第一篇:有理数加减混合运算教案
一:教学目标
让学生了解代数和的定义以机会进行加减混合运算。二:教学重点
将加减混合运算理解为加法的运算。三:教学难点
把省略加号与括号的形式按照有理数的加法进行运算。四:教具
小黑板。五:教学过程
创设情境,复习引入
师:我们以前学习了有理数的加法和减法,同学们学的都很好,我们来看看几道题还记得怎样做?(出示小黑板)(1)(-32)-(-8)-(+15)+(-16/2)(2)(-6/4)-(+5/2)-7+(-12)(第一题薛明星,第二题吴俊,其他学生练习本上写)
师:好,他们写好了。下面的同学也写完了吗?我们一起看看他们两人做的。你们和他们做的一样吗?(讲解:还是先找简便方法,运用加法交换律、结合律,还有互为相反数的,把他们先放到一起,然后根据有理数的加法法则、减法法则计算结果。)正解:
解:(1)=-32+8-15-16/2(2)=-6/4-5/2+7-12 =-47 =-9 师:我们还来看第一题,(板书到黑板上)。
(-32)-(-8)-(+15)+(-16/2)我们看到这个式子里面既有加法也有减法,今天我们就来学习有理数的加减混合运算(板书到黑板上)。
师:如果我说根据有理数的减法法则我们可以把它改写以下,怎么写? 生:一起回忆减法法则内容:减去一个数,等于加上这个数的相反数。即式子为:-32+8+(-15)+(-16/2)师:那再去掉括号呢? 生:-32+8-15-16/2
师:我们就可以把这个式子看做是-32,+8,-15,-16/2的和。我们把几个正数或者是负数的和叫做代数和。(板书,让学生更清楚)在一个和里面,通常加好和括号都可以省去,就变成了几个正数与负数的和了。同学们说一个既有正数又有负数的式子。生:(-11)+(-7)+(-9)+6(根据学生说出的式子做改变)。师:我们如果把这个式子写成省略括号的形式,怎样写?
生:-11-7-9+6.(找两个学生说自己的答案,讲解之后给出正确答案)
师:我们把这个式子读作:(板书)负11,负7,负9,正6的和;从运算上还可以读作:负11减7减9加6.我们省略括号以后就变作了-11,-7,-9,+6.讲解例题
板书:(-20)+(+3)-(-5)-(+7)将其写成省略括号的形式。师:这道题该怎样解?(朱峰黑板上写,其他学生练习本)生:直接写出-20+3+5-7
师:(集体讲解)我们采用把剑发辫位加法的运算过程,这是就变成了-20,+3,+5,-7的和。加好跟括号都可以省略。就读做:负20,正3.正5,负7.小总结
今天我们学习了有理数的加减混合运算当中,几个正数或者负数的和叫做代数和。我们也知道了他的读法。
巩固练习
(1)(-5)+(+7)-(-3)-(+1)(2)10+(-8)-(+18)-(-5)+(+6)(3)读出-3+5-6+1的两种读法
第二篇:有理数的加减混合运算教案
有理数的加减混合运算教案
作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?下面是小编整理的有理数的加减混合运算教案,欢迎阅读,希望大家能够喜欢。
有理数的加减混合运算教案1教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点
重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程
什么叫代数和?说出-6+9-8-7+3两种读法。
1.计算下列各题:
2.计算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:
(4)-16+25+16-15+4-10.
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:
(1)两个数相加,和一定大于任一个加数.()
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()
(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()
(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()
(5)两数差一定小于被减数.()
(6)零减去一个数,仍得这个数.()
(7)两个相反数相减得0.()
(8)两个数和是正数,那么这两个数一定是正数.()
2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
(2)若a<0,那么a和它的相反数的差的绝对值是______.
(3)若|a|+|b|=|a+b|,那么a,b的关系是______.
(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分别根据下列条件求代数式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?
