第一篇:《分数与整数相乘》教案
《分数与整数相乘》教案
1.复习导入
(1)师:同学们,你能快速说出以下几道算式的答案吗?
***+++= 9992222++++= 999922222+++„„+(共17个相加)= 99999++=
(2)师引导学生说说如何算的。
(3)师相机总结:17个相加,为了简便可以改写成乘法算式:22×17或者17×,因为求几个相同加数的和可以直接用乘法9929计算。
板书:×17或者17×
(4)这道乘法算式有什么特点,与以前所学的乘法算式有什么不一样?
谈话:今天这节课,我们就一起学习“分数与整数相乘”。(板书课题)2.探究算法 1)出示例1:
①出示例1中长方形直条图,标注出长是“1米”。2929
提问:做一朵绸花用
3米绸带,你能在图中涂色表示这个已知条10件吗?(学生动手涂色)追问:你是怎么涂色的?
3米表示什么? 10
②出示问题(1):小芳做3朵这样的绸花,一共用几分之几米绸带?
提问:你能在图中涂色表示做3朵绸花所用的米数吗?(学生动手涂色)
追问:你是怎样涂色的?
③一共用几分之几米的绸带,你准备怎么列式? 引导生列出加法算式:
乘法算式:
333++ 10101033×3或者3× 1010 师:分数乘法与整数乘法的意义相同,求几个几分之几相加的和也可以直接用乘法计算。2)探究算法
①师谈话:算。
引导学生说说算法,相机总结:可以用加法来推导,也可以根据分数的意义来思考。33×3或者3×怎样计算呢?想一想,并试着计1010小结:计算3/10×3时,可以用3×3的结果作积的分子,积的分母仍然是10
②出示问题2:小华做5朵这样的绸花,一共用几分之几米绸带?
学生尝试列式计算,并指名板演。
评点学生的板演,明确:计算结果不是最简分数时,要通过约分化成最简分数。
③小结计算方法
引导:比较刚才两道乘法算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?
在小组里讨论,交流。
小结:分数与整数相乘,用分数的分子与整数相乘的积作分子,分母不变。
能约分的先约分,再相乘,比较简便。3.巩固提高
“练一练”的第1题,让学生先涂一涂,再列出算式。
练习十八的第1题,让学生看图先填一填,再说说自己的想法。
“练一练”中的第2题
强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。指出:先约分再计算的方法更加简便。
3、练习八的第3、4两题,这两题是分数与整数相乘的实际应用。4.课堂总结
师:今天我们学习了什么内容?
分数乘以整数表示什么意义?举例说明 分数乘以整数怎样计算?计算时应注意什么?
第二篇:《分数与整数相乘》教学设计
授课时间:
****年**月**日
《分数与整数相乘》教学设计
教学目标:
1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
教学重点与难点:
分数乘整数的意义和计算法则。教具:作业纸 教学过程:
一、复习旧知
教师谈话:同学们,我们已经学会了整数乘法和同分母分数相加的计算方法,大家还记住吗?
师:你觉得用什么方法计算简便?
生:乘法。
师:那在什么情况下用乘法计算呢?
提问:整数乘法的意义是什么呢?
今天我们就来学习与 “同分母分数相加和整数乘法”关系密切的知识。
二、组织探究
1、教学例1。(1)出示例1,教师出示图,标注出长是“1米”
教师:你能在图中涂色表示出这个已知条件吗?
