(2)、全班交流后,问题归类。
刷——
生:我们给这跟木头刷油漆。
师:刷油漆有几种刷法?
生1:刷侧面象刷柱子一样刷,要刷多少面积,我想就是刷侧面求侧面积。
师:你真会联系生活,好哪位同学来说说怎么列式算侧面积。板书:3.14X20X30
还能怎么刷?
全刷?全刷就是什么------
生:就是表面积。
生2:把圆柱立在地上刷露在外面的面。
那咱们帮帮这位同学,马上列式不计算。
板书:3.14 X(20/2)2 +3.14X20X30
师:除了刷油漆还有什么更有创意的问题呢?
切——
生1:把圆柱劈(切)开算表面积增加了多少?
师:怎么切?
生:纵切,沿直径切开,求表面积增加了多少?
师:你们听明白了吗?这个问题有点难哦,谁来解答?
生:就是增加了两个长是直径宽是高的长方形。
板书:20X30X2
师课件演示加以验证。(方案2:让学生动手切圆柱形萝卜)
师:除了这样切还能怎样切?
生:横切,沿一个底面的水平面切开,求表面积增加了多少?
师:你们听明白了吗?谁来解答?
生:就是增加了两个底面积。
板书:3.14 X(20/2)2 X 2
师课件演示加以验证。(方案2:让学生动手切圆柱形萝卜)
师:刷也刷了切也切了,你们还有什么问题没有解决?
削——
生:把这跟圆柱形的木头削成最大的圆锥形的,那么这个圆锥形的木头体积是多少?
师:削成最大的圆锥该怎么削呢?老师把削的过程用课件表现了出来大家想看看吗?(课件呈现圆柱削成等底等高的圆锥的过程)
生:削成的圆锥和圆柱底相等、高也相等,象削铅笔一样削。
等底又等高,你能算这圆锥的体积没有呢?
板书:3.14 X(20/2)2 X 30 X 1/3
有没有同学能口算这道综合算式?(计算技巧的训练)
三、拓展应用
1、拓展应用一。
刚才我们和淘气围绕一跟圆木探讨了好多的问题,现在淘气有几个问题不明白,他需要请教各位。请看——(1)、出示课件的判断题。(方案二:出示小黑板)
师:小组长手上有一张答题卡,每小组统一意见后答在答题卡上。(2)、以学习小组为单位比赛,在规定时间内通过集体的智慧,看看哪个组能全答对。(3)、小组代表上黑板公布结果板书出来,或读出结果老师记录。
2、拓展应用二。
师: 似乎有些组不服气哦,不要紧淘气还有问题。(1)、出示课件的挑战自我。(方案二:出示小黑板)
师:同样小组长手上答题卡的第二题,通过集体的智慧小组讨论交流看能不能找到解决问题的方法。(2)、小组合作交流,自主探究。(3)、小组反馈探究结果。
(如有困难,用课件提示引导解决或留到课后探究。)
四、全课总结。
1、这节课你有什么收获?
2、最后老师送给大家一个成语就是“殊途同归”,这是解决刚才的问题的金钥匙,希望同学们在成长的路上永远带这它,它会为你开启一扇扇智慧之门!