(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。
(1)若a,b同号,则a+b=|a|+|b|.()
(2)若a,b异号,则a+b=|a|-|b|.()
(3)若a<0、b<0,则a+b=-(|a|+|b|).()
(4)若a,b异号,则|a-b|=|a|+|b|.()
(5)若a+b=0,则|a|=|b|.()
6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。
有理数的加减混合运算教案2把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算
按教师要求口答并读出结果
师生共同小结:
有理数加减法混合运算的题目的步骤为
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
这两个题目是本节课的重点.采用测验的方式来达到及时反馈。
归纳小结
教师提问:
1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
学生讨论后口答小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
布置作业必做题:(一)计算:
(1)-8+12-16-23;
(2)- + - -
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小?
(2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?综合考察
学以致用
体现分层次教学使不同学生得到不同的发展
附板书设计:
2.7有理数的加减混合运算
例题:计算: 练习处
1.(+3)-(-9)+(-4)-(+2)
2. - + - +
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
有理数的加减混合运算教案3一、知识回顾
(1)有理数的加、减法法则;
(2)特别值得注意的问题(同号、异号、相反数)
二、新课导入
计算:-5-(+3)+(-7)-(—15)
解:原式=(-5)+(-3)+(-7)+(+15)=0
另解:原式=-5-3-7+15=0
强调:①省略“+”②省略“()”③更简化
读法:①读代数和;②直接读+、-
板书课题:有理数的加减混合运算
三、例题讲解
例计算下列各式略
小结:
有理数加减混合运算的步骤:
⑴写成代数和;
⑵观察有无相反数;
⑶运用交换、结合律达到同号相加或同分母运算或凑整
⑷写出结果
四、学生练习
可以在黑板的下方进行。
讲解评析、纠错订正。
数学思考:
计算:1-2+3-4+5-6+7-8+…+99-100
五、课堂小结
师生共同小结本节课的内容。
六、布置作业
A、B、c分层次布置。
有理数的加减混合运算教案4教学目标
1。了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2。 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3。通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2。关于去括号法则,只要学生了解,并不要求追究所以然。
3。任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4。先把正数与负数分别相加,可以使运算简便。
5。在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1。了解:代数和的概念。
2。理解:有理数加减法可以互相转化。
3。应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
二、学法引导
1。教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2。学生写法:练习寻找简单的一般性的方法练习巩固。
三、重点、难点、疑点及解决办法
1。重点:把加减混合运算算式理解为加法算式。
2。难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7。
师:(1)读出这两个算式。
(2)+、-读作什么?是哪种符号?
+、-又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正)。
师小结:减法往往通过转化成加法后来运算。
有理数的加减混合运算教案5一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
有理数的加减混合运算教案6教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于去括号法则,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的`和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7应变成12+7-5,而不能变成12-7+5。
有理数的加减混合运算教案7教学目标
1、让学生能进行包括小数或分数的有理数的加减混合运算。
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点
重点:有理数加法和减法的混合运算。
难点:减法统一成加法再写成代数和的形式。
教学过程
一、复习引入
课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5―(―0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
二、新课的进行
某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:P57议一议
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4
=1.3+1.1-1.4=2.4-1.4=1(千米)
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1 计算(P58例1)
例2 计算:(1) (2)
解:(1)
(2)
三、课堂练习
1、课本P58随堂练习1、(1),(2),(3)
2、计算:(1) (2)
四、课堂小结
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。
1、P58习题2.7 1,3
有理数的加减混合运算教案8教学目的:
1、要求学生理解加减混合运算统一为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
教学分析:
重点:如何更准确地把加减混合运算统一成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
教学过程:
本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
1、知识基础:
其一:有理数的加法法则;
其二:有理数的减法法则。
其三:“+”、“-”在不同情形的意义(运算符号及性质符号)
2、知识形成:
(引例)计算:
根据减法法则,按照运算顺序,有:
原式
在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:
这个式子仍看作和式,有两种读法,
按性质符号:读作“负8、正10、负6、负4的和”
按运算意义:读作“负8加上10减去6减去4”
例:把写成省略加号的和的形式,并把它读出来(两种读法)。
例:按运算顺序直接计算:
P46.1、2
本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。
P471、23
如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?