出示问题:小芳做3朵这样的绸花,一共用几分之几米绸带? 你能在图中涂色表示出来吗?学生涂色。
问:解决这个问题可以列怎样的算式?随着学生的回答进行板书 教师:求3个 3/10相加的和还可以用乘法计算,你会列式吗? 学生回答,教师板书: 3/10×3或3×3/10 3个6相加 6+6+6= 或 6X3=
授课时间:
****年**月**日
提问:这个算式中的 3/10是什么数?式中的3是什么数?这就是今天我们学习的新知识——分数乘整数(板书课题)。
教师:由此可以看出,分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
(2)探索 学生尝试计算。
启发: 3/10×3的积是多少?你能联系学过的知识来计算吗? 学生试做得出:
提问:分子上的3+3+3用乘法算式怎样表示?(3×3)教师板书:
进一步启发总结分数乘整数的计算法则
提问: 由此你发现分数乘整数是怎样计算的?(分母不变,只用分子与整数相乘)
教师引导学生概括出书上的结语。
教师:以后计算分数乘整数时,不必再写加法算式,直接根据分数乘整数的计算法则进行计算就行了。(3)解决例题的第(2)题
出示:小芳做5朵这样的绸花,一共用几分之几米绸带? 学生尝试列式计算,指名板演。
小结计算方法。
引导:比较刚才两道算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?在小组里交流。
三、练习
1、做“练一练”第1题。
学生按要求在图中涂色,然后列式计算。
做“练一练”第2题。指名板演
四、总结
本节课学习了的新知识是什么?通过学习你有那些收获?还有那些疑问?
五、作业
第三篇:分数与整数相乘说课稿
“分数与整数相乘”说课稿
一、说教材
1.教材简析
本节课是在学生理解整数乘法的意义,掌握整数乘法的计算方法;理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的。通过本节课的学习,为下面进一步学习分数乘法(包括分数乘整数、分数乘分数),解决分数乘法的简单实际问题,分数除法和分数四则混合运算奠定基础。
这部分教材在编排上有以下几个特点:
(1)把计算学习和解决问题有机结合;
(2)注重计算方法的探索过程。
2.学情分析
对于本节课的内容有的学生并不陌生,有的可能已经会计算分数与整数相乘的算式。但是,这节课的学习对于他们来说并不多余。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要关注学生理解为什么可以这样算。
3.教学目标定位
基于教材特点与学生的学情分析,本节课的教学目标确定如下:
(1)了解分数和整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,学会正确的计算。
(2)通过观察比较等体验性活动,引导学生归纳分数乘整数的计算方法,培养抽象概括的能力。
(3)引导学生探求知识的内在联系,激发学生学习兴趣。
4.教学重难点确立
教学重点:知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,理解分数与整数相乘的算理。
教学难点:让学生探索、发现能先约分的要先约分,再相乘,这样计算比较简便,而且能减少计算的错误。
二、说教法、学法
根据教学内容的特点以及学生学习的现状,为了有效的突出重点,突破难点,这节课采用自主探究、合作交流的学习方式,让学生在观察的基础上,进行分析、综合、抽象和概括,进而总结分数与整数相乘的计算方法,让学生感受由直观到抽象,由个别到一般的学习模式,学会独立思考,积极交流,实现学习者自觉、积极、主动地建构新知。教师在整个过程中通过创设情境,引导启发,调动学生的积极性让全体学生参与整个学习活动。
三、说教学过程
下面再具体说一下教学环节的设计:
(一)以旧引新,唤醒认知
首先出示如: 4/9+4/9+4/9=
2/7+2/7+2/7+2/7=
让学生先计算,然后思考:这些算式有什么特点,还可以用怎样的形式表示?
设计说明:本节课的知识基础是整数乘法的意义和计算方法,分数加法的计算等。由于时间关系,学生可能对于上述知识点有些遗忘。通过复习热身,试想唤醒学生对乘法的意义以及分数加法计算的认知,调动学生的知识储备,为后面的例题教学作好相应的准备。
(二)情境设疑,探索新知
1.创设情境:学校要举行“国庆”庆祝活动,要求大家做绸花布置环境。
出示:例1中的长方形直条图,标注出长是“1米”
提问:做一朵绸花用3/10米绸带,你能在图中涂色表示这个已知条件吗?
(学生涂色)追问:你是怎么涂色的?
出示问题:小芳做3朵这样的绸花,一共用几分之几米绸带?