板书设计
复习课
圆柱的 圆锥的特 征:......特 征:......体 积:
挖
3.14 X(20/2)2 X 30
体积: 削3.14 X(20/2)2 X1/3
3.14 X(20/2)2 X2/3
3.14 X(20/2)2 X2+3.14X20X30
刷
3.14X20X30
3.14 X(20/2)2 +3.14X20X30 表面积:
纵: 20X30X2 切
横3.14 X(20/2)2 X 2
《圆柱、圆锥复习课》教后反思
实验小学 唐永胜
整理与复习课,一定要放手让学生自主的去收集、整理、交流己学过的知识,通过条目、表格、框图等形式帮助学生沟通知识间的联系,把学过的知识整合成一个有机的整体,形成合理的知识系统。又充分发挥学生学习的自主性,体现把课堂还给学生,同时还可培养学生自主学习的意识,提高学生自行设计的能力与自主获取知识的能力。
本次数学组公开课,我上的是《圆柱、圆锥复习课》。本次复习课,我首先引导学生将本单元的知识点进行了梳理。即:让学生思考并总结本单元我们都学了哪些知识?随着学生的回答用课件整理出知识点,形成知识网络呈现在学生面前。这些知识点包括:
(一)圆柱圆锥的特征,在特征利特别强调了圆柱和圆锥的高及特征。
(二)圆柱的体积及表面积的基本公式和补充公式,圆锥的体积的基本公式和补充公式。
(三)圆柱与圆锥的关系。
(四)生活中的圆柱和圆锥及求什么、怎样求,并用课件形成基本公式。
复习完这些知识点,我以一根木头为切入点,引导学生进行了相应的练习,在此基础上引导学生自主提出具有创造性的学习问题,进一步强化了本节知识。随后进行的拓展,使孩子们针对本单元的知识进行了巧妙地设计和整理。我觉得这节复习课还是比较成功的,取得了一定的效果。以下三点做得比较成功:
一是注重情景创设,调动学生的学习兴趣。开课时的这个情景是我在备课时,学习别人的长处学到的,但它有不符合我们的地方,我就做了相应的修改,就形成了适合我班现状的情境设计;这个情景深刻而有趣,巧妙地把学生引入了学习的氛围里。
二是关注生本教学,实现学生的学习主体。在课的主体推进部分,我尝试让学生自主思考,提出有价值的探究问题,并独立解答,在轻松有趣的学习氛围中达成了对本节知识的再认识。
三是精巧设计练习,达成学习的轻负高效。整理与复习课的练习设计是非常重要,本节课的练习设计,我注重尊重了教科书上的练习,又选择与其内容相近而形式多样的习题,让学生“视野开阔”;其次,既重视有针对性的单项练习,也注意综合性的练习;最后在练习的内容和要求上具有一定的开放性和挑战性,以
激起学生学习的欲望,在新理念下,要为每一个学生提供发展的空间,对不同的学生提出不同的要求,让有些学生得到最基本的发展(学困生),有些学生得到更多的发展(优等生)。
本节课还存着诸多不足:
一、对于圆柱圆锥的计算数很大,很难算对,本节课堂上没有教给学生如何计算较大的数,没有教给一些技巧和方法。
二、对于本节课的许多练习题都是由教师预设的,没有充分关注学生的个性发展,特别是缺乏学生出题能力的锻炼。
以上是我上这节课的体会与反思,真诚欢迎各位领导和同行批评指正,使我能在数学教学中不断进步。
第二篇:圆柱圆锥复习课
圆柱圆锥复习课
(二)教学目标:
⑴知识目标:引导学生通过回忆、整理、拓展等实活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。⑵能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。
⑶情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。
教学重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
教学难点:通过对知识进行整理,提高学生的自主获取知识与概括知识能力。教学过程:
一、知识整理
1、谈话揭题:今天这节课我们来复习一下圆柱和圆锥的内容。
2.圆柱与圆锥的知识,你都知道了什么?还学会了什么?
3.师板书:特征,表面积,体积。
4、课件展示:圆柱、圆锥的特征,基本公式。
二、解决问题
1.屏幕出示圆柱体木桩。
2.仔细观察木桩,结合已学圆柱与圆锥的知识,提出一些数学问题。
3.整理:刷、切、削。
(底面直径20厘米,高30厘米)
4.“刷”出表面积相关知识。(怎么刷?)
5.“切”出新的表面,求增多的表面积。(怎么切?)
6.“削”出圆锥,圆柱与对应圆锥的关系。(怎么削?)
7.画草图,计算,说说思路。
三、深化应用。
*.抢答题:
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指
().A.底面积B.侧面积C.表面积D.体积
2.甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱()。A高一定相等B侧面积一定相等C侧面积和高都相等
D侧面积和高都不相等
3.一个圆锥的体积是a立方米,和它等底等高的圆柱体的体积是()立方米。
A.a÷3B.2aC.3aD.a的立方
4.把一个圆柱在平坦的桌面上滚动,那么滚动的路线是().A 圆弧B直线C曲线
*动手思考
1.一个圆柱形水池的容积是18.84立方米,池底直径是4米,水池的深度是
().2.一根圆柱形木材长20分米,把截成4个相等的圆柱体.表面积增加了18.84平方分米.截后每段圆柱体积是().3.已知两个体积不同的圆柱,高相等,它们的底面半径的比是1:2,那么它们的体积的比是()
四、课堂总结。
通过今天这节课的学习,说一说你有哪些收获?你还存有疑惑或问题吗?
