第一篇:框架结构设计计算书.
第一章 绪论 第一节 工程概况
一、工程设计总概况: 1.规模:本工程是一栋四层钢筋混凝土框架结构教学楼,使用年限为 50年 , 抗震设防烈度为 8度;建筑面积约 3000㎡, 建筑平面的横轴轴距为 6.5m 和 2.5m , 纵轴轴距为 4.5m;框架梁、柱、板为现浇;内、外墙体材料为混凝土空心砌块, 外墙装修使用乳白色涂料仿石材外墙涂料, 内墙装修喷涂乳胶漆, 教室内地面房 间采用水磨石地面, 教室房间墙面主要采用石棉吸音板, 门窗采用塑钢窗和装饰 木门。全楼设楼梯两部。
2.结构形式:钢筋混凝土四层框架结构。3.气象、水文、地质资料: 1气象资料
A.基本风压值:0.35kN/㎡, B.基本雪压值:0.25kN/㎡。C.冻土深度:最大冻土深度为 1.2m;D.室外气温:年平均气温最底-10℃,年平均气温最高 40℃;2水文地质条件
A.土层分布见图 1-1,地表下黄土分布约 15m ,垂直水平分布较均匀,可塑 状态,中等压缩性,弱湿陷性,属Ⅰ级非自重湿陷性黄土地基。地基承载力特征 值 fak=120kN/㎡。
B.抗震设防等级 8度,设计基本地震加速度值为 0.20g ,地震设计分组为第 一组,场地类别为Ⅱ类。
C.常年地下水位位于地表下 8m ,地质对水泥具有硫酸盐侵蚀性。
D.采用独立基础, 考虑到经济方面的因素, 在地质条件允许的条件下, 独立 基础的挖土方量是最为经济的,而且基础本身的用钢量及人工费用也是最低的, 整体性好, 抗不均匀沉降的能力强。因此独立基础在很多中低层的建筑中应用较 多。
二、设计参数:(一根据《建筑结构设计统一标准》本工程为一般的建筑物,破坏后果严 重,故建筑结构的安全等级为二级。
(二 建筑结构设计使用年限为 50年, 耐久等级二级(年 , 耐火等级二级, 屋面防水Ⅱ级。
(三建筑抗震烈度为 8度,应进行必要的抗震措施。(四设防类别丙类。
(五本工程高度为 15.3m ,框架抗震等级根据 GB 50223-2008《建筑工程 抗震设防分类标准》,幼儿园、小学、中学教学楼建筑结构高度不超过 24m 的混 凝土框架的抗震等级为二级。
(六地基基础采用柱下独立基础。图 1-1 土层分布
第二章 结构选型和结构布置 第一节 结构设计 *建施图(见图纸
一、结构体系选型
(一结构体系和结构形式的分析比较
结构体系是指结构抵抗外部作用的构件组成方式。一般有框架结构体系、剪 力墙结构体系、框架--剪力墙结构体系、筒体结构体系等。
建筑结构形式,主要是以其承重结构所用的材料来划分,一般可以分为钢结构、钢筋混凝土结构、砖混结构、砖木结构等。
(二多层建筑的结构体系及选择 1.框架结构体系
框架结构是利用粱、柱组成的横、纵两个方案的框架形成的结构体系。它同 时承受竖向荷载和水平荷载。
由梁和柱这两类构件通过刚节点连接而成的结构称为框架, 当整个结构单元 所有的竖向和水平作用完全由框架承担时, 该结构体系成为框架结构体系。有钢 筋混凝土框架、钢框架和混合结构框架三类。
框架结构体系具有可以较灵活地配合建筑平面布置的优点, 利于安排需要较 大空间的建筑结构。同时框架结构的梁、柱构件易于标准化、定型化,便于采用 装配整体式结构,以缩短施工工期。
2.剪力墙结构体系
利用建筑物墙体作为承受竖向荷载和抵抗水平荷载的结构,称为剪力墙结构体 系。
3.框架--剪力墙结构体系
在框架结构中,设置部分剪力墙,使框架和剪力墙两者结合起来,取长补短,共 同抵抗水平荷载, 这就是框架-剪力墙结构体系。如果把剪力墙布置成筒体, 可 称为框架-筒体结构体系。
4.筒体结构体系
1筒中筒结构,筒体分实腹筒、框筒及桁架筒。由剪力墙围成的筒体称为 实腹筒, 在实腹筒墙体上开有规则排列的窗洞形成的开孔筒体称为框筒;筒体四 壁由竖杆和斜杆形成的衍架组成则称为衍架筒。筒中筒结构由上述筒体单元组 合,一般心腹筒在内,框筒或桁架筒在外,由内外筒共同抵抗水平力作用。
2多筒体系,成束筒及巨型框架结构。由两个以上框筒或其他筒体排列成 束状, 称为成束筒。巨形框架是利用筒体作为柱子, 在各筒体之间每隔数层用巨 型梁相连, 这样的筒体和巨型梁即形成巨型框架。这种多筒结构可更充分发挥结 构空向作用, 其刚度和强度都有很大提高, 可建造层数更多、高度更高的高层建 筑。
综合上述选择框架结构体系最宜。(三承重体系的选择
框架结构的承重方案分为以下几种: 横墙承重体系, 横墙承重体系类型的房屋的楼板、屋面板或檩条沿房屋纵向 搁置在横墙上,由横墙承重。主要楼面荷载的传递途径是:板、横墙、基础、地 基,故称为横墙承重体系。横墙承重体系的特点:1房屋的空间刚度大,整体 性好,有利于抵抗风力和水平地震作用,也有利于调整地基的不均匀沉降。2 横墙承受了大部分竖向荷载;纵墙则主要起围护、隔断和将横墙连成整体的作用, 受力比较小, 对设置门窗大小和位置的限制比较少, 建筑设计上容易满足采光和 通风的要求。3结构布置比较简单和规则,可不用梁、楼板采用预制构件,施 工比较简单方便,分项造价较低。但横墙占面积多,房间布置的灵活性差,墙体 用材比较多。横墙承重体系多用于横墙间距较密、房间开间较小的房屋, 如宿舍、招待所、住宅、办公楼等民用建筑。
纵墙承重体系,对于进深较大的房屋、楼板、屋面板或檩条铺设在梁(或屋 架上,梁(或屋架支撑在纵墙上,主要由纵墙承受竖向荷载,荷载的传递路 线为:板、梁(或屋架、纵墙、基础、地基;而对于进深不大的房屋,楼板、屋面板直接搁置在外纵墙上,竖向荷载的传递路线是:板、纵墙、基础、地基。纵墙承重体系的特点:(1纵墙是主要的承重墙。设置横墙的目的主要是为了满 足房屋空间刚度和结构整体性的要求, 间距可以相当大, 因而容易满足使用上大 空间和灵活布置平面的要求。(2由于纵墙承受的荷载比较大,一般不能任意开 设门窗洞口,采光和通风的要求往往也受限制,纵墙较厚或加壁柱。(3相对于 横墙承重体系,纵墙承重体系的横向刚度较差,楼(屋盖用料较多,而墙体用 料较少。纵墙承重体系的房屋适用于使用上要求较大空间或隔断墙位置有可能改 变的场合,多见于食堂、会堂、厂房、仓库、俱乐部、展览厅等建筑。
纵横墙承重体系, 常见的有两种情况:一种是采用现浇钢筋混凝土楼板, 另 一种是采用预制短向楼板的大房间。纵横墙承重体系特点:其开间比横墙承重体 系大, 但空间布置不如纵墙承重体系灵活, 整体刚度也介于两者之间, 墙体用材、房屋自重也介于两者之间,多用于教学楼、办公楼、医院等建筑。
本工程选择纵横墙承重体系。(四建筑材料的选择 1混凝土选择
混凝土强度等级选择时要根据混凝土结构的环境类别, 应满足混凝土耐久性 要求;若采用 HRB335钢筋,混凝土强度等级不宜低于 C20;若采用 HRB400和 RRB400钢筋以及承受重复荷载的构件, 混凝土的强度等级不得低于 C20。预 应力混凝土结构的混凝土强度等级不应低于 C30;若采用钢绞线、钢丝、热处理 钢筋作预应力钢筋,混凝土强度等级不宜低于 C40。
在抗震设计时, 现浇框架梁、柱、节点的混凝土强度等级按一级抗震等级设 计时,不应低于 C30;按二~四级和非抗震设计时,不应低于 C20。现浇框架梁 的混凝
土强度等级不宜大于 C40;框架柱的混凝土强度等级:抗震设防烈度为 9度时不宜大于 C60,抗震设防烈度为 8度时不宜大于 C70。为便于施工,梁、柱 混凝土最好采用相同强度等级,常用 C30~C40。
2钢筋选择
在结构构件中的普通纵向受力钢筋宜选用 HRB400、HRB335钢筋;箍筋宜 选用 HRB335、HRB400、HPB235钢筋。对于钢筋混凝土框架梁、柱等主要结构 构件的纵向受力钢筋,通常采用 HRB400或 HRB335钢筋,构造钢筋及箍筋可 采用 HPB235;对于钢筋混凝土板、墙等构件的受力钢筋,可采用 HPB235或 HRB335,构造钢筋采用 HPB235钢筋。
(五其他结构选型 1.屋面结构:平屋顶
2.楼面结构:整体现浇双向板肋型楼面 3.楼梯结构:选择板式楼梯 4.过梁:钢筋混凝土过梁 5.基础:采用独立基础(六材料选择
主要构件材料:框架梁、板、柱采用现浇钢筋混凝土构件;墙体采用轻质填 充砌块, 外墙装修使用乳白色涂料仿石材外墙涂料, 内墙装修喷涂乳胶漆;教室 内地面房间采用水磨石地面;教室房间墙面主要采用石棉吸音板, 门窗采用塑钢 窗和装饰木门。混凝土强度:梁、板、柱均采用 C30混凝土, 钢筋使用 HPB235, HRB335二种钢筋。
(七荷载的选择表
第二节 结构布置
一、确定计算简图
本工程框架的计算简图假定底层柱下端固定于基础, 按工程地质资料提供的 数据,查《抗震规范》可判断该场地为Ⅱ类场地土,地质条件较好,初步确定本 工程基础采用柱下独立基础,挖去所有杂填土,基础置于第二层粉质粘土层上, 基底标高为设计相对标高– 2.10 m。柱子的高度底层为:h1 = 3.9+2.1– 0.5 = 5.5 m(初步假设基础高度 0.5 m ,二~四层柱高为 h2~h4 = 3.6 m。柱节点刚接,横 梁的计算跨度取柱中心至中心间距离,三跨分别为:l = 6500、2500、6500。
二、板、梁、柱的截面确定(一现浇板厚确定
根据《混凝土结构设计规范》(GB50010-2002现浇钢筋混凝土双向板厚度 要满足以下要求:
1、现浇钢筋混凝土双向板的最小厚度不小于 80mm;
2、现浇钢筋混凝土框架结构的楼板板厚不应小于 100mm ,且双向板的板厚 不小于跨度的 1/45(简支、1/50(连续;由于本工程双向板的最长跨度为 4500mm ,计算得 4500/50=90mm,又因为板厚不小于 100mm ,再结合该建筑各 板的受力情况,选取板厚为 100mm;由于走廊恒载相对较大,但由于走廊的跨 度小所以统一取 100mm。
(二确定梁截面尺寸
梁的截面宽度不宜小于 200mm;截面高宽比不宜大于 4;净跨与截面高度之 比不宜小于 4。计算方法为: 主梁:h=(1/12~1/8 l , b=(1/2~1/3.5 ,b ≥ bc /2,≥ 250 由于横向最大跨度为 6500mm ,则: h=(1/12~1/8³6500=542mm~813mm ,取 650mm;b=(1/2~1/3.5 =217mm~325mm ,取 250mm;横向框架梁 AB 跨、CD 跨:b ³h=250mm³650mm , BC 跨:b ³h=250mm³450mm 次梁:h=(1/18~1/15 l 由于纵向最大跨度为 4500mm ,则: h=(1/18~1/12³4500=250mm~375mm ,取 600mm(取 600mm 主要考 虑窗的高度,将梁高取至窗顶便于施工。b 取 200mm;纵向连接梁:b ³ h=200mm³600mm。