这里可以引导学生先猜一猜是几分之几米,再提问:
你能在图中涂色表示做3朵花的米数吗?
你是怎样涂色的?
屏幕上再显示:3/10米就是3个1/10米,3朵花就是3个3/10米。
提问:解决这个问题可以怎样列示?
估计学生可能会列出加法算式,也可能列出乘法算式。
教师在巡视的过程中,注意用加法列式的同学,交流时,指名其先说,并计算出得数。而后再请用乘法算式列式的同学回答。首先追问学生怎么想到用乘法计算?让学生明确相同的分数连加,也可以用乘法表示。通过这第一次的追问,帮助学生理解分数乘整数的意义。
而后再请所有的学生一起思考:3/10×3的得数怎么求。估计学生中一定会出现直接会用3/10的分子3与整数3相乘作分子,用10作分母的计算方法。如果出现这种情况,教师要再一次追问,为什么能这样进行计算?有的学生可能借助图说明算理,有的可能根据乘法和加法的联系来阐述原因。但不管哪一种原因,最后教师都要归纳到分数乘整数的意义角度,即3/10×3就是3/10+3/10+3/10,等于3+3+3/10,就是3×3/10。通过这两次追问,让学生理解分数乘整数的算理。
设计说明:在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。所以,在这部分的教学中,我通过直观操作,连续追问,帮助学生由“实物感知”向“算理理解”的自然过渡,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,让学生知其然,知其所以然。
2.自主练习,突破难点:
出示:小华做了5朵这样的绸花,一共用了几分之几米绸带?
让学生自己做再指名板演。肯定会出现“先计算再约分”和“先约分再计算”两种方法。这时就要引导学生进行比较:比较这个算式的两种计算过程,你发现它们有什么相同的地方?有什么不同的地方?
第一种方法是先计算,计算结果不是最简分数的,再约成最简分数;第二种方法是先约分,再算出结果。说明:两种方法都是可以的。计算结果不是最简分数的,要约成最简分数。
出示一组判断题:
(1)2/51×17=34/51(2)3/4×3=1/4
(3)5/12×6=5×6/12=5/2(4)5/6×4=20/6=10/3
比较:你认为哪一种计算方法不容易算错、比较简便?
小结:“先约分再计算”的计算方法,参与计算的数字比原来变小了,这样就便于计算,因此提倡同学们采用这种“先约分再计算”的方法。
请同学们注意约分的书写格式:在约分时,约得的数要与原数上下对齐。
设计说明:虽然在五年级教学分数的基本性质以及分数的加减法,要求学生都要将计算结果约成最简分数。但是在历次作业和检测中,仍然有相当一部分学生由于结果不是最简分数,或者数据较大约错了而导致失分。可见,学生没有化成最简分数的意识,没有养成这种习惯,约分的能力也欠缺。所以这部分的教学设计重在帮助学生突破这一难点。学生在练习时出现两种计算方法,首先要先肯定两种计算过程都是正确的,明确计算结果不是最简分数的,要约成最简分数。接着根据同学们在作业中容易出现的一些问题,出示一组判断题:(1)的结果没有约分成最简分数;(2)是将分子与整数约分,是错误的约分方法;(3)是先约分再计算,是正确的;(4)是先计算再约分,也是正确的。通过这组题的练习,让学生在比较中感受到:先约分再计算,可以使计算时数据小一些,就会减少计算的失误。进而要求学生在今后的计算中采用这种“先约分再计算”的方法。
3.总结归纳:分数和整数相乘可以怎样计算?先同桌商量,再全班交流。
(三)分层练习,强化认知
为了帮助学生巩固新知,我安排了三个层次的练习:
1.巩固分数和整数相乘的意义。
主要是完成“练一练”中的第一题和练习八中的第1题。
“练一练”的第1题,让学生先涂一涂,再列出算式。
练习十八的第1题,让学生看图先填一填,再说说自己的想法。
2.巩固分数乘整数的算理和算法。
“练一练”中的第2题
强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。3.结合实际,解决问题。
练习八的第三、四两题,这两题是分数与整数相乘的实际应用题,通过练习让学生把分数和整数相乘的意义,分数与整数相乘的计算方法有机结合起来。以此体会学习数学的价值,体验数学与生活的联系!