五、布置作业。
.整理单元学习小报。(1.你学到了什么?2.还有什么问题?3.错题集。)
圆柱圆锥复习课
(一)教学目标:
1、进一步掌握圆柱和圆锥体的特征、公式,能正确熟练地运用公式求解、计算
2、培养学生正确灵活地运用所学知识解决简单实际问题的能力。
3、使学生明确基本上解圆柱圆锥的有关应用题,都可以归纳为涂、切、削、挖的问题。
教学重点:灵活地运用所学知识解决简单实际问题
教学过程:
一、复习出示课题
师:前段时间我们和大家一起学过圆柱和圆锥的知识,今天针对我们这些知识来上一节复习课。(板书课题:复习课)现在请大家回忆一下,这一单元里,我们都学会了些什么?
二、集体探究
提问题:师:嗯!看来,大家学得还真不少!在这一部分内容中,我们学习了三个内容。第一是圆柱和圆锥的特征;后来我们又学会了它们表面积的计算;最后我们研究的是它们的体积的计算。(教师板书:特征、表面积、体积)
师:到底怎么样?那么就试试看。这些知识之间有什么联系呢?一会儿我们通过回答问题,看看它们之间到底有什么样的联系。请看屏幕——(出示一个圆柱体)现在屏幕上出现了一个什么?
生:圆柱体的木头
师:告诉了我们什么条件?
生:它高30厘米,底面直径20厘米
师:高30厘米,底面直径20厘米,对不对?好了,接下来就交给各组一个任务仔细观察这个木桩儿,结合圆柱和圆锥的知识,以及我们的生活实际,展开你们想象的小翅膀,看看你们组能提出什么样的问题来。看看谁提的问题最有创意,综合性最强。好了,要求听清楚了吗?生齐答:听清楚了——
师:那就开始(学生开始讨论,教师参加小组讨论。)
师:好,停——,结合这个小木桩,你提出了一个什么样有创意的问题? 生1:这个木桩的体积是多少立方分米?
生2:把这个圆柱形的木桩削成最大的圆锥形的,那么这个圆锥形的木桩体积是多少?
师:哎!你看这个同学挺有创意的,他用了一个词,一个字,你觉得那个字用的最好呀!
„.解决问题:师:同学们真棒,提出了这么多有创意的问题,这节课我们就一一来解决他们。
1、刷——求这个圆柱木桩的面积
让学生明确在什么情况求表面积,什么情况下求一个底面和一个侧面的面积,什么情况下只求一个侧面的面积?
2、切——纵切 横切 使学生明确将圆柱纵切后、横截面为长方形,横切横截面为圆形。
3、挖、削——求体积
师:你说这木桩干什么的时候,我们要求它的体积呀?
生:装水。
师:用这个东西装水?你得把它干什么以后,他才能够装水?
生:把它挖空。
师:你看——,有一个字特别好。
生齐答:挖
师:对——了——。把它挖了。把它挖孔成一个水杯,求它的容积,如果把壁厚忽略不计的话,就是求它的体积。对吗?
生齐答:——
师:底面积乘以高,好,请坐。你看,我们把它挖了以后,就能算出他们的体积。刚才是,先刷,再切,又挖,最后干嘛?终于轮到你的那个字了。我们说,再要削——,刚才哪个同学提的削?你把它削成什么样子?
生:削成圆锥形
师:圆锥体——
生:最大的师:她说,要削成一个最大的圆锥体。那么谁来说一说,削成一个怎样的圆锥体,才是最大的圆锥体呢?
师:来,看看。(演示课件)怎么样,削出几个来?1个,1个等底等高的最大的圆锥体。刚才真的很佩服大家!而且我们的课也马上到点了。我们通过这个小小的木桩,提出如此多的问题来,而且,我们很多同学提的问题真的很有创意。从涂到刷。到切,到削。
我真的很佩服大家,因为提出问题他还真的比解决问题更重要。接下来,我提一个问题,好吗?因为咱们都是平等的嘛!听好了。我这问题可难可难了呢!我要把这个圆柱体削成底面积和它一样,高是10厘米的圆锥体来,请问,我可以削出几个来。你们再次商量一下。(3个,有学生小声说出了答案)怎么样?几个?
生:3个——
师:为什么?