梁截面尺寸初步确定:横向框架梁 AB 跨、CD 跨:b ³ h=250mm³650mm , BC 跨:b ³ h=250mm³450mm;纵向连接梁:b ³ h=200mm³600mm。(三确定柱截面尺寸
1、框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算:(1柱的轴力估计值
12.....G G S N r w S N ββ= G r :荷载综合分项系数,取 1.25;
W:框架结构重量标准值,取 13KN/ m2 S:柱承载露面面积;Ns:截面以上楼层数
1β:角柱增大系数,二级抗震取 1.3 2 β:水平力使轴力增大系数, 8度设防烈度取 1.3(2由 []G c N u f A ≤,知 G c N A f u ≥
注: []u 为框架柱轴压比限值,本方案为二级抗震等级,查《抗震规范》可 取为 0.8。
fc 为混凝土轴心抗压强度设计值,对 C30,查得 14.3N/mm2。
2、计算过程: 对于边柱: 12.....G G S N r w S N ββ==1.25³13³4.5³3.25³4³1.3³1.3=1606.56KN G c N A f u ≥
=1606.56/14.3³0.8=112346.9mm2 取 400mm ³400mm 对于角柱,其受力过程比较复杂,按要求取与边柱一样的尺寸,初选截面 尺寸为 400mm ³400mm 对于中柱: 12.....G G S N r w S N ββ==1.25³13³(1.25³4.5+4.5³3.25 ³4³1.3³ 1.3=2224.46KN
G c N A f u ≥
=2224.46/14.3³0.8=124445.3mm2 取 450mm ³450mm 各层柱截面对应相同,结构平面布置见施工图。(四各层结构布置概况 现浇板板厚:统一板厚 100mm;柱子截面尺寸:角柱、边柱按 400mm ³400mm 设置,中间柱按 450mm ³ 450mm 设置;梁截面尺寸:横向框架梁 AB 跨、CD 跨:b ³ h=250mm³650mm;BC 跨:b ³ h=250mm³450mm;纵向连接梁:b ³ h=200mm³600mm。
三、荷载计算
本工程以 5号轴线横向框架为计算分析单元。1.屋面横梁竖向线荷载标准值 恒载
屋面恒载标准值: 40厚架空隔热板 0.040³25=1kN/m2.防水层 0.4kN/m2.20厚 1:3水泥砂浆找平层 0.02³20=0.4kN/m2.100厚钢筋混凝土现浇板 0.10³25=2.5kN/m2.10厚纸筋石灰粉平顶 0.01³16=0.16kN/m2.屋面恒载标准值: 4.46kN/m 梁自重 边跨 AB、CD 跨: 0.25³0.65³25=4.063kN/m 梁侧粉刷: 2³(0.65-0.1³0.02³17=0.374kN/m 4.437kN/m 中跨 BC 跨: 0.25³0.45³25=2.81kN/m 梁侧粉刷: 2³(0.45-0.1³0.02³17=0.238kN/m 3.048kN/m 作用在顶层框架梁上的线荷载标准值: 梁自重: g 4AB1=g4CD1 =4.437kN/m, g 4BC1=3.048kN/m 板传来荷载: g 4AB2=g4CD2=4.46³4.5=20.07kN/m g 4BC2=4.46³2.5=11.15kN/m 活载
作用在顶层框架梁上的线活荷载标准值: q 4AB =q4CD =0.5³4.5=2.25kN/m q 4BC =0.5³2.5=1.25kN/m 2.楼面横梁竖向线荷载标准值
恒载
20厚水泥砂浆面层 0.02³20=0.40kN/m2 100厚钢筋混凝土现浇板 0.1³25 = 2.50kN/m2 2
楼面恒载标准值:3.092kN/m2边跨(AB , CD 跨 框架梁自重:4.437 kN/m 中跨(BC 跨 梁自重:3.048kN/m 作用在楼面层框架梁上的线恒荷载标准值为: 梁自重:g AB1 = gCD1 = 4.437kN/m g BC1 = 3.048kN/m 板传来荷载:g AB2 = gCD2 = 3.092³4.5 = 13.914kN/m g BC2 = 3.092³2.5= 7.730kN/m(2活载
楼面活载: q AB = qCD = 2.5³4.5 = 11.25kN/m q BC = 3.5³2.5 = 8.75kN/m
图 2-1 恒载顶层集中力(1恒载
边跨连系梁自重:0.20³0.60³4.5³25 = 13.50kN 粉刷:2³(0.60-0.1³0.02³4.5³17 = 1.53kN 0.9m 高女儿墙:0.9³4.5³3.6 = 14.58 kN 粉刷:0.9³2³0.02³4.5³17 = 2.75 kN 连系梁传来屋面自重:0.5³4.5³0.5³4.5³4.46= 22.58kN 顶层边节点集中荷载:G 4A = G4D = 54.94kN 中柱连系梁自重 :0.20³0.60³4.5³25 = 13.50kN 粉刷:2³(0.60-0.10³0.02³4.5³17 = 1.53kN 连系梁传来屋面自重 :0.5³4.5³0.5³4.5³4.46 = 22.58kN 0.5³(4.5+4.5-2.5³2.5/2³4.46= 18.12kN
顶层中节点集中荷载:G 4B = G4C = 55.73kN(2活载: Q A4 = Q4D = 1/2³4.5³1/2³4.5³0.5 = 2.53kN Q 4B =Q4C =1/2³4.5³1/2³4.5³0.5+1/2³(4.5+4.5-2.5³2.5/2³0.5=4.56kN 楼面框架节点集中荷载标准值(图 2-2
图 2-2 恒载中间层结点集中力(1恒载: 边柱连系梁自重 13.50kN 粉刷:1.47kN 连系梁传来楼面自重:1/2³4.5³1/2³4.5³3.092 = 15.65kN 中间层边节点集中荷载: G A = GD = 30.62kN 框架柱自重: G A ’ = GD ’ = 0.4³0.4³3.6³25 = 14.4 kN 中柱连系梁自重: 13.50 kN 粉刷: 1.47 kN 连系梁传来楼面自重: 1/2³4.5³1/2³4.5³3.092 = 15.56 kN 1/2³(4.5+4.5-2.5³2.5/2³3.092 = 12.56kN 43.09kN 中间层中节点集中荷载: G B = Gc =43.09kN 柱传来集中荷载: G B ’ = Gc’ =18.23kN(2活载:
Q A = QD = 1/2³4.5³1/2³4.5³2.5=12.66kN Q B =QC = 1/2³4.5³1/2³4.5³2.5+1/2³(4.5+4.5-2.5³2.5/2³3.5= 26.87kN 5.风荷载
已知基本风压 W 0 =0.35kN/m2,本工程为市郊中学,地面粗糙度属 C 类,按 荷载规范
o z s z k W W μμβ=。风载体型系数 s μ:迎风面为 0.8,背风面为– 0.5;因结构高度 H = 15.6m< 30m , H/B=15.6/15.5=1<1.5;故取风振系数 0.1=βz ,计算过程如表 2-1所示, 风荷载图见图 2-3。
图 2-3 横向框架上的风荷载 风荷载计算 2-1
6.地震作用 建筑物总重力荷载代表值 G i 的计算(a 集中于屋盖处的质点重力荷载代表值 G 4: 50%雪载:0.5³0.25³15.5³45 = 87.19 kN 层面恒载:4.46³45³6.5³2+4.46³45³2.5 = 3110.85 kN 横梁:(4.437³6.5³2+3.048³2.5³11 = 718.31 kN 纵梁:(13.50+1.47³10³4= 598.8kN 女儿墙:0.9³3.6³(45+15.5³2 = 392.04 kN 柱重:0.4³0.4³25³1.8³26+0.45³0.45³25³1.8³18 = 351.23 kN 横墙:3.6³[15³6.5³1.8+(2.5³1.8-2³2.1/2³2] = 646.2 kN 纵墙:(4.5³1.8-3³2.1/2³20³3.6+4.5³1.8³3.6³18= 881.28 kN(忽略内纵墙的门窗按墙重量算
钢窗:20³3³2.1³1/2³0.4 = 25.2 kN G 4 = 6811.1 kN(b 集中于三、四层处的质点重力荷载代表值 G 3~G 2 50%楼面活载:0.5³2.5³15.5³45 =871.9 kN 楼面恒载:3.092³45³6.5³2+3.092³45³2.5 =2156.67 kN 横梁:718.31 kN 纵梁:598.8 kN 柱重:351.23³2 = 702.46 kN 横墙:646.2³2 = 1292.4 kN 纵墙:881.28³2 = 1762.56 kN 钢窗:25.2³2 = 50.4 kN G 3 = G2 = 8153.5kN(c 集中于二层处的质点重力荷载标准值 G 1 50%楼面活载:871.9 kN 楼面恒载:2156.67kN 横梁:718.31 kN 纵梁:598.8 kN 柱重:0.45³0.45³25³(2.75+1.8³18+0.4³0.4³25 ³(2.75+1.8³26= 887.82 kN
横墙:646.2+646.2³1.95/1.8 = 1346.25 kN 纵墙:881.28+881.28³1.95/1.8 = 1836kN 钢窗:25.2³2 = 50.4 kN G 1 = 8466.15 kN 2 地震作用计算:(1框架柱的抗侧移刚度
在计算梁、柱线刚度时,应考虑楼盖对框架梁的影响,在现浇楼盖中,中框 架梁的抗弯惯性矩取 I = 2I0;边框架梁取 I = 1.5I0;在装配整体式楼盖中,中框 架梁的抗弯惯性矩取 I = 1.5I 0;边框架梁取 I = 1.2I0, I 0为框架梁按矩形截面计算 的截面惯性矩。横梁、柱线刚度见表 2-2: 横梁、柱线刚度 2-2