四、说板书设计
分数与整数相乘
3/10×3=3/10+3/10+3/10=3×3/10=9/10米
3/10×5=3×5/10=3/2米
意义:表示几个相同分数相加的和。
计算方法:分母不变,分数的分子和整数相乘作分子。
注意:分子、分母能约分的,可以先约分。
第四篇:分数与整数相乘教学反思
《分数与整数相乘》教学反思
本节课教学时,我充分发挥了学生的积极主动性,真正地体现了学生的主体地位,教师真正地成为课堂的组织者和引导者。在例1第一问的教学中,先让学生尝试涂色练习,然后通过猜想——观察——发现规律,在小组中交流自己的发现,而在例1的第二问得教学时我采用大胆放手,让学生独立尝试完成,再让自己看书校对,培养学生充分利用课本资源,学会学习,最后集体补充完善分数与整数相乘的计算方法。整节课磕磕碰碰,在学生的对比、发现、交流中学习,同时也反映出一些不足。下面我就这节课的教学谈谈一些感想。
1、充分利用教材资源,概括计算方法和挖掘算理
计算教学的课堂中注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察、涂条形图验证口算3/10×3的答案,再列出算式计算验证,从而有利于理解分数乘法的意义,又渗透了猜想——验证——应用的数学思想。这样处理,既有利于学生主动地把整数乘法的意义推广到分数乘法中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算,又可以启发学生用加法算出3/10×3的结果。在教学中,我抓住一米绸带的这幅图先让学生涂出3/10米,然后涂出3个3/10米,再列式计算,图形结合,借助图形来说明算理,理解几个相同加数的和用乘法来计算。
在计算教学中,往往有时我们往往会只关注教会学生如何计算,对为什么可以这样计算缺乏足够的重视,而造成了由于算理不清而导致的只会机械计算,不会灵活运用的状况。因此,在这部分的教学中,我通过图文结合,引导观察,巧妙地用色笔作记号,再适时追问,引导学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘的积作分子的道理。这样做能够很好地突出重点,突破难点,让学生知其然,更知其所以然。最后学生归纳、补充,初步感知分数与整数相乘的计算方法。
2、实现教学的个性化,发展学生的能力。
相比去年教学本课时,我又做了大胆地尝试,备这节课时又想起去年执教镇教研课的情景,用同年级的老师的话是“课堂教学流畅,一气呵成,要想有所突破,会很难”。细想感觉学生的积极性是很高,算理也理解得很透彻,但总有种学生是“牵得过多,主观能动性发挥得不太好,所以在教学例1第二问时我改变了原来的方式,大胆放手,先让学生独立尝试计算做5朵这样的绸花要用绸带多少米?再打开书本互相补充学习,并观察比较哪一种方法更好?最后交流完善分数与整数相乘的计算方法(能先约分的要先约分再计算),并互相质疑。其用意是在利用身边的资源,培养学生学会学习,并能将自己的发现用语言表达出来。为“课堂教学过关”做了一次大胆地尝试,但情况不是十分理想,特别是学生的数学语言表达能力不强。在今后的教学中,我要更多地关注学生小组合作学习能力,交流能力,自学能力,引导学生学会学习数学。
通过这节课的改革尝试,我深深体会到:在平时的课堂教学中,我们应该大胆放手让学生去探索、归纳,充分地相信孩子,把学习的主动权交还给孩子,教师要具有引发学生思考的能力,促使形成合作、探索、质疑、互助的良好学习氛围。
第五篇:小学六年级数学分数与整数相乘教案