教师总结:是不是这样?(学生回答是后)先分成3个等底等高的小圆柱,然后把每一个小圆柱削成等底等高的圆锥。(电脑动画演示)是这样吗?最后能削成几个?(学生回答3个)
三、谈收获
今天这节课,你有什么收获?
第三篇:圆柱和圆锥复习课
《圆柱和圆锥复习课》教学设计
福州市仓山小学
陈瑾
教学内容:圆柱和圆锥复习课
教学目标:⑴知识目标:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。⑵能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。⑶情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。
教学重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
教学难点:通过对知识进行整理,提高学生的自主获取知识与概括知识能力。
教学过程:
一、创设情景,培养学生空间想象能力
1、情景引入
(课件出示)三种图片
师:看到这三幅图,同学们能回忆起我们所学过的哪些数学知识。
生:看到这三幅图,我们想到点动成线,线动成面,面动成体。
师:请同学们仔细观察长方形与三角形转动后形成了什么图形?
生:圆柱与圆锥
2、谈话揭题
师:今天这节课我们就来复习一下圆柱和圆锥的内容。
二、共同参与、展示、评议
师:这些知识在没有整理之前就像一个个杂乱无章的点,它们之间的联系就像一条条割不断的线,经过整理把它们连成一个网,最后融入到数学这个庞大的体系中去。
师:同学们陈老师在课前已经让同学们对这部分知识进行了梳理。课件显示
(1)用你自己喜欢的方式把它们之间的关系表示出来
(2)重点要突出,简洁有条理
(3)能体现知识点之间的联系和区别。
2、展示学生的整理方案,介绍交流整理心得。
师:再请一组同学们把你们的网络图展示一下
师:我们已经整理出圆柱和圆锥的特征,到底同学们掌握得怎样呢?老师想能过一些练习来检察同学们公式灵活运用的情况,愿意接受这次挑战吗?请看大屏幕(课件出示)
三、解决问题,提高能力
1、抢答练习,请说出你的思考过程
①一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
②一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?
③一根圆柱形状的木料底面直径16厘米,高20厘米,沿着它的底面直径切成相等的两块,表面积增加多少平方厘米?
④一个圆锥形沙锥,高9米,底面半径是6厘米,这个圆锥的体积是多少立方厘米?与它等底等高的圆柱的体积是多少?
⑤一个圆锥的体积是157立方厘米,它的底面半径是2厘米,这个圆锥的高多少厘米?
生抢答,并说出自己的思考过程
2、开锁能手
仓小喷水池(课件出示)
师:大家都看到我们校门这个漂亮的喷水池,水池的形状就是我们现在所学的一个立体图形(生:圆柱)陈老师这儿有几个问题想问问同学们。
锁一:沿这个喷水池内壁安装一圈水管需多长?就是求水池的()锁二:这个喷水池占地多大?求哪个部分()锁三;给整个喷水池内壁铺上瓷砖,就是求哪部分?()锁四:在喷水池里灌满水需要多少吨的水?就是求什么?()钥匙一:底面周长 钥匙二:表面积 钥匙三:底面积 钥匙四:体积 钥匙五:容积
师:同学们都很棒,陈老师给这个水池附加了几个条件,请同学们选择相应条件,提出相应问题并解决问题
①每平方米贴3块瓷砖(问题:贴了几块瓷砖?)
②每立方米水的质量为1吨(问题:喷水池里装满水需多少吨的水)
③每隔4米装一个喷泉头(问题:需要装几个喷头)
3、解决数学问题
(课件出示)
师:看到这两个圆柱和圆锥,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
(纷纷举手想回答,老师并没有直接让学生提问题,教师说)
师:用竞赛的形式来解决好吗?下面听好竞赛要求:
1、时间3分钟;
2、把问题、列式和结果填写在表格中(可以用计算器),比一比看谁的问题最多、列式和结果最正确。(音乐计时)
问题简写
列式及结果
生:底面积是多少?圆柱体的体积是多少?
生:等底等高的圆锥的体积是多少?剩余的部分是多少?
师:如果出现问题请及时改正
四、小结、反思
师:这节课,同学们通过合作与交流,对本单元所学的“圆柱和圆锥”进行了整理和复习,你有什么收获?