每层框架柱总的抗侧移刚度见表 2-3: 框架柱横向侧移刚度 D 值 2-3
ic:梁的线刚度, iz :柱的线刚度。
底层:∑ D = 4³(3.31+3.77 +18³(3.54+5.86 = 197.52 kN/mm 二~四层: ∑ D = 4³(8.71+11.18 +18³(9.86+16.63= 556.38 kN/mm(2框架自振周期的计算
框架顶点假想水平位移 Δ计算表 2-4
0:(考虑结构非承重砖墙影响的折减系数,对于框架取 0.6 则自振周期为: T 1=1.70a³0.6=0.5s(3地震作用计算
根据本工程设防烈度
8、Ⅱ类场地土, 设计地震分组为第一组, 查 GB 50011 2010《建筑抗震设计规范》中表 5.1-4-2,得特征周期 T g = 0.35 sec ,表 5.3.2得 amax= 0.16。
a 1=(Tg /T1 0.9 a max =(0.35/0.50.9³0.16=0.116 结构等效总重力荷载: Geq=0.85GL =0.85³31584.25=26846.61kN T 1>1.4Tg = 1.4³0.35 = 0.49 sec 故需考虑框架顶部附加集中力作用
查表 5.2.1得: δn =0.08T 1+0.07=0.08³0.5+0.07=0.11 框架横向水平地震作用标准值为: 结构底部: F EK =a 1G eq =0.116³26846.61=3114.21kN ∑ G i H i =335331.06
ΔFn=δn ³F EK =0.11³3114.21=342.56kN
各楼层的地震作用和地震剪力标准值由表 2-5计算列出 , 图见 2-4
图 2-4 横向框架上的地震作用
楼层地震作用和地震剪力标准值计算表 2-5
6第三章 框架内力计算 第一节 荷载作用下的框架内力
一、恒载作用下的框架内力 1.弯矩分配系数
计算弯矩分配系数根据上面的原则, 可计算出本例横向框架各杆件的杆端弯 矩分配系数,由于该框架为对称结构,取框架的一半进行简化计算,如图 3-1。
节点 A1: 10 10440.2931.172A A A A S i ==⨯= 1111 441.3335.332A B A B S i ==⨯= 121244 0.4481.792A A A A S i ==⨯=(相对线刚度见表 2-2(40.2931.3330.44842.074A
S =++=⨯∑ 10101.172 0.141 4(0.2931.3330.448 A A A A A S S μ===++ 11115.332 0.643 40.2931.3330.448A B A B A S S μ===++ 12121.792 0.216 40.2931.3330.448A A A A A S S μ===++ 节点 B1: 121221.1522.304B D B D S i ==⨯=(40.293 1.333 0.448 21.152
A S =+++⨯∑ 111.3334 0.503 40.2931.3330.44821.152 B A μ⨯==+++⨯ 120.4484 0.169 40.2931.3330.44821.152 B B μ⨯==+++⨯ 111.1522 0.217 40.2931.3330.44821.152 B D μ⨯==+++⨯ 100.2934 0.111 40.2931.3330.44821.152 B B μ⨯==+++⨯ 节点 A2: 21230.4484 0.201 0.4481.3330.4484A A A A μμ⨯===++⨯ 221.3334 0.598 0.4481.3330.4484
A B μ⨯==++⨯节点 B2: 221.3334 0.475 1.3330.4480.44841.1522 B A μ⨯==++⨯+⨯ 21230.4484 0.1601.3330.4480.44841.1522B B B B μμ⨯===++⨯+⨯ 221.1522 0.2051.3330.4480.44841.1522 B D μ⨯= =++⨯+⨯ 节点 A4: 441.3334 0.748 1.3330.4484 A B μ⨯==+⨯ 430.4484
0.252 1.3330.4484 A A μ⨯==+⨯ 节点 B4: 441.3334 0.5661.15220.4481.3334 B A μ⨯==⨯++⨯ 430.4484 0.1901.15220.4481.3334B B μ⨯==⨯++⨯ 441.1522 0.2441.15220.4481.3334 B D μ⨯= =⨯++⨯
A3、B3与相应的 A2、B2相同。2.杆件固端弯矩
计算杆件固端弯矩时应带符号, 杆端弯矩一律以顺时针方向为正, 如图 3-1。图 3-1 杆端及节点弯矩正方向(1横梁固端弯矩: 1顶层横梁 自重作用: 22 4444114.4376.515.621212 A B B A ql kN m
=-=-=-⨯⨯=-⋅ 22 44113.0481.251.5933 B D ql kN m =-=-⨯⨯=-⋅44441/20.795D B B D kN m ==-⋅ 板传来的恒载作用: 32 2234444222331(12// 12 1 20.076.5(122.25/6.52.25/6.5 56.6612 A B B A ql a l a l kN m =-=--+=-⨯⨯-⨯+=-⋅
22445/965/9611.152.53.63B D ql kN m =-=-⨯⨯=-⋅ 2244 1/321/3211.152.52.18D B ql kN m =-=-⨯⨯=-⋅ 2二~四层横梁 自重作用: 22
1111114.4376.515.621212 A B B A ql kN m =-=-=-⨯⨯=-⋅ 22 11113.0481.251.5933 B D ql kN m =-=-⨯⨯=-⋅ 11111/20.795D B B D kN m ==-⋅ 板传来的恒载作用: 32223 11111(12// 12 A B B A ql a l a l =-=--+ 22233 113.9146.5(122.25/6.52.25/6.5 39.2812kN m =-⨯⨯-⨯+=-⋅ 22115/965/967.732.52.52B D ql kN m =-=-⨯⨯=-⋅ 2211 1/321/327.732.51.51D B ql kN m =-=-⨯⨯=-⋅
(2 纵梁引起柱端附加弯矩:(本例中边框架纵梁偏向外侧, 中框架纵梁偏 向内侧 顶层外纵梁 4 4 54.940.15.494A D M M kN m =-=⨯=⋅(逆时针为正
楼层外纵梁 1130.620.13.062A D M M kN m =-=⨯=⋅ 顶层中纵梁 4455.730.15.573B C M M kN m =-=-⨯=-⋅
楼层中纵梁 1143.090.14.309B C M M kN m =-=-⨯=-⋅ 3.节点不平衡弯矩
横向框架的节点不平衡弯矩为通过该节点的各杆件(不包括纵向框架梁 在 节点处的固端弯矩与通过该节点的纵梁引起柱端横向附加弯矩之和, 根据平衡原 则, 节点弯矩的正方向与杆端弯矩方向相反, 一律以逆时针方向为正, 如图 3-1。节点 A4的不平衡弯矩: 44415.6256.665.49466.786A B A M M kN m +=--+=-⋅纵梁 本例计算的横向框架的节点不平衡弯矩如图 3-3。
图 3-2 横向框架承担的恒载
图 3-3 节点不平衡弯矩4.内力计算
根据对称原则,只计算 AB、BC 跨。在进行弯矩分配时,应将节点不平衡 弯矩反号后再进行杆件弯矩分配。
节点弯矩使相交于该节点杆件的近端产生弯矩, 同时也使各杆件的远端产生 弯矩,近端产生的弯矩通过节点弯矩分配确定, 远端产生的弯矩由传递系数 C(近端弯矩与远端弯矩的比值确定。传递系数与杆件远端的约束形式有关。
恒载弯矩分配过程如图 3-4,恒载作用下弯矩见图 3-5,梁剪力、柱轴力见 图 3-6。
根据所求出的梁端弯矩, 再通过平衡条件, 即可求出恒载作用下梁剪力、柱 轴力,结果见表 3-
1、表 3-
2、表 3-
3、表 3-4。
AB 跨梁端剪力(kN 表 3-1
恒载作用下的弯矩分配
上柱 下柱 右梁 左梁 上柱 下柱 右梁
-2.975 15.00 5.19 17.22-2.305 9.53 1.22 8.46-2.305 9.53 1.61 8.84-2.305 10.09 2.81 10.60 A B 图 3-4 恒载弯矩分配过程
图 3-5 恒载作用下弯矩图(kN.m AB 跨跨中弯矩(kN.m 表 3-3
图 3-6 恒载作用下梁剪力、柱轴力(kN 柱轴力(kN 表 3-4
二、活载作用下的框架内力
注意:各不利荷载布置时计算简图不一定是对称形式, 为方便,近似采用对 称结构对称荷载形式简化计算。1.梁固端弯矩:(1顶层: 32 22344441(12// 12 A B B A ql a l a l =-=--+ 22 23 3 1 2.256.5(1 2 2.25/6.52.25/6.5 6.352 12 kN m =-⨯⨯-⨯+=-⋅
22445/965/961.252.50.407B D ql kN m =-=-⨯⨯=-⋅ 22441/321/321.252.50.244D B ql kN m =-=-⨯⨯=-⋅(2二~四层横梁:
2231111222331(12// 12 1 11.256.5(122.25/6.52.25/6.5 31.7612 A B B A ql a l a l kN m =-=--+=-⨯⨯-⨯+=-⋅
22115/965/968.752.52.848B D ql kN m =-=-⨯⨯=-⋅ 22111/321/328.752.51.709D B ql kN m =-=-⨯⨯=-⋅
2.纵梁偏心引起柱端附加弯矩 :(本例中边框架纵梁偏向外侧,中框架纵梁 偏向内侧 顶层外纵梁 442.530.10.253..A D M M kN m =-=⨯=(逆时针为正
楼层外纵梁 1112.660.11.266.A D M M kN m =-=⨯= 顶层中纵梁 44444.560.10.456.2.030.10.203.(B C B C M M kN m M M kN m BC =-=-⨯=-=-=-⨯=-仅 跨作用活载时