教学目的:使学生理解分数乘以整数的意义与整数乘法相同,掌握分数乘以整数的计算法则,能够正确地进行计算。教具准备:教师把例1的图做成教具,以供教学演示时使用。教学过程:
一、复习1.做教科书第1页复习的第(l)题。先让学生读题,独立列式计算。然后让学生说一说整数乘法的意义。使学生明确整数乘法的意义是求几个相同加数的和的简便运算。2.做教科书第1页复习的第(2)题。学生独立计算。集体订正时,让学生说一说这两道题各有什么特点。使学生明确两道题都是同分母分数相加,而右边的题三个分数是相同的,同样是分母不变,分子相力。教师:像右边的题求几个相同的分数相加的和有没有更简便的方法呢?这就是今天我们要学习的分数乘以整数。
二、新课1.教学例1。教师出示例1。先让学生说一说题意。然后根据学生说的题意出示准备好的教具。教师:每人吃了干块,要求3个人一共吃了多少块,可以用什么方法计算?(可以用加法计算。)让学生列出加法算式。教师根据学生的回答,板书出计算过程。用加法算:++===教师:求3个相加的和还可以用乘法计算。你能根据整数乘法的列式方法列出这道题的乘法算式吗?教师根据学生的回答,板书出乘法算式。用乘法算:3教师:这个算式中的是什么数?(相同加数。)算式中的3是什么数?(相同加数的个数。)教师:从这个算式中我们可以看出,分数乘以整数的意义与整数乘法的意义是相同的。都是求相同加数的和的简便运算。那么,这道题应该怎样计算呢?教师让学生先按加法进行计算。教师根据学生的回答,在乘法算式的后面写出计算过程。用乘法算:3=++=教师:分子上的2十2十2用乘法算式怎样表示?(23。)教师接着把计算过程写完。用乘法算:3=++====(块)2.总结分数乘以整数的计算法则。教师引导学生对照计算过程、总结分数乘以整数的计算法则。教师:如果用乘法代替加法,只看3和的计算过程,你发现分数乘以整数是怎么计算的?(分母不变,只用分子与整数相乘。)可以多让几个学生说一说。最后,概括出书上的结语:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。接着教师说用以后计算分数乘以整数时,不必再写加法算式,直接根据分数乘以整数的计算法则进行计算就可以了。同时指出,为了计算简便,上面的乘法计算能约分的要先约分。可以这样写。3==3.做教科书第2页做一做中的题目。第1题,让学生看图写算式,使学生明确求相同分数的和既可以用加法,也可似用乘法,从而进一步明确分数乘似整数的意义。第2题、第3题,让学生独立计算,教师巡视,对学习有困难的学生进行个别,辅导。集体订正时,指名再说一说分数乘也整数的意义,分数乘以整数的计算法则,以及怎样使计算简便。对8如果有的学生没有先约分,要提醒学生应该先约分再计算。由于的计算结果是假分数(),一般要化成带分数()。同时说明。以后在计算分数乘法时,乘得:结果如果是假分数的,一般要化成带分数或整数。
三、巩固练习1.做练习一的第1题。要求学生仔细审题,独立解答。教师巡视,了解学生掌握的情况,发现问题及时纠正。2.做练习一的第4题。先让学生独立解答,并引导学生回忆在整数计算中求一个数的几倍是多少用乘法计算。现在求一个分数的几倍是多少,根据分数乘以整数的意义也要用乘法计算。3.做练习一的第7题。先让学生独立解答,教师巡视,对学习有困难的学生进行个别辅导。集体订正时。指名说一说是怎样想的。还可以让学生把(1)、(2)两题进行对比,说一说(1)和(2)的异同,使学生明确(1)和(2)都是求3个,都要用乘法计算。不同的是:(1)求的是用法的具体数量,要注明单位名称吨;(2)求的是用去的煤占这堆煤的几分之几,不带单位名称。
四、小结(略)
五、作业练习一的第2、3、5、6题。