第四篇:圆柱和圆锥整理和复习教案
圆柱和圆锥整理和复习
教学内容:P29页第1-3题,完成练习五。
教学目的:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
3、学生认真的学习态度。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)
(2)做第29页第1题:指出几个图形中哪些是圆柱。
2、圆柱的侧面积和表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
3、圆柱的体积
(1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)
(2)做第29页第2题中关于圆柱体积的部分。
4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
二、复习圆锥
1.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
(2)做第91页第1题的下半题和第2题的第(3)小题.
让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物.
2.圆锥的体积.
(1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V=Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
(2)做第29页第2题中有关圆锥体积的部分。
三、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
四、作业
练习五的第3、4、6题。
第五篇:圆柱与圆锥复习教案
《圆柱、圆锥的复习》教学设计
旺苍县黄洋镇中心小学校
冯琳
冯丕兴
教学内容:圆柱、圆锥的复习教学目标:
1.通过复习,使学生能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积;
2.通过复习,使学生对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题;
3.在复习中,通过小组合作、精巧的练习设计等,使每个学生体会到解决问题的乐趣,增强学好数学的信心。教学重点、难点:
复习重点:圆柱、圆锥的表面积、体积复习及有关计算 复习难点:圆柱、圆锥知识的综合运用 复习准备:多媒体课件 教学过程
一、激趣质疑: 活动一:整理概念。
1、回忆这一单元所学内容,并自主整理。(并请学生说明这样整理的依据。)
2、学生分别汇报圆柱、圆锥的特征。
3、圆柱表面积怎样计算?(板书)说出生活中的一些实际运用的例子。
4、圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?
活动二:巩固所学内容,进行分层练习。
复习内容:圆柱、圆锥的特征、表面积及体积。复习目的:
1.通过复习,使学生能够清晰的了解圆柱、圆锥单元的三大知识系统,即特征、表面积、体积;
2.通过复习,使学生对有关计算公式的推导过程进一步明晰,能够熟练的运用计算公式解决实际问题;
3.在复习中,通过小组合作、精巧的练习设计等,使每个学生体会到解决问题的乐趣,增强学好数学的信心。复习过程:
一、回忆圆柱、圆锥单元学习的知识,并自主整理。1.揭示课题:复习圆柱和圆锥
师:请同学回忆一下,在圆柱、圆锥单元,我们学习了哪些知识? 生口答,师依次贴出卡片
2.根据以上知识点,你能有序的将它们整理吗?。出示整理要求:
(1)把黑板上的知识点,有序的整理在练习纸上。
(2)整理好后,在小组内交流自己的想法以及各知识点的具体内容。3.(1)生用板出的卡片,进行调整。师请学生说明这样整理的依据。(其他学生在位置上口答)课题:复习圆柱和圆锥(1)学生分别汇报圆柱、圆锥的特征。
(2)圆柱表面积怎样计算?(板书)生活中还有一些实际运用的例子,你能举一些吗?(制作油桶多少铁皮,通风管等[这是生活中的实际运用])怎样求圆柱的侧面积?(板书计算公式)出示自制的长方体通风管,让学生思考如何计算铁皮?(3)圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算怎样推导来的?(师出示教具,回答学生演示教具,师问是这样理解的吗?)师(等生说完):大家看,拼成的长方体表面积有没有变化?
生:长方体表面积增加了两个面,是两个长方形,长是圆柱的高,宽是底面半径。
师:说得不错,圆锥的体积计算公式,又是怎样推导来的呢?(生口述推导过程)这里的圆柱和圆锥容器有怎样的关系,缺少这样的联系,能够推导出圆锥体积公式吗?
师(拿圆柱体木料):如果把这个圆柱木料,削成一个最大的圆锥,你能知道哪些数学知识?
二、巩固所学内容,进行分层练习。
师:正所谓学以致用,能用整理的这些知识解决问题吗?
1.从上面看下面的每个立体图形,分别看到的是哪个图形?请用线连一连。师:如果是从正面看,又会怎样呢?(圆柱正面看是长方形,师自言自语“是下面的长方形吗?”长方形的长和宽各是什么?(长是圆柱的直径,宽是圆柱的高);正方形、长方形从正面看又是怎样的图形呢?圆锥从正面看呢?两条腰在哪儿?底和高分别是什么?)2.当机立断。
(对的请在括号内打“√”,错的打“×”)(允许学生用手势)
(1)圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。()
小结:用底面直径乘3.14等于底面周长,当底面周长等于高时,圆柱侧面展开是正方形。
(2)圆锥的体积是圆柱的。()小结:没有强调等底等高,能举例吗?
(3)一瓶罐装可口可乐的体积大约是400立方厘米,用24瓶装满一箱,这只箱子的容积大约是9600立方厘米。()
小结:因为24瓶可口可乐之间是有缝隙的,所以箱子的容积应该大于9600立方厘米。对,全部可乐的底面,都是圆形,根据五年级学习的密铺知识,我们知道圆是不能密铺的,所以这些圆柱形饮料之间一定有缝隙。(这样设计的目的是为了把所学的内容与生活结合起来)3.正确选择。(请在括号内选择正确答案的序号)(允许学生用数字)(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的()。
A.侧面积 B.表面积 C.体积
小结:由于圆柱形柱子上、下面粉刷不了,所以求的是侧面积。4.快速抢答:口答下面的问题,并列式计算。(基础知识的进一步巩固)
一个圆柱形水桶,底面半径2分米,高6分米。
① 给这个水桶加个盖,是求哪个部分?
小结:加个盖指的是圆柱的一个底面,列式为:2×2×3.14=12.56(平方分米)② 给这个水桶加个箍,是求哪个部分?
小结:加个箍,指的是一圈的周长,列式为:2×2×3.14=12.56(分米)③ 给这个水桶的外面涂上油漆,是求哪个部分?
小结:水桶由于是无盖的,所以涂油漆指的是一个底面积+一个侧面积,列式为: 2×2×3.14+2×2×3.14×6=87.92(平方分米)④这个水桶能装多少水,是求哪个部分?
小结:求水桶能装多少水,指的是水桶的容积,列式为:2×2×3.14×6=75.36(立方分米)
提问:通过练习,你有什么体会想和大家说吗? 5.实际运用。(数学知识来源于生活又应用于生活)
(1)有一个滚筒刷,它的底面直径是4厘米,长3分米,它滚动一周刷过的墙面是多少平方厘米?
师:滚筒刷见过吗?它是(圆柱形)用来刷墙面涂料的。这里所说的问题,是求圆柱的什么吗?解题时,还要注意什么? 独立完成。
3分米=30厘米 4×3.14×30=376.8(平方厘米)答:它滚动一周刷过的墙面是376.8平方厘米。师:像类似的还有什么例子?
(2)学校有一个圆柱形状的储水箱,它的侧面由 一块边长6.28分米的正方形铁皮围成。这个储水 箱最多能储水多少升?(接缝处略去不计)
6.28÷3.14÷2=1(分米)
1×1×3.14×6.28=19.7192(立方分米)19.7192立方分米=19.7192升
答:这个储水箱最大储水19.7192升。6.拓展延伸(让好学生吃饱)
(1)一个圆锥形容器,底面积是45平方厘米,高是16厘米。把它装满水后,倒入一个长10厘米,宽6厘米长方体容器中,此时的水高多少厘米? 方法一:45×16×=240(立方厘米)240÷(10×6)=4(厘米)方法二:解:设此时水高x厘米。
10×6×x=45×16×
x=4
答:此时水高4厘米。(2)有一张长方体铁皮(如下图),剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为2厘米,那么圆柱的体积是多少立方厘米?
2×2=4(厘米)
2×2×3.14×4=50.24(立方厘米)
答:圆柱的体积是50.24立方厘米。7.对比提高。
(1)一个圆柱高10厘米,把它截成两段,表面积增加了25.12平方厘米,原来圆柱的体积是多少立方厘米?
(2)一个圆柱高10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?
提问:这两题中都有表面积的变化,它们的意思一样吗?
生:第一题中的表面积增加,指的是底面积增加了两个;第二题中表面积增加,指的实际上是侧面积增加。(师演示变化)
提问:那么在计算体积时,又分别是怎样考虑的呢? 生独立完成。
三、全课小结:
师:同学们,今天我们一同复习了什么知识,你掌握了哪些?
板书设计:
课题:圆柱、圆锥整理和复习
圆柱的特征 圆柱表面积=1个侧面积+2个底面积
圆柱侧面积=底面周长×高
圆柱体积=底面积×高
V=sh
圆锥的特征
圆锥体积=底面积×高×
V=sh