第三篇:有理数的加减混合运算教案
有理数的加减混合运算教案
本资料为woRD文档,请点击下载地址下载全文下载地址
2.7 有理数的加减混合运算
教学目标:
知识与技能:初步会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。
过程与方法:利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。
情感态度与价值观:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。
教学重点:利用有理数的混合运算解决实际问题。
教学难点:用运算律进行简便计算。
教材分析:
本节内容是本章重点之一,《标准》中强调:重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养,因此本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。本节内容也为后继学习数学知识作必要的基本运算技能,虽注重应用,加强对学生数学应用意识和解决实际问题能力的培养;但基本的运算技能也是学习数学必不可少的。因此本节内容对学生学习数学有着非常重要的作用。
教具:多媒体
教学方法:启发式教学
课时安排:一课时
环节
教师活动
学生活动
设计意图
创
设
情
境
复
习
引
入
复习引入(出示)
.叙述有理数加法法则
2.叙述有理数减法法则。3.叙述加法的运算律。
4.符号“+”和“-”各表达哪些意义?
5.-9+(+6);(-11)-7
(1)读出这两个算式。
(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?
把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算
学生积极思考口答教师提出的问题
为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合 运算奠定基础。由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目的组成。
探索新知讲授新课
讲评(-9)+(+6)-(-11)-7
省略括号和的形式
教师针对学生所做的方法区别优劣
对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7
虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……(教师纠正)
学生自己在练习本上计算。
先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)
让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。
教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
巩固练习
.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)-
+--
2.判断
式子-7+1-5-9的正确读法是()
A.负
7、正
1、负
5、负9;
B.减
7、加
1、减
5、减9;
c.负
7、加
1、负
5、减9;
D.负
7、加
1、减
5、减9;
(二)用加法运算律计算出结果
-9+6+11-7
(三)巩固练习
.-4+7-4=-___-___+___
2.+6+9-15+3=___+___+___-___
3.-9-3+2-4=___9___3___4___2
4.-
-
+
=
___
___
___
题两个学生板演,两个学生用两种读法读出结果,其他学生自行演练,然后同桌读出互相纠正。
2题抢答
按教师要求口答并读出结果
讨论后回答
这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。
例题解析
出示例题:计算:
.(+3)-(-9)+(-4)-(+2)
2.-
+
-
+
3.0.25+--
师生共同小结:有理数加减法混合运算的题目的步骤为1.减法转化成加法;
2.省略加号括号;3.运用加法交换律使同号两数分别相加;4.按有理数加法法则计算。
反馈练习
计算:(1)12-(-18)+(-7)-15;
-+-+
三个学生板演,其他学生在练习本上做。
采用同桌互相测验的方法,以达到纠正错误的目的。
针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
这两个题目是本节课的重点.采用测验的方式来达到及时反馈。
归纳小结
教师提问:
.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
学生讨论后口答
小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
布置作业
必做题:计算:
(1)-8+12-16-23;
(2)-+-
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小?
(2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?
综合考察
学以致用
体现分层次教学使不同学生得到不同的发展
附板书设计:
2.7有理数的加减混合运算
例题:计算:
练习处
.(+3)-(-9)+(-4)-(+2)
2.-
+-
+
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。
2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
第四篇:有理数加减混合运算((含答案))
有理数加减混合运算((含答案))【模拟试题】(答题时间:20分钟)
1.填空:
(1)某人向东走5米,记作5米,那么向西走10米,应记作__________米,也可以说成向东走__________米。
(2)17米表示比海平面高17米,那么11米表示_________,0米表示_________。
(3)一小组5人的口语成绩平均为8分,将5人的成绩简记为:1,2,0,2,1,请写出这5人的口语成绩____________________。
(4)将下列各数填入相应括号内:
3.4,0.5,
正有理数(整数(非负有理数(负分数(15,0.86,0.8,8.7,0,,7 36);););)。
(5)在原点的右侧,距原点1个单位的点的数是___________。
2(6)到原点的距离等于2个单位长度的数是___________。
2.选择:
(1)下列说法:①零是正数;②零是整数;③零是最小的有理数;④零是非负数;⑤零是偶数,其中正确的个数是()个
A.2 B.3 C.4 D.5
(2)在数轴上表示数2和表示数5的点之间的距离是()
A.7
B.7 C.
3D.3
(3)如图,据有理数a、b、c在数轴上的位置,下列关系正确的是()
A.bc0a
C.acb0 B.abc0 D.b0ac
3.画出数轴,在数轴上记出3,2.5,1及到原点距离与它们分别相等的数,并用“<”将所有数连接起来。
4.某同学给自己的压岁钱记了流水帐,大姑给+50元,二姑给+30元,三叔给+20元,去动物园花10元,记上10元,买文具用品花了15元,记为15元,他的帐上余额为多少元?