楼层中纵梁 111126.870.12.687.14.220.11.422.B C B C M M kN m M M kN m BC =-=-⨯=-=-=-⨯=-(仅 跨作用活载时 3.各节点不平衡弯矩: 当 AB 跨布置活载时: 44446.3520.2536.099A A B A M kN m =+=-+=-⋅
12311131.761.26630.494A A A A B A M M M kN m ===+=-+=-⋅
44446.3520.2536.099B B A B M kN m =+=-=⋅ 12311131.761.26630.494B B B B A B M M M kN m ===+=-=⋅
当 BC 跨布置活载时: 44440.4070.2030.610B B D B M kN m =+=--=-⋅ 1231112.8481.4224.27B B B B D B M M M kN m ===+=--=-⋅
当 AB 跨和 BC 跨均布置活载时: 44446.3520.2536.099A A B A M kN m =+=-+=-⋅ 12311131.761.26630.494A A A A B A M M M kN m ===+=-+=-⋅ 4444446.3520.4560.4075.489B B A B B D M kN m =++=--=⋅ 1231111131.762.6872.84826.225B B B B A B B D M M M kN m ===++=--=⋅
4.框架活载的不利布置
活荷载为可变荷载, 应按其最不利位置确定框架梁、柱计算截面的最不利内 力。竖向活荷载最不利布置原则:(1 求某跨跨中最大正弯矩——本层同连续梁(本跨布置, 其它隔跨布置 , 其它按同跨隔层布置(图 3-a;(2求某跨梁端最大负弯矩——本层同连续梁(本跨及相邻跨布置,其它 隔跨布置 ,相邻层与横梁同跨的及远的邻跨布置活荷载,其它按同跨隔层布置(图 3-b;(3求某柱柱顶左侧及柱底右侧受拉最大弯矩——该柱右侧跨的上、下邻 层横梁布置活荷载,然后隔跨布置,其它层按同跨隔层布置(图 3-c;当活荷载作用相对较小时, 常先按满布活荷载计算内力, 然后对计算内力进 行调整的近似简化法,调整系数:跨中弯矩 1.1~1.2,支座弯矩 1.0。
本工程考虑如下四种最不利组合:(a顶层边跨梁跨中弯矩最大,图 3-7;
(b顶层边柱柱顶左侧及柱底右侧受拉最大弯矩,如图 3-8;(c顶层边跨梁梁端最大负弯矩,图 3-9:(d活载满跨布置,图 3-10。
(a(b(c 图 :3-竖向活荷载最不利布置 5.内力计算: 本工程采用“弯矩二次分配法”计算 具体计算步骤:
1根据各杆件的线刚度计算各节点的杆端弯矩分配系数,并计算竖向荷载 作用下各跨梁的固端弯矩。
2计算框架各节点的不平衡弯矩,并对所有节点的不平衡弯矩同时进行第 一次分配(其间不进行弯矩传递。
3将所有杆端的分配弯矩同时向其远端传递(对于刚接框架,传递系数均 取 1/2。
4将各节点因传递弯矩而产生的新的不平衡弯矩进行第二次分配,使各节 点处于平衡状态。至此,整个弯矩分配和传递过程即告结束。
5将各杆端的固端弯矩、分配弯矩和传递弯矩叠加,即得各杆端弯矩。活载(1 作用下弯矩二次分配过程如图 3-11, 梁弯矩、剪力、轴力如图 3-
12、图 3-13。
活载(2 作用下弯矩二次分配过程如图 3-14, 梁弯矩、剪力、轴力如图 3-
15、图 3-16。
活载(3 作用下弯矩二次分配过程如图 3-17, 梁弯矩、剪力、轴力如图 3-
18、图 3-19。
活载(4 作用下弯矩二次分配过程如图 3-20, 梁弯矩、剪力、轴力如图 3-
21、图 3-22。
根据所求出的梁端弯矩,再通过平衡条件,即可求出的活载作用下梁剪力、柱轴力,结果见表 3-5~表 3-20。
图 3-7 活载不利布置 1
图 3-8 活载不利布置 2
图 3-9 活载不利布置 3
图 3-10 活载不利布置 4 活载 1作用下的弯矩分配
上柱 下柱 右梁 左梁 上柱 下柱 右梁
1.49 0.64 2.13-1.709-0.88-0.62-3.21 6.25 2.01 8.26-1.709-0.93-0.53-3.17 A B 图 3-11 活载(1弯矩分配过程
活载(1作用下 AB 跨梁端剪力 表 3-5
活载(1作用下 BC 跨梁端剪力 表 3-6 活载(1作用下 AB 跨跨中弯矩(kN.m 表 3-7
活载(1作用下柱轴力 表 3-8图 3-12 活载(1弯矩图(kN.m
图 3-13 活载(1剪力、轴力(kN活载 2作用下的弯矩分配
上柱 下柱 右梁 左梁 上柱 下柱 右梁
1.49-0.04 1.45 6.25 1.82 8.07-1.709-0.88-1.03-3.62 6.62 2.20 8.82 A B 图 3-14 活载(2弯矩分配过程
435363738-
活载(3作用下 AB 跨梁端剪力 表 3-13
活载(3作用下 BC 跨梁端剪力 表 3-14 活载(3 作用下 AB 跨跨中弯矩(kN.m 表 3-15
第二篇:本科毕业设计-高层建筑结构设计计算书
多层教学楼设计
本科毕业论文(设计)
题
目 多层教学楼
学生姓名
马乐 专业名称
土木工程
指导教师
郭波
2006年05月20日
多层教学楼设计
目 录
第一部分:设计总说明 摘要
1、建筑设计………………………………………………………6 1.1 建筑说明 1.2 方案设计 1.3建筑材料及做法
2、结构设计………………………………………………………7 2.1 结构说明 2.2 结构计算
2.2.1风荷载作用
2.2.2竖向荷载作用(恒载及活载)2.2.3 内力组合 2.2.4 配筋计算 2.3现浇板式楼梯设计 2.4 现浇厕所楼面板设计 2.5 基础设计
3、设计总结„„„„„„„„„„„„„„„„„„„„„„„„„„ 13
多层教学楼设计
多层教学楼设计
[ 马乐 土木建筑工程系 湖北省孝感学院 432100 ] [摘要]:本设计为某多层教学楼工程设计的整体过程。按照设计任务书依据现行《建筑设计规范》和《结构设计规范》,完成本设计。设计分为建筑设计和结构设计两大部分。建筑部分包括建筑设计要点、建筑平面设计、立面设计和剖面设计等。结构设计选择钢筋混凝土框架结构中的一榀框架进行设计计算,主要包括结构选型(包括楼板、屋面板、楼梯等);结构布置方案;选用有代表性的单元确定计算简图、导算荷载、进行内力分析和内力组合,对构件进行截面配筋设计;根据工程地质资料,对基础进行设计;用结构分析软件(PKPM)进行验算,并对手算和电算结果进行比较分析。最后完成了建筑平面图、结构布置图、梁柱配筋图、基础计算等。
[关键词]:建筑设计
结构设计
框架结构
[Abstract]:This design is for the whole of engineering design of teaching building.According to design specifications, according to the current《design specification of the building》and 《design specification of the structure》,I finish the designing.Design include two major parts of architectural design and structural design, The part of building including architectural design main point, planar design of the building, elevation is designed and designed etc.I choose one of reinforced concrete frame structure to design, it mainly includes the selection of structure(includes floor, roof board, stair, etc.);Layout of structure;I select the representative unit to confirm sketch of calculating, Compute its load and carry on internal force analysis and cabinet;According to the geological materials of the project, I design the foundation;go on checking with structure software(PKPM), and carry on checking by comparing manpower calculating and computer calculating.Finally, I finished structural plans, a table of beams and columns ,a footing plan and pile foundation drawing.[Key words]:Building construction design
Structure design
Frame structure
多层教学楼设计
1、建筑设计
1.1 建筑说明
本工程为拟建某多层教学楼,该工程最高处为五层,普通教室,办公室,会议室层高均为3.6m,并带有阶梯教室(两层),层高4.8m。总建筑面积约为4921m2按任务书要求通过查找资料,基本风压为0.35KN/m2,基本雪压为0.50 KN/m2,该教学楼位于抗震设防烈度为6度的区域,设计基本地震加速度为0.10g,由于为六度设防烈度,无须进行计算,由规范要求进行构造抗震设计即可.
1.2 方案设计
1.2.1根据地形地貌,设施布置,建筑物在基地上的位置、标高、道路绿化及其他说明,去考虑方案设计。从而很好的把握方案的经济性、合理性。
方案比较
方案一:建筑平面为U型。U形建筑具有造型简单、美观、采光通风较好,有利于教室平面灵活布置等优点。由于其转折处可以灵活设置,可以避开设置伸缩缝的限制,另外可以根据大小教室对建筑面积的不同要求,各段采用不同的平面布置,有利于柱网的布置。
方案二:建筑平面为矩形。满足平面力求简单,规则,本方案既可避免设缝。但由于其采用内廊式,走廊的采光不容易满足,在大小教室的平面布置上不够灵活,对结构简单要求较高。
综上所述,方案一的平面布局较为合理,结构设计简单,传力明确,施工方便,较方案二要合理。因此,选择方案一为本次设计方案。
根据设计任务书所给资料,结构型式选用框架结构。本多层框架结构教学楼采用外廊悬挑式柱网布置,考虑到走廊长度大于40m,两面布置房间时,走廊最小净宽度为1.8m,所以走廊的跨度取为2.1m,房间的开间和进深采用3.6m,7.2m;3m,10.2m和4.2m,7.8m。采用三部楼梯,楼梯开间均为4.2m,考虑到阶梯教室与普通教室的标高不同,在走廊连接处设轻质踏步,以实现两者之间的交通联系。根据武汉地区的气候条件,内外墙均采用240厚。
该教学楼为满足不同的教学要求,设置了大小教室以及阶梯教室。根据其他
多层教学楼设计
使用功能的要求,首层设有门厅、门卫室,各层还设有休息室、办公室、男女卫生间等。
1.2.2 该教学楼在建筑立面上采用较大而明亮的玻璃窗,走廊两侧均设置窗户,有效的满足了采光的要求,同时又表现出简洁现代感,还增加了立面的美观效果。建筑立面和竖向剖面上力求规则,避免立面凹进或突出,使结构的侧向刚度变化均匀。为了丰富立面,外墙层高处设装饰线,底层从-0.450标高往上至0标高做天然石材饰面。室外台阶采用花岗岩贴面。在排水方面由于屋面宽度不大,采用单面有组织排水,落水管采用直径为100PVC落水管。在剖面上,主要反映建筑物在垂直方向上各部分的组合关系。考虑室内外采光通风,窗台取900mm高。
1.3建筑材料及做法
1.3.1墙体:内外墙均采用240厚砌体,防潮层设在相对标高-0.050m处,做法是1:2水泥砂浆掺2%防水剂20厚。
1.3.2 门窗:底层外门均采用铝合金门,建筑内部门采用木门,所有窗户均采用铝合金推拉窗,凡木料与砌体结构接触部位均应涂满防腐水柏油二度。
1.3.3楼地面做法:见中南地区建筑图集。1.3.4 散水做法:水泥砂浆散水宽600mm。
1.3.5 落水管及雨水口:屋面雨水口做法见中南地区建筑图集;落水管材料采用直径为100PVC落水管。
1.3.6 挑出墙面的雨篷等构件:凡未特别注明者,其上部粉1:2水泥砂浆,并找1%挑水坡,其下部粉1:2水泥砂浆15厚刷白色106涂料,并做滴水线30宽。
2、结构设计
2.1 结构说明
本设计为五层框架结构(阶梯教室部分为两层,层高4.8米),建筑物总高度为18.45m,抗震设防烈度为6度,设计基本地震加速度为0.10g,结构安全等级为二级,结构正常使用年限为50年。室内设计标高为±0.000,相对于绝对标高0.450m,室内外高差450mm。建筑物的耐火等级为二级。图纸中标高以米,尺寸以毫米计。由于建筑物总长度为47.4m,满足《混凝土规范》GB50010-2002
多层教学楼设计
第9.1.1条伸缩缝最大间距55m要求。在结构设计计算中,首先进行结构选型和结构布置,确定承重体系。在计算荷载之前,根据设计经验初了估梁、柱截面尺寸,并进行了验算。
2.2 结构计算
在结构设计计算中,首先进行结构选型〔采用横向承重体系,以增大结构的横向刚度〕和结构布置,确定承重体系。在计算荷载之前,根据设计经验初估梁、柱截面尺寸,并进行验算。
2.2.1地震作用
因该地区地震6度设防,所以地震作用影响很小,采用一般结构上设防即可。2.2.2 风荷载作用
根据负荷面积宽度,将风荷载换算成作用于框架每层节点上的集中荷载,运用D值法,求出柱上下端弯矩,通过节点平衡得出梁端弯矩,由此得到水平风载作用下梁柱弯矩和梁端剪力和柱轴力。
2.2.3 竖向荷载作用(恒载及活载)
在计算单元范围内的纵向框架梁的自重、纵向墙体的自重以集中力的形式作用在各节点上。竖向荷载作用下框架的内力采用弯矩二次分配法计算。梁端和柱端弯矩计算之后,梁端剪力可根据梁上竖向荷载引起的剪力和梁端弯矩引起的剪力相叠加而得到;柱轴力可由梁端剪力和节点集中荷载叠加得到。
2.2.4 内力组合
根据结构类型、地震设防烈度、房屋高度等因素,由《抗震规范》确定该框架结构抗震等级为三级。梁的内力组合:根据《结构规范》和《抗震规范》考虑三种内力组合形式:
(1)1.2SGk+1.4SQk(2)1.2SGk+0.9×1.4×(SQk+SFk)(3)1.35SGk+0.7×1.4(SQk+SFk)在进行柱的内力组合时,须根据柱可能出现的最不利荷载分别进行组合、配筋。这三种组合形式为: ① ︱M︱max及相应的N、V; ② Nmax及相应的M、V;
多层教学楼设计
③ Nmin及相应的M、V。2.2.5 配筋计算
由于本工程按6度设防区设计,因此进行了抗震设计,形成延性框架结构。其设计原则是:“强柱弱梁、强剪弱弯、强节点弱构件”。
梁、柱配筋计算
框架梁按弹性理论设计,以求得的最不利内力值为控制值。对框架梁进行正截面受弯承载力计算时,跨内按T形截面计算,应满足受弯构件最小配筋率的要求。斜截面受剪承载力计算包括:截面尺寸的复核、腹筋计算和最小配箍率验算。按照框架结构的合理破坏形式,在梁端出现塑性是允许的,为了便于浇捣混凝土,也往往希望节点处负钢筋放得少些。因此,对于现浇框架,可取弯矩调幅系数为0.8-0.9。必须指出,我国有关规范规定,弯矩调幅只对竖向荷载作用下的内力进行,即水平荷载作用下产生的弯矩不参加调幅,因此,弯矩调幅应在内力组合之前进行。根据纵向构造钢筋〔腰筋〕的有关规定:当梁的腹板高度大于450mm,在梁的两侧面应沿高度配置纵向构造钢筋,其间距不宜大于200mm。对于悬臂梁中,有不少于两根上部钢筋伸至悬臂梁外端,并向下弯折不小于12d;其余钢筋不应在梁的上部截断,而应按规定的弯起点位置向下弯折,并在梁的下边锚固,弯终点外的锚固长度在受压区不应小于10d,在受拉区不应小于且不小于20d〔d为受拉钢筋直径〕。
框架柱的内力控制值取值,应预先判断大小偏心。试验表明,小偏心受压情况下,随着轴向压力的增加,正截面受弯承载力随之减小,但在大偏心受压情况下,轴向压力的存在反而使构件正截面的受弯承载力提高。在界限破坏时,正截面受弯承载力达到最大值。因此,当为大偏心时,应取弯矩较大,轴力较小;当为小偏心时,应取弯矩较大,轴力较大。根据此原则,可确定出所需最大钢筋面积。除此之外,框架柱全部纵筋的配筋率不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。轴心受压构件的纵向受力钢筋应沿截面的四周均匀放置,钢筋根数不得少于4根,钢筋直径不宜小于12mm,通常在16至32mm 范围内选用。为了减少钢筋在施工时可能产生的纵向弯曲,宜采用较粗的钢筋。从经济、施工以及受力性能等方面来考虑,全部纵筋配筋率不宜超过5%。平面框架柱的平面外稳定按轴心受压构件验算。梁与柱为刚接的钢筋混凝土框架柱,其计算长
多层教学楼设计
度应根据框架不同的侧向约束条件及荷载情况确定。对于有侧移的全现浇框架结构,柱的计算长度可取底层柱为1.0H,其他层柱取1.25H〔H为柱所在层的框架结构层高〕。
2.3 基础设计
根据地质报告,本工程所在地地质情况良好,第二层作为持力层,其地基承载力达到200Kpa,因此在框架部分选用柱下独立基础。基础埋置深度的大小,对于建筑物的安全和正常使用、基础施工技术措施、施工工期和工程造价等影响很大,因此,确定基础埋置深度是基础设计工作中的重要环节。本工程在设计时综合考虑建筑物自身条件以及所处的环境〔例如,应注意地下水的埋藏条件和动态〕。从实际出发,在满足地基稳定和变形要求的前提下,以基础宜浅埋的原则,合理选择基础埋置深度〔除岩石地基外,基础埋深不宜小于0.5m〕。根据第一层为素填土,土质松软,结构不均,厚0.4-1.0m;第二层为粘土,属中偏高强度中偏低压缩性土层,可作天然地基,厚2.5-3.5m,本工程的基础埋深设为1.5m。选择基础材料,根据计算确定基础高度为1.0m,从下至上分两层,每阶高度为350mm,250mm。基础埋深1.5m,高度0.6m,根据上部结构传来的内力值,初估基底面积,然后进行冲切验算和底板配筋。
2.4 现浇厕所楼面板、上人孔处屋面板设计
根据所设计房间区格的长边与短边之比,确定是单向板还是双向析(长边与短边之比大于2,属于单向板;长边与短边之比小于2,属于双向板。)按照不同的计算理论和方法,分别进行控制截面配筋计算。
2.5 现浇板式楼梯设计
根据建筑要求和施工条件,本工程中采用现浇板式楼梯,并根据建筑类别确定楼梯的活荷载标准值后,分别对楼梯梯段板、平台板、平台梁进行控制截面的配筋计算。
采用板式楼梯,具有下表面平整,施工支模较为方便,外观比较轻巧等优点。梯段板、平台和平台梁组成,对于梯段板和平台板〔设计成单向板〕都取1m 的单元进行计算,对于平台梁的设计与一般梁设计相似。斜板厚约为梯段板水平长度的1/25至1/30,本设计采用约为1/30的梯段板水平长度。
考虑到楼梯与平台梁整浇,平台对斜板的转动变形有一定的约束作用,故计
多层教学楼设计
算板的跨中正弯矩时,近似取Mmax=PLn 2/10。为避免斜板在支座处产生过大的裂缝,应在板面配置一定数量的钢筋,一般取ø8@200,长度为Ln/4。斜板内分布钢筋可采用ø6或ø8,每级踏步不少于1根,放置在受力钢筋内侧,最大间距300mm。2.6 雨篷设计
本工程中雨篷设计成板式雨篷,框架纵梁兼作雨篷梁。雨篷计算包括三个内容:a.雨篷板的正截面承载力计算;b.雨篷梁在弯矩、剪力、扭矩共同作用下的承载力计算;c.雨篷抗倾覆验算,之后进行配筋设计。由于雨篷梁与框架整浇,故无须进行抗倾覆验算 设计总结
经过两个多月的辛苦劳作,在指导老师耐心、兢兢业业的指导下,我的毕业设计终于顺利完成了。这次设计是我们在大学四年学习中最大,最完整的一次设计。本次设计不仅是对我们所学知识的全面检查,更是提高了我们运用理论知识解决实际问题的能力。
本次设计我最大的体会就是将四年所学的大部分知识串联起来,对专业知识全面复习一遍,同时也巩固了所学知识,深有成就感。
由于时间较短,设计不太全面,不足之处在所难免,恳请老师批评指正。在此,对老师们的热情指导深表感谢,并致以崇高的敬意!
参 考 资 料:
[1].《建筑结构抗震设计》东南大学编著、清华大学主审。北京:中国建筑工业出版社,1998 [2].《建筑结构制图标准》(GB/T50001-2001)中华人民共和国建设部。2002.3.1 [3].《建筑结构荷载规范》(GB5009-2001)中华人民共和国建设部。2002.3.1 [4].《混凝土结构设计规范》(GB50010-2002)中华人民共和国建设部。2002.4.1 [5].《建筑抗震设计规范》(GB50011-2001)中华人民共和国建设部。2002.1.1 [6].《建筑地基基础》吴湘兴主编。华南理工大学出版社,2002.7 [7].《混凝土结构》上册、中册,第二版,天津大学、同济大学、东南大学主编,清华大学主审。北京:中国建筑工业出版社,1998 [8].《房屋建筑学》第三版,同济大学、西安建筑科技大学、东南大学、重庆建筑大学编,北京:中国建筑工业出版社,1997
多层教学楼设计
[9].《建筑类专业外语》之建筑工程,第三册,王翰邦、刘文瑛主编,北京:中国建筑工业出版社,1997 [10].《建筑工程制图》第三版,同济大学建筑制图教研室,陈文斌、章金良主编,上海:同济大学出版社,1996 [11].《结构力学》上册,第四版,湖南大学结构力学教研室编,北京:高等教育出版社,1998 [12].《土木工程专业英语》,段兵廷主编,武汉:武汉工业大学出版社,2001 [13].《高等学校建筑工程专业毕业设计指导》,沈蒲生、苏三庆主编,北京:中国建筑工业出版社,2000、6 [14].《土木工程专业毕业设计指导》,梁兴文、史庆轩主编,北京:科学出版社,2002 [15].《建筑结构荷载规范》,02—1—10发布,02—3—1实施中华人民共和国建设部主编,北京:中国建筑工业出版社,2002 [16].《混凝土结构设计规范》,02—2—20发布,02—4—1实施,中华人民共和国建设部主编,北京:中国建筑工业出版社,2002
第三篇:某设备间结构设计计算书(范文)
纳滤间
结
构
计
算
书
计算:
校核:
二〇一一年八月
一、设计依据
1、主要设计规范:
《建筑结构可靠度设计统一标准》•
《建筑结构荷载规范(2006年版)•》《混凝土结构设计规范》•
《砌体结构设计规范》•
GB50068-2001 GB50009-2001 GB50010-2010 GB50003-2001 GB50007-2002 GB50011-2010 GB50032-2003
《建筑地基基础设计规范》•
《建筑抗震设计规范》•
《室外给水排水和煤气热力工程抗震设计规范》 •
2、地质勘察报告:
《凯里市炉山循环经济区一般工业固体废物填埋场工程岩土工程勘察报告》
3、其它设计依据:
•工艺、建筑以及电气等各专业提供的设计资料配合单。
二、设计原则与条件:
1、设计原则:
根据现行有关规范规定,本工程抗震设防及安全等级如下: •建、构筑物设计基本使用年限•抗震设防烈度
50年 6度 丙类 Ⅱ类 二级 1.0 丙级
•建、构筑物抗震设防类别•场地土类别
•建、构筑物结构安全等级•建、构筑物重要性系数 •地基基础设计等级
2、采用材料:
砼:垫层用C15,其余现浇构件均用C25砼;
钢筋:HPB300级钢筋,fy=270N/mm2;HRB335级钢筋,fy=300N/mm2。
砌体:±0.00以下用M7.5水泥砂浆砌筑Mu10页岩标砖,±0.00以上用M5混合砂浆砌筑Mu10页岩标砖。
3、地质资料:
根据勘察报告,基础持力层为红粘土,地基承载力特征值fak≥180kPa。
4、计算软件:
PKPM CAD 2010版——中国建筑科学研究院 PKPM CAD 工程部
三、荷载统计
1、屋面: ① 恒载:
防水层:找坡层:板底抹灰:
10.00×20.00×
Σq恒k1
0.072=0.025=
=
1.7100.7200.5002.930
kN/m2kN/m2kN/m2kN/m
2② 活载:
不上人屋面:q活k1=0.5 kN/m22、墙体自重:
女儿墙:
四、结构计算
电算结果详附件。
22.00×0.24×0.50=
2.640kN/m
第四篇:框架结构设计技术
框架结构设计技术
摘要: 在不同类型的结构设计中有些内容是一样的,如楼板、楼梯等,写此文的用意是帮助设计者在做框架结构设计时参见本文可减少漏项、减少差错等,与上篇内容相同的读者可略过。
具体内容如下:
一.结构设计说明
主要是设计依据,抗震等级,人防等级,地基情况及承载力,防潮抗渗做法,活荷载值,材料等级,施工中的注意事项,选用详图,通用详图或节点,以及在施工图中未画出而通过说明来表达的信息。如混凝土的含碱量不得超过3kg/m3等等。
二.各层的结构布置图,包括:
(1).预制板的布置(板的选用、板缝尺寸及配筋)。
标注预制板的块数和类型时, 不要采用对角线的形式。因为此种方法易造成线的交叉, 宜采用水平线或垂直线的方法, 相同类型的房间直接标房间类型号。应全楼统一编号,可减少设计工作量,也方便施工人员看图。板缝尽量为40, 此种板缝可不配筋或加一根筋。布板时从房间里面往外布板, 尽量采用宽板, 现浇板带留在靠窗处, 现浇板带宽最好≥200(考虑水暖的立管穿板)。
如果构造上要求有整浇层时, 板缝应大于60。整浇层厚50, 配双向φ6@250, 混凝土C20。纯框架结构一般不需要加整浇层。构造柱处不得布预制板。地下车库由于防火要求不可用预制板。框架结构不宜使用长向板,否则长向板与框架梁平行相接处易出现裂缝。建议使用PMCAD的人工布板功能布预制板,自动布板可能不能满足用户的施工图要求,仅能满足定义荷载传递路线的要求。对楼层净高很敏感、跨度超过6.9米或不符合模数时可采用SP板,SP板120厚可做到7.2米跨。
(2).现浇板的配筋(板上、下钢筋,板厚尺寸)。
板厚一般取120、140、160、180四种尺寸或120、150、180三种尺寸。尽量用二级钢包括直径φ10(目前供货较少)的二级钢,直径≥12的受力钢筋,除吊钩外,不得采用一级钢。钢筋宜大直径大间距,但间距不大于200,间距尽量用200。(一般跨度小于6.6米的板的裂缝均可满足要求)。跨度小于2米的板上部钢筋不必断开,钢筋也可不画,仅说明钢筋为双向双排φ8@200。板上下钢筋间距宜相等,直径可不同,但钢筋直径类型也不宜过多。顶层及考虑抗裂时板上筋可不断,或50%连通,较大处附加钢筋,拉通筋均应按受拉搭接钢筋。板配筋相同时,仅标出板号即可。
一般可将板的下部筋相同和部分上部筋相同的板编为一个板号,将不相同的上部筋画在图上。当板的形状不同但配筋相同时也可编为一个板号。应全楼统一编号。当考虑穿电线管时,板厚≥120,不采用薄板加垫层的做法。电的管井电线引出处的板,因电线管过多有可
能要加大板厚至180(考虑四层32的钢管叠加)。宜尽量用大跨度板,不在房间内(尤其是住宅)加次梁。说明分布筋为φ6@250,温度影响较大处可为φ8@200。板顶标高不同时,板的上筋应分开或倾斜通过。现浇挑板阳角加辐射状附加筋(包括内墙上的阳角)。现浇挑板阴角的板下宜加斜筋。顶层应建议甲方采用现浇楼板,以利防水,并加强结构的整体性及方便装饰性挑沿的稳定。外露的挑沿、雨罩、挑廊应每隔10~15米设一10mm的缝,钢筋不断。尽量采用现浇板,不采用予制板加整浇层方案。卫生间做法可为70厚+10高差(取消垫层)。8米以下的板均可以采用非预应力板。
L、T或十字形建筑平面的阴角处附近的板应现浇并加厚,双向双排配筋,并附加45度的4根16的抗拉筋。现浇板的配筋建议采用PMCAD软件自动生成,一可加快速度,二来尽量减小笔误。自动生成楼板配筋时建议不对钢筋编号,因工程较大时可能编出上百个钢筋号,查找困难,如果要编号,编号不应出房间。配筋计算时,可考虑塑性内力重分布,将板上筋乘以0.8~0.9的折减系数,将板下筋乘以1.1~1.2的放大系数。值得注意的是,按弹性计算的双向板钢筋是板某几处的最大值,按此配筋是偏于保守的,不必再人为放大。支承在外圈框架梁上的板负筋不宜过大,否则将对梁产生过大的附加扭距。一般:板厚>150时采用φ10@200;否则用φ8@200。
PMCAD生成的板配筋图应注意以下几点:1.单向板是按塑性计算的,而双向板按弹性计算,宜改成一种计算方法。2.当厚板与薄板相接时,薄板支座按固定端考虑是适当的,但厚板就不合适,宜减小厚板支座配筋,增大跨中配筋。3.非矩形板宜减小支座配筋,增大跨中配筋。4.房间边数过多或凹形板应采用有限元程序验算其配筋。PMCAD生成的板配筋图为PM?.T。
板一般可按塑性计算,尤其是基础底板和人防结构。但结构自防水、不允许出现裂缝和对防水要求严格的建筑, 如坡、平屋顶、橱厕、配电间等应采用弹性计算。室内轻隔墙下一般不应加粗钢筋,一是轻隔墙有可能移位,二是板整体受力,应整体提高板的配筋。只有垂直单向板长边的不可能移位的隔墙,如厕所与其他房间的隔墙下才可以加粗钢筋。坡屋顶板为偏拉构件,应双向双排配筋。
(3).关于过梁布置及轻隔墙。
现在框架填充墙一般为轻墙,过梁一般不采用预制混凝土过梁,而是现浇梁带。应注明采用的轻墙的做法及图集,如北京地区的京94SJ19,并注明过梁的补充筋。当过梁与柱或构造柱相接时,柱应甩筋,过梁现浇。不建议采用加气混凝土做围护墙,装修难做并不能用在厕所处。
(4).雨蓬、阳台、挑檐布置和其剖面详图。
注意:雨棚和阳台的竖板现浇时,最小厚度应为80,否则难以施工。竖筋应放在板中部。当做双排筋时,高度<900,最小板厚100;高度>900时,最小板厚120。阳台的竖板应尽量现浇,预制挡板的相交处极易裂缝。雨棚和阳台上有斜的装饰板时,板的钢筋放斜板的上面,并通过水平挑板的下部锚入墙体圈梁(即挑板双层布筋)。两侧的封板可采用泰柏板封堵,钢筋与泰柏板的钢丝焊接,不必采用混凝土结构。挑板挑出长度大于2米时宜配置板下
构造筋,较长外露挑板(包括竖板)宜配温度筋。挑板内跨板上筋长度应大于等于挑板出挑长度,尤其是挑板端部有集中荷载时。
内挑板端部宜加小竖沿,防止清扫时灰尘落下。当顶层阳台的雨搭为无组织排水时,雨搭出挑长度应大于其下阳台出挑长度100,顶层阳台必须设雨搭。挑板配筋应有余地,并应采用大直径大间距钢筋,给工人以下脚的地方,防止踩弯。挑板内跨板跨度较小,跨中可能出现负弯距,应将挑板支座的负筋伸过全跨。挑板端部板上筋通常兜一圈向上,但当钢筋直径大于等于12时是难以施工的,应另加筋。
(5).楼梯布置。采用X型斜线表示楼梯间,并注明楼梯间另详。尽量用板式楼梯,方便设计及施工,也较美观。
(6).板顶标高。可在图名下说明大多数的板厚及板顶标高,厨厕及其它特殊处在其房间上另外标明。
(7).梁布置及其编号,应按层编号,如L-1-XX,1指1层,XX为梁的编号。柱布置及编号。
(8).板上开洞(厨、厕、电气及设备)洞口尺寸及其附加筋,附加筋不必一定锚入板支座,从洞边锚入La即可。板上开洞的附加筋,如果洞口处板仅有正弯距,可只在板下加筋;否则应在板上下均加附加筋。留筋后浇的板宜用虚线表示其范围,并注明用提高一级的膨胀混凝土浇筑。未浇筑前应采取有效支承措施。住宅跃层楼梯在楼板上所开大洞,周边不宜加梁,应采用有限元程序计算板的内力和配筋。板适当加厚, 洞边加暗梁。
(9).屋面上人孔、通气孔位置及详图。
(10).在平面图上不能表达清楚的细节要加剖面,可在建筑墙体剖面做法的基础上,对应画结构详图。
三.基础平面图及详图:
(1).在柱下扩展基础宽度较宽(大于4米)或地基不均匀及地基较软时宜采用柱下条基。并应考虑节点处基础底面积双向重复使用的不利因素,适当加宽基础。
(2).当基础下有防空洞或枯井等时,可做一大厚板将其跨过。
(3).混凝土基础下应做垫层。当有防水层时,应考虑防水层厚度。
(4).建筑地段较好,基础埋深大于3米时,应建议甲方做地下室。地下室底板,当地基承载力满足设计要求时,可不再外伸以利于防水。每隔30~40米设一后浇带,并注明两个月后用微膨胀混凝土浇注。设置地下室可降低地基的附加应力,提高地基的承载力(尤其是在周围有建筑时有用),减少地震作用对上部结构的影响。不应设局部地下室,且地下室应
有相同的埋深。可在筏板区格中间挖空垫聚苯来调整高低层的不均匀沉降。
(5).地下室外墙为混凝土时,相应的楼层处梁和基础梁可取消。
(6).抗震缝、伸缩缝在地面以下可不设缝,连接处应加强。但沉降缝两侧墙体基础一定要分开。
(7).新建建筑物基础不宜深于周围已有基础。如深于原有基础,其基础间的净距应不少于基础之间的高差的1.5至2倍,否则应打抗滑移桩,防止原有建筑的破坏。建筑层数相差较大时,应在层数较低的基础方格中心的区域内垫焦碴来调整基底附加应力。
(8).独立基础偏心不能过大,必要时可与相近的柱做成柱下条基。柱下条形基础的底板偏心不能过大,必要时可作成三面支承一面自由板(类似筏基中间开洞)。两根柱的柱下条基的荷载重心和基础底版的形心宜重合,基础底板可做成梯形或台阶形,或调整挑梁两端的出挑长度。
(9).采用独立柱基时,独立基础受弯配筋不必满足最小配筋率要求,除非此基础非常重要,但配筋也不得过小。独立基础是介于钢筋混凝土和素混凝土之间的结构。面积不大的独立基础宜采用锥型基础,方便施工。
(10).独立基础的拉梁宜通长配筋,其下应垫焦碴。拉梁顶标高宜较高,否则底层墙体过高。
(11).底层内隔墙一般不用做基础,可将地面的混凝土垫层局部加厚。
(12).考虑到一般建筑沉降为锅底形、结构的整体弯曲和上部结构和基础的协同作用,顶、底板钢筋应拉通(多层的负筋可截断1/2或1/3),且纵向基础梁的底筋也应拉通。
(13).基础平面图上应加指北针。
(14).基础底板混凝土不宜大于C30,一是没用,二是容易出现裂缝。
(15).可用JCCAD软件自动生成基础布置和基础详图。生成的基础平面图名为JCPM.T,生成的基础详图名为JCXT?.T。
(16).基础底面积不应因地震附加力而过分加大,否则地震下安全了而常规情况下反而沉降差异较大,本末倒置。
请参照《建筑地基基础设计规范GBJ7-89》和各地方的地基基础规程。
四.暖沟图及基础留洞图:
(1).沟盖板在遇到电线管时下降(500),室外暖沟上一般有400厚的覆土。
(2).注明暖沟两侧墙体的厚度及材料作法。暖沟较深时应验算强度。
(3).洞口大于400时应加过梁,暖沟应加通气孔。
(4).基础埋深较浅时暖沟入口底及基础留洞有可能比基础还低,此时基础应局部降低。
(5).湿陷性黄土地区或膨胀土地区暖沟做法不同于一般地区。应按湿陷性黄土地区或膨胀土地区的特殊要求设计。
(6).暖沟一般做成1200宽,1000的在维修时偏小。
五.楼梯详图:
(1).应注意:梯梁至下面的梯板高度是否够,以免碰头,尤其是建筑入口处。
(2).梯段高度高差不宜大于20,以免易摔跤
(3).两倍的梯段高度加梯段长度约等于600。幼儿园楼梯踏步宜120高。
(4).楼梯折板、折梁阴角在下时纵筋应断开,并锚入受压区内La,折梁还应加附加箍筋
(5).楼梯的建筑做法一般与楼面做法不同,注意楼梯板标高与楼面板的衔接。
(6).楼梯梯段板计算方法:当休息平台板厚为80~100,梯段板厚100~130,梯段板跨度小于4米时,应采用1/10的计算系数,并上下配筋相同;当休息平台板厚为80~100,梯段板厚160~200,梯段板跨度约6米左右时,应采用1/8的计算系数,板上配筋可取跨中的1/3~1/4,并且不得过大。此两种计算方法是偏于保守的。任何时候休息平台与梯段板平行方向的上筋均应拉通,并应与梯段板的配筋相应。梯段板板厚一般取1/25~1/30跨度。
(7).注意当板式楼梯跨度大于5米时,挠度不容易满足。应注明加大反拱或增大配筋。
(8).当休息平台板为悬挑板时,其内部的楼梯梯段板负筋应大于休息平台板的板上筋,长度也应大于平台板筋。
(9).楼层处的休息平台板的配筋应与楼层板统一考虑配筋,主要是板的负筋。
六.梁详图:
(1).梁上有次梁处(包括挑梁端部)应附加箍筋和吊筋,宜优先采用附加箍筋。梁上小柱和水箱下, 架在板上的梁, 不必加附加筋。可在结构设计总说明处画一节点,有次梁处两侧各加三根主梁箍筋,荷载较大处详施工图。
(2).当外部梁跨度相差不大时,梁高宜等高,尤其是外部的框架梁。当梁底距外窗顶尺寸较小时,宜加大梁高做至窗顶。外部框架梁尽量做成外皮与柱外皮齐平。梁也可偏出柱边
一较小尺寸。梁与柱的偏心可大于1/4柱宽,并宜小于1/3柱宽。
(3).折梁阴角在下时纵筋应断开,并锚入受压区内La,还应加附加箍筋
(4).梁上有次梁时,应避免次梁搭接在主梁的支座附近,否则应考虑由次梁引起的主梁抗扭,或增加构造抗扭纵筋和箍筋。(此条是从弹性计算角度出发)。当采用现浇板时,抗扭问题并不严重。
(5).原则上梁纵筋宜小直径小间距,有利于抗裂,但应注意钢筋间距要满足要求,并与梁的断面相应。箍筋按规定在梁端头加密。布筋时应将纵筋等距,箍筋肢距可不等。小断面的连续梁或框架梁,上、下部纵筋均应采用同直径的,尽量不在支座搭接。
(6).端部与框架梁相交或弹性支承在墙体上的次梁,梁端支座可按简支考虑,但梁端箍筋应加密。
(7).考虑抗扭的梁,纵筋间距不应大于300和梁宽,即要求加腰筋,并且纵筋和腰筋锚入支座内La。箍筋要求同抗震设防时的要求。
(8).反梁的板吊在梁底下,板荷载宜由箍筋承受,或适当增大箍筋。梁支承偏心布置的墙时宜做下挑沿。
(9).挑梁宜作成等截面(大挑梁外露者除外)。与挑板不同,挑梁的自重占总荷载的比例很小,作成变截面不能有效减轻自重。变截面挑梁的箍筋,每个都不一样,难以施工。变截面梁的挠度也大于等截面梁。挑梁端部有次梁时,注意要附加箍筋或吊筋。一般挑梁根部不必附加斜筋,除非受剪承载力不足。对于大挑梁,梁的下部宜配置受压钢筋以减小挠度。挑梁配筋应留有余地。
(10).梁上开洞时,不但要计算洞口加筋,更应验算梁洞口下偏拉部分的裂缝宽度。梁从构造上能保证不发生冲切破坏和斜截面受弯破坏。
(11).梁净高大于500时,宜加腰筋,间距200,否则易出现垂直裂缝。
(12).挑梁出挑长度小于梁高时,应按牛腿计算或按深梁构造配筋。
(13).尽量避免长高比小于4的短梁,采用时箍筋应全梁加密,梁上筋通长,梁纵筋不宜过大。
(14).扁梁宽度不必过大,只要钢筋能正常摆下及受剪满足即可。因为在挠度计算时,梁宽对刚度影响不大,加宽一倍,挠度减小20%左右。相对来讲,增大钢筋更经济,钢筋加大一倍,挠度减小60%左右,同时梁的上筋应大部分通长布置,以减小混凝土徐变对挠度的增大,如果上筋不小于下筋,挠度减小20%。
(15).框架梁高取1/10~1/15跨度,扁梁宽可取到柱宽的两倍。扁梁的箍筋应延伸至另一方向的梁边。
(16).当一宽框架梁托两排间距较小的柱时,可加一刚性挑梁,两个柱支承在刚性挑梁的端头。
(17).梁宽大于350时,应采用四肢箍。
七.柱详图:
(1).地上为圆柱时,地下部分应改为方柱,方便施工。圆柱纵筋根数最少为8根,箍筋用螺旋箍,并注明端部应有一圈半的水平段。方柱箍筋应使用井字箍,并按规范加密。角柱、楼梯间柱应增大纵筋并全柱高加密箍筋。幼儿园不宜用方柱。
(2).原则上柱的纵筋宜大直径大间距,但间距不宜大于200。
(3).柱内埋管,由于梁的纵筋锚入柱内,一般情况下仅在柱的四角才有条件埋设较粗的管。管截面面积占柱截面4%以下时,可不必验算。柱内不得穿暖气管。
(4).柱断面不宜小于450X450,混凝土不宜小于C25,否则梁纵筋锚入柱内的水平段不容易满足0.45La的要求,不满足时应加横筋。异型柱结构,梁纵筋一排根数不宜过多,柱端部纵筋不宜过密,否则节点混凝土浇筑困难。当有部分矩形柱部分异型柱时,应注意异型柱的刚度要和矩形柱相接近,不要相差太大。
(5).柱应尽量采用高强度混凝土来满足轴压比的限制,减小断面尺寸。
(6).尽量避免短柱,短柱箍筋应全高加密,短柱纵筋不宜过大。
(7).考虑到竖向地震作用,柱子的轴压比及配筋宜留有余地。
(8).独立柱上或柱的中部(半层处)有挑梁时,挑梁长度应有限制。
在用PKPM软件计算梁柱时,应尽量采用TAT或SATWE三维软件。相对平面框架PK来讲,第一,计算结果更接近实际受力状态,如地震力或风力是按抗侧移刚度分配,而不是按框架的楼面从属面积,还如从框架柱出挑的梁和从次梁出挑的梁,因次梁的支座(框架梁)发生下沉变形,内力重分布,从框架柱出挑的挑梁配筋将较大。
第二,快速方便,三维软件整体计算,不必生成单榀框架,再人工归并,可整楼归并。
第三,TAT或SATWE还可以进行井式梁的计算,由于PKPM软件计算梁时仅按矩形计算,而井式梁的断面较小,有可能超筋,此时可取出弯距再按T型梁补充计算,不必直接加大梁高。在绘制施工图时,较大直径的钢筋连接宜用机械连接取代焊接,造价相差不大,但机械连接可靠并易于检查。机械连接接头位置可任意,但一次截断的钢筋不大于50%,接头位置应错开70d。
八.重点注意或设计原则:
(1).抗震验算时不同的楼盖及布置(整体性)决定了采用刚性、刚柔、柔性理论计算。抗震验算时应特别注意场地土类别。8度超过5层有条件时,尽量加剪力墙,可大大改善结构的抗震性能。框架结构应设计成双向梁柱刚接体系,但也允许部分的框架梁搭在另一框架梁上。应加强垂直地震作用的设计,从震害分析,规范给出的垂直地震作用明显不足。
(2).雨蓬不得从填充墙内出挑。大跨度雨蓬、阳台等处梁应考虑抗扭。考虑抗扭时,扭矩为梁中心线处板的负弯距乘以跨度的一半。
(3).框架梁、柱的混凝土等级宜相差一级。
(4).由于某些原因造成梁或过梁等截面较大时,应验算构件的最小配筋率。
(5).出屋面的楼电梯间不得采用砖混结构。
(6).框架结构中的电梯井壁宜采用粘土砖砌筑,但不能采用砖墙承重。应采用每层的梁承托每层的墙体重量。梯井四角加构造柱,层高较高时宜在门洞上方位置加圈梁。因楼电梯间位置较偏,梯井采用混凝土墙时刚度很大,其它地方不加剪力墙,对梯井和整体结构都十分不利。
(7).建筑长度宜满足伸缩缝要求,否则应采取措施。如:增大配筋率,通长配筋,改善保温,铺设架空层,加后浇带等。
(8).柱子轴压比宜满足规范要求。
(9).当采用井字梁时,梁的自重大于板自重,梁自重不可忽略不计。周边一般加大截面的边梁。
(10).过街楼处的梁上筋应通长,按偏拉构件设计。
(11).电线管集中穿板处,板应验算抗剪强度或开洞形成管井。电线管竖向穿梁处应验算梁的抗剪强度。
(12).构件不得向电梯井内伸出, 否则应验算是否能装下。电梯井处柱可外移或做成L型柱。
(13).验算水箱下、电梯机房及设备下结构强度。水箱不得与主体结构做在一起。
(14).当地下水位很高时,暖沟应做防水。一般可做U型混凝土暖沟,暖气管通过防水套管进入室内暖沟。有地下室时,混凝土应抗渗,等级S6或S8,混凝土等级应大于等于C25,混凝土内应掺入膨胀剂。混凝土外墙应注明水平施工缝做法,一般加金属止水片,较薄的混凝土墙做企口较难。
(15).采用扁梁时,应注意验算变形。
(16).突出屋面的楼电梯间的柱为梁托柱时应向下延伸一层,不宜直接锚入顶层梁内,并且托梁上铁应适当拉通。错层部位应采取加强措施。女儿墙内加构造柱,顶部加压顶。出入口处的女儿墙不管多高,均加构造柱,并应加密。错层处可加一大截面梁,上下层板均锚入此梁。
(17).等基底附加压力时基础沉降并不同。
(18).应避免将大梁穿过较大房间,在住宅中严禁梁穿房间。
(19).当建筑布局很不规则时,结构设计应根据建筑布局做出合理的结构布置,并采取相应的构造措施。如建筑方案为两端较大体量的建筑中间用很小的结构相连时(哑铃状),此时中间很小的结构的板应按偏拉和偏压考虑。板厚应加厚,并双层配筋。
(20).较大跨度的挑梁下柱子内跨梁传来的荷载将大于梁荷载的一半。挑板道理相同。
第五篇:浅谈框架结构设计的心得体会
浅谈框架结构设计的心得体会
摘要 框架结构是最常见的承重结构体系,本文从框架结构概念设计、内力和位移的计算机计算、构造要求等要点出发,介绍钢筋混凝土框架结构的设计要点及注意事项。特别是在框架结构内力和位移的计算机计算方面,结合自己的设计经验,针对“刚性楼板假定”、“偶然偏心”、“结构扭转效应”等主要结构计算参数的选取提出了笔者的一些见解。另外,还从框架梁、框架柱、节点等构造要求列举了主要的注意事项。
关键词 框架结构 概念设计 内力 位移 构造要求
框架结构是由横梁和立柱组成的杆件体系,是最常见的承重结构体系。由于框架结构柱网布置灵活,能获得较大的使用空间,在办公楼、教学楼、住宅楼、公寓以及商业建筑中常常采用。下面结合框架设计过程和实际工程设计经验,谈一谈钢筋混凝土框架结构的设计要点及注意事项。
一、框架结构概念设计
一个合格的结构设计人员应该清楚地认识到框架结构设计中,概念设计与结构措施的至关重要性。
首先我们要控制房屋适用高度和结构高宽比,若结构的高宽比大,则倾覆力矩也大。为了帮助设计者在初步设计阶段根据结构高度和结构体系确定比较合理而经济的平面尺寸,宏观控制结构的刚度、稳定和承载力,《高层建筑混凝土结构技术规程》(JGJ3-2010)规定了框架结构的高宽比限值。
其次是结构布置简单规则均匀。结构简单包含有三层意思,即(1)结构的类别划分,计算模型清楚;(2)各结构构件力学功能分工,在荷载和作用下传力路线直接、明确;(3)其受力、薄弱环节及抗震性能估计把握,精细分析程序可靠。这就要求工程师在熟练运用计算机设计程序的同时,更要掌握必要的框架结构简化估算方法。结构规则均匀要求含平面和立面两部分,包括刚度、承载力和传力途径三个方面。要求框架结构在可能的情况下,在竖向建筑造型和结构布置上均匀,刚度、承载力和传力途径均无突变,从而限制应力集中、过大变形和敏感薄弱部位的出现;在建筑平面上规则,结构布置均匀,尽量减少里出外进、凹凸不平,尽量避免部分结构超强造成结构的相对薄弱部位,该强的强,该弱的弱;尽量使荷载和作用能用短而直接的途径传播,尽量使质量中心和刚度中心重合或接近。
最后是刚柔适度。事实表明,结构的变形越小,地震的危害就越小。但是不能得出刚度越大越好的结论,因为刚度愈大,地震作用愈大,材料用量会增加。此外,结构振动和变形的大小不仅和结构刚度有关,还与场地土有关.当结构自振周期与场地土的卓越周期接近时,建筑物的地震反应会加大,无论振动变形还是地震力都会加大。因此,对于框架结构设计,不能做出“刚一些好”还是“柔一些好”的简单结论,应该结合结构的具体高度、场地条件等进行综合判断。
二、框架结构内力和位移的计算机计算
随着计算机的迅猛发展和广泛应用,使得结构计算软件在结构设计中得到大量的应用,结构设计人员的工作效率提高,也使得一部分结构设计人员对结构计算软件产生过度依赖,以为结构计算软件满足,结构设计就是合理、安全的,有的设计人员甚至不假思索、调整,直接以软件自动生成的施工图作为实际施工图,殊不知结构计算软件毕竟是我们的工具,结构设计人员应该对结构软件中各种参数进行合理选取,并对计算结果的合理性作出判断。
1.“对所有楼层采用刚性板假定”该如何选择。《建筑抗震设计规范》(GB 50011-2010)和《高层建筑混凝土结构技术规程》(JGJ3-2010)均要求,在计算结构的位移比时,要采用刚性楼盖。因此,设计人员在计算此项指标时应考虑“强制执行刚性板假定”。结构的位移比是反映结构扭转效应的一项重要指标,为了避免由于局部振动的存在而影响结构位移比的正确计算,规范规定在附性板假定下计算结构的位移比。这里需要说明的是,在计算结构的内力和配筋时,则宜将此选项去掉。
2.何时考虑“偶然偏心”。《高规》第3.3.3条规定:计算单向地震作用时应考虑偶然偏心的影响。附加偏心距可取与地震作用方向垂直的建筑物边长的5%。
控制偶然偏心的主要目的是控制结构的扭转效应。当结构在偶然偏心作用下的位移比大于1.2时,则说明该结构的质量和刚度的分布比较不均匀,抗扭转的能力比较差。对于高层建筑,即便是均匀、对称的结构,也应考虑偶然偏心的影响;对于多层建筑,则可以不考虑偶然偏心的影响。
3.结构扭转效应的判断。结构的周期比是判断结构扭转效应的重要指标之一,《高规》第4.3.5条规定:结构以扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,A级高度高层建筑不应大于0.9,目前的程序没有直接输出结构的周期比,需要设计人员根据程序的计算结果自行计算。在确定结构的第一平动周期和扭转周期时主要注意以下几点:(1)根据工程具体情况,确定平动和扭转系数所占百分比;第一平动周期所对应的振型应该越单纯越好。平动与扭转系数所占百分比为多少合适,规范并没有说明,应根据具体情况而定。对于第一扭转周期的判断,则根据《高规》第3.4.5条的条文说明中的解释,在两个平动和一个转动构成的三个方向因子中,当转动方向因子大于0.5时,则该振型可认为是扭转为主的振型。(2)查看振型图,看结构在该振型作用下是否为整体振动。
三、框架结构构造要求
1.框架柱构造要求。影响框架柱延性耗能的主要因素可归纳为柱剪跨比、轴压比和箍筋配置等,对此规范都做了具体规定,如柱剪跨比宜大于2;柱截面高宽比不宜大于3。柱剪跨比不大于2时,应按短柱进行相关处理。
柱可沿全高分阶段改变截面尺寸和混凝土强度等级,但不宜在同一楼层同时改变截面尺寸和混凝土强度等级。一、二级抗震等级框架柱的各部位以及三级抗震等级柱的底部的受力钢筋宜采用机械连接接头,也可采用绑扎搭接或焊接接头;其他情况可采用绑扎搭接或焊接接头;钢筋连接接头宜避开有抗震设防要求的梁端、柱端箍筋加密区(即塑性铰区),当无法避开时,应采用I级或Ⅱ级机械连接接头,且接头百分率不应大于50%。
2.框架梁构造要求。框架梁不设弯起钢筋,全部剪力由箍筋和混凝土承担。框架梁的配筋率、配筋布置以及抗震设计时,梁端箍筋的加密区长度、箍筋最大间距和最小直径应符合《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》的有关规定。应当注意,为使梁端塑性铰区截面有比较大的曲率延性和良好的转动能力,成为延性耗能梁,梁端混凝土受压区高度应满足以下要求:一级框架梁,≤0.25,二、三级框架梁,≤0.35。
为减小框架梁端塑性铰区范围内的相对受压区高度,塑性铰区截面底部必须配置受压钢筋。受压钢筋的面积除按计算确定外,与顶面受拉钢筋面积的比值还应满足以下要求:一级框架梁,≥0.5,二、三级框架梁,≥0.3。
3.节点构造要求。在竖向荷载和地震作用下,框架梁柱节点主要承受柱传来的轴向力、弯矩、剪力和梁传来的弯矩、剪力。节点区的破坏形式为由主拉应力引起的剪切破坏。如果节点未设箍筋或箍筋不足,则由于其抗剪能力不足,节点区出现多条交叉斜裂缝,斜裂缝间混凝土被压碎,柱内纵向钢筋压屈,所以应该重视框架梁、柱节点核心区的设计。
框架梁、柱节点核心区应符合下列要求:
(1)应根据《建筑抗震设计规范》GB50011附录D.2的规定,分别按节点的内、外核心区验算节点受剪承载力;
(2)节点内核心区的配箍量及构造要求同普通框架;
四、结束语
钢筋混凝土框架结构虽然相对简单,但设计中仍有很多需要注意的事项,只有结构设计人员既有扎实的理论功底,又有丰富的工程经验,并且熟练掌握各种规范,结合概念设计,才能设计出既安全、可靠,又经济、合理的建筑物。