12【模拟试题】(答题时间:40分钟)
一.选择题。1.若a的相反数是非负数,则a为()
A.负数
B.负数或零
C.正数 D.正数或零
2.下列说法中正确的是()
A.π的相反数是314.B.符号不同的两个数一定是互为相反数
C.若x和y互为相反数,则xy0
D.一个数的相反数一定是负数
3.一个数大于它的相反数,那么这个数是()
A.负数
B.正数
C.非负数
D.非正数
4.下列叙述错误的是()
A.若a为正数,则a0
B.若a为负数,则a0
C.若a为正数,则a0
D.若a为负数,则a0
5.绝对值最小的数是()
A.不存在B.0 C.1
6.下列各数中,互为相反数的是()
A.5与
5C.4与4 B.3与3 D.a与a
D.1
7.若a为有理数,则aa,那么a是()
A.正数
二.填空题。
1.绝对值等于6 B.负数
C.正数或零
D.负数或零
1的数是___________。
22.6___________,6___________。
3.绝对值小于3.1的所有非负整数为___________。
4.若a10,b12,且a0,b0,则ab___________。
5.若a10,b12,当a、b异号时,则ab___________。
6.若a10,b12,则ab___________。
7.最小的正整数,最大的负整数,绝对值最小的数,它们的和是___________。
三.计算题。
1.05.175.325.7.5
2.5121211356214 4646
3.12345678
4.4018042035
5.37.5284625
727
四.a与b互为相反数,b与c互为倒数,d与e的和的绝对值等于2,则2bc 511abde的值是多少? bc
【模拟试题】(答题时间:30分钟)
一.填空题。
1.比5小2的数是_________,比5大2的数是_________。
2.0242_________,8减去2.8与19.的差是_________。
33.a29,b36,c216,则abc_________。
4.把6425改写为省略加号的和的形式为__________________,结果为__________________。
5.绝对值大于3,而小于8的所有负整数的和是_________。
二.选择题。
1.下列说法中正确的个数有()
(1)两个有理数绝对值的和等于它们的和的绝对值。
(2)两个有理数和的绝对值为正数。
(3)两个有理数差的绝对值等于这两个数绝对值的差。
(4)两个有理数绝对值的差必为负数。
A.0个
B.1个
C.2个
D.3个
2.已知a3,b4,则ab的值是()
A.
1B.1 C.1或1 D.1或7
3.已知a、b是两个有理数,那么ab与a比较,必定是()
A.aba
B.aba
C.aba
D.大小取决于b
4.若两个有理数的差为正数,那么()
A.被减数是负数,减数是正数
B.被减数和减数都是正数
C.被减数大于减数
D.被减数和减数不能同为负数
三.计算题。
(1)131232 43(2)136.2.6452.0.2
(3)3
(4)05.32.757 74251297 45135261412(5)5132211 4343
(6)2 1112132532 32432【试题答案】 1.(1)10,10
(2)比海平面低11米,海平面
(3)7,10,8,6,9
(4)正有理数(0.86,0.8,8.7)
非负有理数(0.86,0.8,8.7,0)
(5)
3.整数(0,7)
负分数(3.4,0.5,
(2)B
15,)361
(6)2
2.(1)B 2(3)D
32.51
4.75元
1112.53 22【试题答案】一.1.B 二.1.6 2.C 3.B 4.C
5.B
6.A
7.D 111
2.6,6
3.0,1,2,3 222
4.2
5.2
6.2,22
7.0 三.1.3 四.0 2.13
3.8
4.328
5.53 7【试题答案】一.填空题。
1.3,3
2.24,12.7
3.223
4.6425,3
5.22
3二.选择题。
1.A 2.D 三.计算题。3.D
4.C 1 423
(3)13
907
(5)
(1)(2)14.(4)2(6)41 4
第五篇:有理数的加减混合运算
有理数的加减混合运算
篇一:有理数的加减混合运算练习
有理数的加减混合运算练习
(一)有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:a+b=b+a ⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: